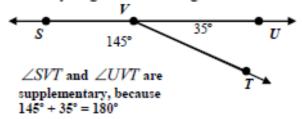
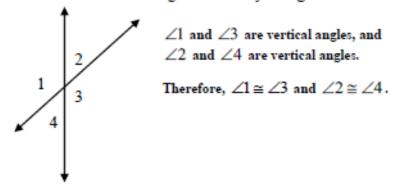
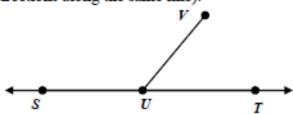
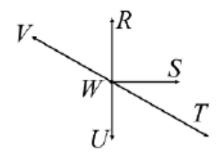

Angle Relationships


Adjacent angles are angles that share a common side and common vertex. They never overlap.

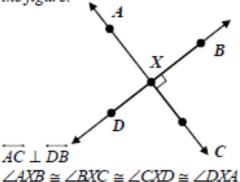

Complementary angles are two angles with a sum of 90°.


Supplementary angles are two angles with a sum of 180°.

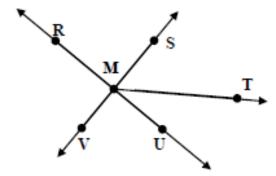
Vertical angles are the opposite angles formed when 2 lines intersect. Vertical angles are always congruent.



A linear pair is a pair of adjacent angles whose noncommon sides are opposite rays (rays going in opposite directions along the same line).


 $\angle SUV$ and $\angle VUT$ are a linear pair because their noncommon sides, \overrightarrow{US} and \overrightarrow{UT} are opposite rays.

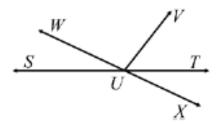
Practice



- Name a pair of acute vertical angles.
- Name two linear pairs.
- Name a pair of acute adjacent angles.
- Name a pair of supplementary angles.
- Name an angle complementary to ∠SWT. (Assume that RU ⊥ SW.)
- Name an angle supplementary to ∠SWT.
- Find the measure of an angle and its supplement if one angle measures 42 degrees less than the other.

Perpendicular lines are lines that intersect at a right angle. The \perp symbol is used to indicate perpendicular lines. A box is drawn at the vertex to indicate the right angle. A right angle cannot be assumed unless the box is present in the figure.

Things aren't always what they seem. For that reason, never assume anything about a figure that cannot be proven by studying the figure.


For example, \overline{SV} may appear perpendicular to \overline{RU} in the figure above. Even so, do not assume the line segments are perpendicular unless there is information to verify that assumption.

Example 1: If $m \angle SMT = 9x + 6$ and $m \angle TMU = 7x + 4$, find the measure of both angles so that $\angle SMT$ and $\angle TMU$ are complementary angles.

$$m\angle SMT + m\angle TMU = 90^{\circ}$$

 $(9x + 6) + (7x + 4) = 90$
 $16x + 10 = 90$
 -10 -10
 $16x = 80$
 $x = 5$

- If the angles are complementary, then their sum is 90°
- 2. Combine like terms.
- 3. Additive Inverse.
- 4. Multiplicative Inverse
- Substitute 5 for x to find the measure of both angles.

$$m \angle SMT = 9x + 6$$
 $m \angle TMU = 7x + 4$
 $m \angle SMT = 9(5) + 6$ $m \angle TMU = 7(5) + 4$
 $m \angle SMT = 51^{\circ}$ $m \angle TMU = 39^{\circ}$

Using the figure above, determine whether ∠VUT and ∠XUT are complementary. Explain why or why not.

9. If $m \angle SUX = 7k + 4$ and $m \angle TUX = 9k$, find k.

10. If $\angle VUX = 12x - 18$, find x so that $\overline{UV} + \overline{WX}$