
BACKGROUND REPORT: SugaryJS
Allowing Developers to Write their Own Syntactic Sugars for JavaScript

Chen, Susan
o1t0b@ugrad.cs.ubc.ca

Gzik, Gregory
k8o0b@ugrad.cs.ubc.ca

Lin, Hannah
g5m0b@ugrad.cs.ubc.ca

Pan, Haozhe
n6e2b@ugrad.cs.ubc.ca

1. INTRODUCTION/OVERVIEW
Open source APIs are changing how developers
write production code, as developers no longer
need to “reinvent the wheel” when working on
their projects. These programs provide developers
more flexibility, agility, and speed. However, open
source APIs are limited in their scope by the
syntax of the language itself. For example,
async/await in JavaScript (JS) was limited by how
the async library required the use of function calls
found in prior JavaScript versions rather than the
natural async/await syntax introduced in the more
recent ES6 version of JS. Async/await is a feature
that allows asynchronous functions to be
structured in a way similar to synchronous
functions. If open source components had the
option to extend the language's syntax to create
their own syntactic sugars, developers would no
longer need to wait for the language to achieve
compatibility on a syntactic level to receive the
full range of benefits. We propose the creation of a
mechanism to allow JS developers to extend the JS
EBNF, so that they can use their own syntactic
sugars in their JS files. We call this mechanism
SugaryJS.

2. BACKGROUND AND SIGNIFICANCE
Syntactic sugar, which is the syntax of a
programming language that makes code easier to
read and understand by humans without changing
its semantic meaning, has numerous benefits. It
increases the human readability of code and makes
development easier by making code easier to
debug without changing how the program behaves
[1].

However, syntactic sugar is not without
drawbacks. Although it can simplify code for the
developers, it can complicate how the language is
to be used and understood [1]. For example, C
programmers sometimes use a[i] instead of
*(a+i) to access arrays. For a beginner, the
sugared form of array access does not foster a
understanding of how memory in C works. With
syntactic sugar, developers may be able to use the
language faster, but understanding the underlying
code requires additional learning time. Syntactic
sugar also extends the length and complexity of
the language documentation, which requires
greater effort to maintain throughout the language
or API lifecycle [1].

Most programming languages today use syntactic
sugar in some form, but these syntactic forms are
may not be shared between languages. As a result,
developers grow familiar with the sugars in the
languages they typically program in. However,
open source APIs that can be used to accelerate
development are not guaranteed to be in written in
the languages with which developers are most
comfortable. In these situations, lack of familiar
syntactic sugars can become an obstacle to
learning and using some APIs. SugaryJS can be
used to port syntactic sugars from other languages
to JavaScript, reducing this learning curve.

JavaScript is the most widely used client-side
scripting language and is supported by all web
browsers [2]. It allows for creation of dynamic
web pages across different platforms and devices
and seamless integration with HTML and CSS [3].
The importance and versatility of JavaScript is
highlighted by the varying transpilers, libraries,

and frameworks that exist to extend the language
and make it easier for developers to accomplish
specific tasks [3]. SugaryJS gives its users the
ability to enhance this fundamental language to
suit their requirements by overcoming the
syntactic limitations that may be faced by
developers.

3. POTENTIAL PROJECT​
3.1 Features
SugaryJS gives developers the ability to define
their own syntactic sugar by creating an extension
to the JavaScript EBNF. By utilising SugaryJS,
developers can use their preferred syntax from
other languages while programming in JavaScript.
Potential syntactic sugars users could add to
JavaScript via SugaryJS include:

Sublist slice using ‘:’ from Python:

1. var a = [1, 1, 2, 3, 5, 7, 13, 21,

34]

2. var b = a[3:7]; // [3, 5, 7, 13, 21]

3. var c = a[:4]; // [1, 1, 2, 3]

4. var d = a[5:]; // [7, 13, 21, 34]

Array repetition using ‘*’ from Python:

1. var a = [1];

2. var b = a * 4;

// [1, 1, 1, 1]

The null coalescing operator using ‘??’ from C#:

1. var a = 1;

2. var b = a ?? -1

// b = (a != null) ? a : -1

In addition to implementing the syntactic sugars
from other languages, developers could use
SugaryJS to extend the JavaScript EBNF to
implement their own syntactic innovation.
However, we provide these examples of porting
syntactic sugar from other languages to make it
easier to reason about what SugaryJS can do.

3.2 Usage
The SugaryJS package will be downloadable via
JavaScript’s package manager npm [4].
Developers will write their intended sugared
JavaScript in an extended JS file (*.ejs). They
must also define their own syntactic sugars by
creating an EBNF extension in a JavaScript EBNF
file (*.ebnf.js). This file will also contain the
desugared JavaScript form for their syntax
addition. SugaryJS will be invoked via the
command line, requiring both the *.ejs filename
and the *.ebnf.js filename as input. It will output a
desugared JavaScript *.js file. SugaryJS will reject
any *.ejs files that do not fit the specification
defined in the *.ebnf.js file.

Consider the following example of how a user
would add Python’s sublist slice operator (‘:’) as
syntactic sugar to JavaScript. The implementation
of this syntax takes advantage of JavaScript’s
existing array slice() function.

First, developers would write their intended
JavaScript, including the syntactic sugar they
wanted to use, in an extended JavaScript file
(*.ejs). This file may have the following contents:

1. var a = [1, 1, 2, 3, 5, 7, 13, 21,

34]

2. var b = a[3:7]; // [3, 5, 7, 13, 21]

3. var c = a[:4]; // [1, 1, 2, 3]

4. var d = a[5:]; // [7, 13, 21, 34]

Then, they will need to define their syntactic sugar
in a separate EBNF JavaScript file (*.ebnf.js).
Each EBNF extension will be represented as a
JavaScript object with two fields: syntax and
semantics. The syntax field is a string which
defines the syntax of the sugar via EBNF, which
can be seen in lines 2-5 in the code snippet below.
The semantics field is a function which takes each
non-terminal of the syntax EBNF as an input and
returns its desugared form as a string. This
function essentially produces the desugared

JavaScript. This process requires that the
developer is familiar with the JavaScript EBNF to
be able to extend it properly. In our example, the
contents of this file appear as follows:
1. export const subListOperator = {

2. syntax: `

3. <MemberExpression> ::=

<Expression>”[“(<Expression>)?”:”(<Expressi

on>)?”]”

5. `,

6. semantics: function(v, i, n) {

7. if ((v.constructor !== Array)) {

8. throw new TypeError("Cannot

use sublist operator on non-Arrays");

9. }

10.

11. if (i == null && n == null) {

12. return `${v}.slice()`;

13. }

14. if (i == null) {

15. return `${v}.slice(0, ${n})`;

16. }

17. if (n == null) {

18. return `${v}.slice(${i})`;

19. }

20.

21. return `${v}.slice(${i}, ${n})`;

22. }

23. }

Once the user is ready to transpile their JavaScript
from its sugared *.ejs form to its desugared *.js
form, they will invoke SugaryJS via command line
like so:

> sugaryjs *.ebnf.js *.ejs

The following output *.js file will be generated.
The filename of the output file will correspond to
the filename of the *.ejs file provided as input. The
following is the output SugaryJS would produce
for the sublist slice example:

1. var a = [1, 1, 2, 3, 5, 7, 13, 21,

34];

2. var b = a.slice(3,7);

3. var c = a.slice(0,4);

4. var d = a.slice(5);

3.3 Implementation

SugaryJS will be built as a plugin for the Babel
compiler, which is used by numerous JavaScript
frameworks including React, Flow, and TypeScript
to transpile their syntax into JavaScript [5]. Babel
represents the JavaScript Abstract Syntax Tree
(AST) using ESTree, a popular AST
implementation described as the “lingua franca for
tools that manipulate JavaScript code.” [6] Given a
valid AST, Babel automatically handles the
transpiling of JavaScript code based on its input
AST. Therefore, the job of SugaryJS is to parse the
*.ejs file into an valid AST that Babel can accept
as input, and let Babel handle the transpilation
from that AST into JavaScript output code.

More concretely, SugaryJS will transpile *.ejs to
*.js by the following four stage process:

1.​ Define - Interprets the EBNF from the
syntax field from the EBNF extension
object in the *.ebnf.js file to construct an
AST. This AST represents both the
JavaScript EBNF and the EBNF extension
defined by the syntax object.

2.​ Parse - Parses all *.ejs files into the AST
constructed in the define stage, rejecting
any files whose syntax does not conform
to the AST.

3.​ Desugar - Parses and interprets the
semantics field from the EBNF extension
object in the *.ebnf.js file into the
JavaScript AST. All ASTs formed in the
parse stage will be desugared into valid
JavaScript ASTs using the interpreted
semantics object.

4.​ Output - Inputs the translated ASTs from
the translate stage into Babel to create the
output *.js files.

3.4 The Final Result

In the 100% level implementation of SugaryJS, the
four transpilation stages discussed in section 3.3
will be implemented as a Babel plugin. SugaryJS
will be released to the open source community via
JavaScript’s package manager npm [4]. This
release will contain multiple examples of syntactic
sugars users could implement via SugaryJS, in
addition to user documentation describing the
step-by-step process for implementing these
examples in SugaryJS.

Furthermore, SugaryJS will be able have multiple
syntactic sugars defined in the input *.ebnf.js file
and be able to report errors for syntactic sugars
that have the same AST input from the *.ejs file
but different AST output in the *.js file. This final
result realizes the vision of giving external Web
APIs the ability to define their own syntactic
sugars for their libraries and giving developers the
ability to use the sugars of multiple external web
APIs in their projects.

A stub of the SugaryJS npm package has been set
up and can be viewed at the following URL:
https://www.npmjs.com/package/sugaryjs.

4. SIMILAR WORK
SugaryJS is not the first attempt to make an
existing language easier to use. We have
considered the following mechanisms that attempt
to address syntactic shortcomings in their
respective languages to learn lessons from their
implementation. However, there is a key
difference between some of these mechanisms and
SugaryJS: SugaryJS only transpiles syntactic
sugars to the existing JavaScript abstract syntax
tree, but some of the examples discussed below
implement sugared syntax and in certain cases,
new semantics to their respective languages
directly. More importantly, users can define their
own syntax to suit their preferences.

4.1 Sweet.js
Sweet.js is a JavaScript extension that allows users
to bring the hygienic macros of Rust and Scheme

to JavaScript [11]. Using the “syntax” keyword,
users can generate macro definitions by creating a
new variable and binding it to a function definition
so that it behaves like a compile-time function
[11]. After the macro is defined, it can be invoked
like so:

syntax hi = function (ctx) {​

 return #`console.log('hello,

world!')`;​

};​

hi

Operators can also be defined with Sweet.js using
the “operator” keyword. Unlike macros,
precedence and associativity of the operator can be
defined, such as left/right and prefix/postfix [11].

Similar to SugaryJS, Sweet.js allows users to
specify custom syntax in place of more complex or
unwieldy expressions in JavaScript. However,
Sweet.js is limited by the fact that macro
definitions only allow binding of functions to
single variables at a time. In addition, infix
operators are not supported and operator
definitions cannot match arbitrary syntax [11].
SugaryJS aims to overcome this by parsing EBNF
to construct an abstract syntax tree, so that new
syntactic extensions are not limited by the use of a
single operator.

4.2 JSX
JSX provides syntactic sugar that is used in
libraries such as React. It is similar to XML and
HTML in that it allows users to specify tag names,
attributes, and children, and can be run in the
browser by transpiling into JavaScript via Babel
[7]. JSX expressions allow for embedding of valid
JavaScript expressions through use of curly braces,
{}, and combines markup and logic in singular
components for powerful UI rendering. Babel then
compiles JSX to React.createElement() calls,
producing elements that represent objects in the

https://www.npmjs.com/package/sugaryjs

DOM [7]. The following two declarations are
identical:

const element = (​

 <h1 className="greeting">​

 Hello, world!​

 </h1>​

);

const element = React.createElement(​

 'h1',​

 {className: 'greeting'},​

 'Hello, world!'​

);

JSX provides syntactic sugar to take advantage of
the coupling between rendering logic and business
logic such as event handling, state, and display [7].
While JSX is primarily designed for React to build
user interfaces, SugaryJS can extend JavaScript for
any purpose. In fact, since JSX defines syntactic
sugar on top of the existing JavaScript syntax, JSX
could be implemented solely via SugaryJS.

4.3 CoffeeScript
CoffeeScript is a language that compiles into
JavaScript and aims to expose the strengths of
JavaScript by introducing simple syntactic sugars
[8]. This language brings together the syntax of
Ruby with the utility of JavaScript to make web
development easier. Some recognizable features of
CoffeeScript include the absence of parentheses,
type declarations, and semicolons, giving the code
an overall cleaner look.

The idea of simplifying syntax to increase
readability is shared by CoffeeScript and
SugaryJS. However, unlike SugaryJS,
CoffeeScript provides replacement syntax to
JavaScript rather than extending the existing
syntax. This is both an advantage and a
disadvantage. CoffeeScript limits the syntax it
accepts from its users, making it easier to learn the

syntax rules, but this may also limit the
expressibility of the language. Since
CoffeeScript’s syntax replaces elements of
JavaScript’s syntax, CoffeeScript could not be
solely written as an instance of SugaryJS.

4.4 C++
C++ was developed with the intention of making
the existing language of C more efficient and
elegant [9]. C is a popular low-level, procedural
programming language known for its speed and
portability. However, it lacks object-oriented
programming and has weak type checking and
data abstraction. The C++ programming language
was developed for the purpose of adding these
features to C [9]. Bjarne Stroustrup initially added
features such as classes, inheritance, and strong
type checking to C, creating a language he called
C with Classes [9]. This language eventually
became C++, which had even more features than
C with Classes, including function overloading,
references with the & symbol, and the const
keyword. The modifications that C++ made to the
C language gave developers the ability to program
both at a high-level and low-level while
maintaining the performance and speed of C [9].

Similar to C++, SugaryJS can make code look
more refined. Adding syntactic sugar can also
make the language easier to understand by users
less familiar with Javascript. C++, however, in
addition to providing notational support, added
new behaviour that is not available in C. SugaryJS
only allows for the addition of syntactic sugar to
Javascript and is unable to change the semantics of
the language.

5. LIMITATIONS
A major limitation to SugaryJS is that it only
allows users to extend the syntax without
overwriting the existing JavaScript EBNF. This
means users cannot fundamentally change the
original JavaScript syntax. SugaryJS can only
append non-conflicting syntax that can be
interpreted in terms of JavaScript’s existing

semantics. In other words, SugaryJS cannot fix all
of JavaScript’s problems such as variable hoisting,
lack of an integer type, and lack of proper implicit
tail calls [10].

In addition, the use of SugaryJS requires
developers to provide additional “code” in the
form of EBNF extensions and to learn how to use
the tool itself. Providing these EBNF extensions
means that developers are required to familiarize
themselves with the ESTree implementation of
JavaScript’s abstract syntax tree. However, we
argue that this additional cost is offset by its ability
to give developers the ability to use language
syntax that is familiar to them while taking
advantage of the power of open source APIs to
accelerate development.

REFERENCES
[1] Kristopher Sandoval. 2016. Sweet API -
Syntactic Sugar and You. Retrieved November 5,
2018 from
https://nordicapis.com/syntactic-sugar-apis/

[2] TechArk Solutions. 2014. Importance Of
JavaScript. Retrieved November 7, 2018 from
https://gotechark.com/blog/importance-javascript

[3] Mindfire Solutions. 2017. How important is
JavaScript for Modern Web Developers? Retrieved
November 6, 2018 from
https://medium.com/@mindfiresolutions.usa/how-
important-is-javascript-for-modern-web-developer
s-2854309b9f52

[4] npm. 2018. What is npm? Retrieved November
5, 2018 from
https://docs.npmjs.com/getting-started/what-is-np
m

[5] Babel. 2018. Babel. Retrieved November 5,
2018 from https://babeljs.io/docs/en/

[6] ESTree. 2017. ESTree Specification. Retrieved
November 6, 2018 from
https://github.com/estree/estree

[7] Facebook Inc. 2018. Introducing JSX.
Retrieved November 5, 2018 from
https://reactjs.org/docs/introducing-jsx.html

[8] CoffeeScript. 2018. CoffeeScript. Retrieved
November 5, 2018 from https://coffeescript.org/

[9] Bjarne Stroustrup. 2018. Bjarne Stroustrup’s
FAQ. Retrieved November 5, 2018 from
http://www.stroustrup.com/bs_faq.html

[10] Richard Kenneth Eng. 2016. The 10 Things
Wrong with JavaScript. Retrieved November 7,
2018 from
https://medium.com/javascript-non-grata/the-top-1
0-things-wrong-with-javascript-58f440d6b3d8

[11] Sweet.js. 2017. Sweet.js - Hygienic Macros
for JavaScript. Retrieved November 19, 2018 from
https://www.sweetjs.org/

https://nordicapis.com/syntactic-sugar-apis/
https://gotechark.com/blog/importance-javascript
https://medium.com/@mindfiresolutions.usa/how-important-is-javascript-for-modern-web-developers-2854309b9f52
https://medium.com/@mindfiresolutions.usa/how-important-is-javascript-for-modern-web-developers-2854309b9f52
https://medium.com/@mindfiresolutions.usa/how-important-is-javascript-for-modern-web-developers-2854309b9f52
https://docs.npmjs.com/getting-started/what-is-npm
https://docs.npmjs.com/getting-started/what-is-npm
https://babeljs.io/docs/en/
https://github.com/estree/estree
https://reactjs.org/docs/introducing-jsx.html
https://coffeescript.org/
http://www.stroustrup.com/bs_faq.html
https://medium.com/javascript-non-grata/the-top-10-things-wrong-with-javascript-58f440d6b3d8
https://medium.com/javascript-non-grata/the-top-10-things-wrong-with-javascript-58f440d6b3d8
https://www.sweetjs.org/

