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1. Focus & Scope
The 2012 Ontology Summit, Ontology for Big Systems, sought to explore, identify and articulate how ontology, its
methods and paradigms, can bring value to the architecture and engineering of Big Systems throughout their full
lifecycles.
The term Big Systems was intentionally vague and intended to cover a large scope that included many of the terms
encountered in the media and engineering including:

● Big Data and the systems that handle it
● complex systems including those that support processing, physical or information, and socio-technical

economic interactions/processes
● intelligent or smart systems

Additionally, though not necessarily explicitly Big Systems, we also included cloud computing and net-centric
environments, which represent areas also addressed by systems engineering that will benefit from the use of
ontology.
Established disciplines that fall within the summit scope include (but are not limited to) systems engineering,
software engineering, information systems modeling, enterprise architecture and data mining.
As is traditional with the Ontology Summit series, the results were captured in the form of a communiqué (herein),
with expanded supporting material provided on the web.

2. Summary
The principal goal of the summit was to bring together and foster collaboration between the ontology community,
systems engineering community, and stakeholders in Big Systems. The common thread that emerged for Big
Systems and Big Data was models and modeling; the status of models as an authoritative source of information for
these systems; the need to have models with greater fidelity and interoperability that adequately represent the
complexity of the systems and their (operational) environments. The primary driver for a modeling approach to
systems engineering and development is complexity, cost, in time/money/maintenance/reuse, and resultant system
value. Ontology, both in the guise of ontological analysis and ontologies as artifacts, provides the basis for meeting
the complexity and cost challenges of engineering Big Systems and handling Big Data in terms of more explicit
semantics - fidelity and verisimilitude to real world – and consistent conceptualizations.
Among the current approaches to mitigate some of the complexity and cost factors associated with engineering are
executable architectures and model based engineering. Each approach involves a model to either understand the
thing being designed or to provide a predictive base of design. In each case current methodologies and tools often
fall short of providing:

● sufficient rigor in their ability to adequately represent the system for the needs of the entire engineering
lifecycle and its environment,
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● adequate ontological analysis of the domain or its constituent parts
● explicit semantics (usually only in the minds of the modelers and therefore prone to variation between

modelers and inconsistency across disciplines).
● the use of logical inferencing to automate processes.

The lack of adequate fidelity among models and their conceptualizations, and of consistent semantics during
engineering phases can cause poor design, mis-communication across the lifecycle and among stakeholders,
implementation errors, re-work, and systems that fail to neither meet their expected uses nor cost-effectively be
extended to meet unanticipated needs. During operation such systems may be difficult to maintain, including simple
maintenance, updating, or even extensions. Moreover, there is a growing expectation for systems to be more
'intelligent', in the sense of being able to adapt, or at a minimum be adaptable, to new needs without incurring large
costs.

The information age has resulted in the production of unprecedented amounts of information and data - Big Data.
Accompanying, or causing, this abundance of data and information are Big Systems that create or attempt to handle
it and provide something akin to “knowledge”. Something that integrates the best, most appropriate information,
something that not only reflects the vast quantity of data, but also its meaning and authority, including the meaning,
authority, and intention that may be derived from the context in which it originates.
But the growth of these ‘Big’ things are outstripping the capacities of current engineering practices and tools.
Ontologies and ontological analysis are vital parts of a solution addressing the problems of architecting and
engineering Big Systems and Big Data. Whereas data models and conceptual schemas typically only provide local
and/or ad hoc semantics, ontologies explicitly represent real-world semantics of the systems. Ontologies can be used
to:

● make explicit and accessible the implicit yet vital assumptions about nature and structure of engineered
systems and their components

● help people better understand and disentangle the complexity of big engineered systems and their social,
economical, and natural environment

● enable integration among systems and data through semantic interoperability
● allow humans to delegate more of the mundane processing and computing to machines (than was previously

possible)
● improve models and modeling, their adaptability and reuse, and resulting design
● reduce development and operational costs
● enhance decision support systems
● aid in knowledge management and discovery
● provide a basis for more adaptable systems

Finally, as we move into the knowledge age with Big Systems and Big Data, there is a growing expectation that our
systems will be more self-describing and intelligent. While for smaller systems, it may be viable to rely on implicit
semantics and manual modifications, the scale, complexity, heterogeneity, and costs of Big Systems or Big Data often
exclude such an option. Rather, the semantics must be made explicit and machine readable, because there are
multiple communities, users and developers who are involved throughout the lifecycle. In order to engineer and
operate such systems cost effectively, allow intuitive use and meet expectations of all stakeholders, a more consistent
and complete use of ontologies and ontological analysis must be made.

3. Introduction
In the past decade, more data has been collected, more video has been produced and more information has been
published than in all of previous human history. At the same time, with the advent of the computer, digital
representations, and the Internet, it has been possible to model more of the complexity of systems, connect more
people, and connect more (information) systems. With all this new information (aka Big Data) and all these new



systems (aka Big Systems), there has also been an attendant growth in the complexity and scale of systems that model
physical phenomena and handle information, their size, scale, scope and interdependence.
To address the problems that have arisen during the current period of information and knowledge growth, we need
novel tools and approaches. Some of the major challenges facing Big Systems stem not only from their scale, but also
their scope and complexity. At the same time, there are novel challenges for Big Systems when different, dispersed
groups work together toward a common goal, for instance in understanding climate change. This leads to a need for
better solutions for interoperability among federated systems and for fostering interdisciplinary collaboration.
Given the broad scope of this year’s theme, Ontology for Big Systems, the summit was organized along three tracks and
two cross-track initiatives. This communiqué seeks to distill and construct a whole from the activities that occurred
within each track and throughout the summit. The interested reader is encouraged to visit the synthesis and
community pages for further information. In addition each of the meeting pages, containing links to the
presentations, audio recordings, and chat sessions is also available for review. The tracks were as follows:

● Big Systems Engineering
● Big Data Challenge
● Large Scale Domain Applications
● Quality Cross Track
● Federation and Integration of Systems

3.1. Big Systems Engineering
Engineers and designers have always used a variety of models as part of their disciplines. Designing a car, a power
plant, information application, or a transportation system relies heavily on creating a model of the system. Similarly,
models are used extensively in trying to understand how complex systems such as the human body or climate works.
In the computing age, it has become far easier to create and share these models, and given the scale and complexity
of the systems being modeled, these models are becoming the authoritative source.
However these models carry an (often implicit) ontology, expressing a theory or a set of assumptions, about the
world or some part of it. But different fields create and use models of varying sophistication whose underlying
conceptualization and/or intended semantics is often implicit or governed by inconsistent conventions. But the reuse
of these models is hindered by these differences. So a gradual shift to explicit semantics and consistent
conceptualizations is underway, first in engineering and slowly in other fields.
Within engineering, the various disciplines are evolving from using informal modeling to using formal languages to
model their systems; to underpinning these languages with explicit semantics; to recognizing the importance of
understanding the underlying ontology of modeling primitives. This ontology is based on real world characterizations
and categories, not just the local semantics of structural data models. Ontological analysis helps to ensure proper
shared understanding of fundamental relations such as “component”, “sub-class”, or identity-preserving properties
that persist through time as designs and implementations change.
There are various standardization efforts underway to advance the semantic and ontological foundations, from the
development of ISO 15926 (a standard for data integration, sharing, exchange, and hand-over between computer
systems), to providing formal semantics for the Unified Modeling Language. Similarly, groups are working to build
repositories of ontologies, or libraries of ontology patterns - snippets that formalize important aspects of reality such
as “part-of ” or “is-a”. Additionally, domain-specific languages such as Haskell and other functional programming
and modeling languages require firm grounding in explicit semantics that can only be provided by formal ontologies.

3.2. Big Data & Applications
A key component of the current explosion of information is the proliferation of vast amounts of raw data. With
greater computing power there is an increased ability to create and track data. Whether it be encoding an organism’s
DNA, tracking Internet usage, tracking credit usage, the experiments at the Large Hadron Collider or weather
satellite data, each of these activities creates a staggering amount of data. A future in which the ability to analyze and
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extract information from large, diverse, and disparate data sets:
● accelerates the process of scientific discovery and innovation
● promotes new economic growth
● leads to new fields of research and new areas of inquiry that would otherwise be impossible.

The sheer size and scale of these data sets presents its own challenge, knowing how to first understand the data,
garner information and knowledge from it, and then intelligently combine it with other data sets means that there is
a need to accurately represent (the portion of) the world this data reflects. This in turn necessitates that each data
source adequately represents itself and makes available information that can be interpreted out of its original context,
for example units of measurement, time-stamps, or annotations of data elements with terms from reference
ontologies. To effectively reuse and combine data from different sources and contexts in novel ways there must be
sufficient commonality among the information that describes the data.
For example, imagine a future where intelligent agents play a more prominent role in the doctor-patient relationship.
As a patient describes her symptoms to the doctor, an agent is able to cross-reference these symptoms with
aggregated patient data to find similar patient profiles. Unable to determine the exact ailment, the doctor uses this
information to prescribe a series of test to further narrow the possibilities. Before the tests are carried out, a new
paper is published linking a previously unknown gene to a symptom displayed by the patient. An agent monitoring
this publication, extracts this information and flags the patient file for doctor review. The next day, the doctor is
alerted to a change and realizes that a number of tests prescribed are unnecessary. Such functionality would be the
manifestation of a number of federated Big Systems (patient data, research publication networks, gene information
systems).
Realizing this vision will require a multitude of technologies and approaches. One tool currently used to understand
how different data sets are related to one another is statistical analysis, but there are limits to statistical analysis. There
needs to be a conceptual framework or theory alongside statistical analysis tools. To effectively combine multiple data
sets and systems, we need to be able to represent the assumptions and conceptualizations that underpin knowledge
in those domains.
To be able to effectively use the data and combine it for other useful ends, data creators and publishers need to make
explicit what their data represents together with the context of the data and its creation (e.g., the systems that created
and transformed it). This requirement necessitates developing theories about those parts of the world relevant to the
data and its contexts. Without such theory and subsequent practice, successful data reuse and adaptability will not be
possible.
Of note is the work in bioinformatics, such as the Gene Ontology, and other ontology artifacts found in the OBO
Library or Bioportal, which could annotate Big Data with explicit semantics. These initiatives allow research groups
to publish findings on genes, gene expression, proteins and so in a standardized consistent manner.
Another example is the FuturICT project funded by the European Union. Its ultimate goal is to understand and
manage complex, global, socially interactive systems, with a focus on sustainability and resilience. FuturICT will build
a Living Earth Platform, a simulation, visualization and participation platform to support decision-making of
policy-makers, business people and citizens. Further examples can be found on the track four teleconferences.

3.3. Federation, Integration & Interoperability

The Internet has made it far easier for different people in the different parts of the world to share and combine data,
information, and knowledge. If the true potential of this interconnected world is to be realized it means that we need
to be able to combine not just our data, but also our systems, models, conceptualizations, and semantics.
As knowledge has become more specialized, different communities have developed their own bodies of knowledge,
vocabularies, or interpretations of common terms. Each community (of practice) views and prioritizes parts of the
world according to their own viewpoints and interests, having their own implicit semantics, with competing goals.
Similarly, within a single enterprise, the same product or data may be viewed differently by each of the marketing,
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engineering, manufacturing, sales and accounting departments, each applying their own terminology and possibly
different conceptualizations. Ensuring that these views are, if not harmonized, at least aligned so that information
can be shared and used effectively entails solving interoperability. Without interoperability, information from these
different departments cannot be combined or reused accurately or effectively. Leaving the enterprise stakeholders,
including decision-makers at every level, without ready, reliable access to what the rest of the enterprise knows.
Attempts to bridge such information or knowledge gaps without explicit semantics can also leave the enterprise
weighed down by additional costs, inaccuracies, and latency in creating and maintaining duplicate information
sources.
Semantic analysis (understanding the meaning of terms used by different systems or organizations), followed by
ontological analysis is a fundamental, essential aspect of federation and integration – providing a consistent
interpretation of the (natural language) terms used in systems and data sets. Ontologies, in the form of explicit
statement of the assumptions in each sub-field can help identify points of overlap and interest between different
communities. The ontologies can serve as tools to facilitate search and discovery. Building value by combining the
views of different communities means solving interoperability, and that means negotiating the meanings or
interpretations, implicit or otherwise, used by each of these groups.
The Object Management Group recently released a request for proposals to create a standard to address issues, such
as the request for proposal regarding the “Semantic Information Modeling for Federation" (SIMF). Similarly, one
example within the systems engineering community is the ISO 15926 standard which aims to provide a capability to
support the federation of the design (CAD), manufacturing (CAM) and lifecycle (PLM) systems in industry, business
and ecosystem-wide scales. A set of references regarding the subject of this cross track have been compiled and
posted to the ontolog wiki, available here.
Another project, the iPlant Collaborative, is building the requisite cyberinfrastructure to help cross-disciplinary,
community-driven groups publish and share information, build models and aid in search. The vision is to develop a
cyberinfrastructure that is accessible to all levels of expertise, ranging from students to traditional biology researchers
and computational biology experts.

3.4. Ontology & Quality

While addressing our main theme, Ontology for Big Systems, we can’t ignore of course the ontology quality issue. The
word “Quality” may be used to describe how “good” something is in some way independent of usage, but “quality”
is also used, in industrial quality assurance, to describe how well some deliverable meets its stated requirements. To
the extent that it is possible to state things about an ontology which make it “good,” these two definitions may
converge, but they should be considered separately.
Quality in its most formal sense refers to the rigorous use of requirement specifications, requirements-centric design,
multi-stage testing and revision, and other risk-management and quality assurance techniques. This is a hallmark of
systems engineering, distinguishing it from less rigorous systems creation activities and essential to success in
developing large-scale and complex systems and managing them throughout their life-cycles. Various sub-domains
within systems engineering apply these risk- and complexity- management techniques to systems overall, to system
components, to component interfaces, to engineering, interface, and other processes. Quality at any of these levels is
defined in terms of the degree to which any one of the system, component, process, etc., meets the specified
requirements. Analysis and specification of requirements and functions at each of these levels, along with
identification and application of relevant quality measures, is an essential part of good systems engineering.
The key to formal quality in any context is that the requirements must be well-articulated. Ontologies present specific
challenges in this regard, starting even at the most basic question: “What is this ontology for?”. There is considerable
literature on measures which may be applied to ontologies ‘in vacuo’, which may allow one to make some assessment
of how good they are with respect to their general aim, i.e., making a conceptualization explicit, avoiding
misunderstandings about a particular term. Less well-developed, but increasingly important, is the literature on how
to formally articulate the range ontology characteristics such that for a given application, those characteristics may be
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specified as requirements, and the ontology may be assessed against those formal requirements within some formal
quality assurance framework or regime.
Ontologies may be used in one or both of two very distinct ways: as a formal computational artifact which forms
part of some system, and as a tool for formally articulating business subject matter as part of the specification and
engineering of some system. In Big Systems engineering the latter use case starts to come into its own. Ontologies
which have been developed to articulate business knowledge within the big system development process may go on
to be deployed as computational artifacts within one or more components of that system, again highlighting the
importance of articulating the uses to which the ontology is to be put. Independent of such deployment, however,
the use of ontologies to represent business subject matter, systems specification, processes, functions and other
matters important to the systems engineering process provides a certain rigor while also enabling ontology-based
reasoning about those matters either now or in some future application.
In either case, the formal quality of the ontology used matters as much as the formal quality of other systems
components and tools. By definition, the formal quality of the ontology is the degree to which the ontology meets
the specified requirements. Those requirements are derived from the usage, as a component of an engineered system
or as a part of an engineering process. For effective ontology quality assurance, these requirements must be specified.
In practice, however, even in systems engineering projects in which attention is rigorously applied to quality
assurance measures for other components and aspects of those systems, often the commensurate identification and
specification of ontology requirements and the subsequent validation of the delivered ontologies against those
requirements is given little to no attention. Where ontologies have been used specifically as part of the quality
assurance process for other system deliverables (that is, using ontologies to articulate the business knowledge that is
to drive data model development or systems components), there is often a perception that quality measures do not
need to be applied to the ontology itself. This is far from being the case.
In order to validate the quality of an ontology then, it is necessary first to identify what will be required of that
ontology in use. A formal approach is required no matter how simple may be the use to which the ontology is to be
put. In order to fully describe the formal requirements of an ontology, it is first necessary to articulate what are the
things which may be said of an ontology, in order to determine whether or not those are specific requirements for
the ontology that is to be delivered in a given project. The kinds of things which need to be articulated include logical
formalisms, the treatment of meaning, coverage of the subject matter semantics, the ontological commitments logical
characteristics of the ontology and so on. There is a wealth of literature on certain aspects of ontology requirements
and quality, but considerably less on other areas such as ontological commitments or the more “semantic” issues (as
distinct from requirements which may be validated by some automated means). If this is not is addressed there is a
danger that ontology engineers are “looking for the keys under the streetlamp” by applying only those techniques
which are amenable to some automated treatment.
Issues around real meaning are less amenable to these technical treatments, but not incapable of validation. Some
techniques are emerging which provide some means to better address the actual semantics of ontologies, in particular
ontology patterns, the use of industry standards, and techniques around competency and coverage. Numerous
techniques for validation of models by domain experts exist in practice; documentation of these techniques and
evaluation of their soundness are needed.

4. Recommendations & Observations
This section represents a distillation of the discussion in this year’s summit focused on recommendations and
observations, beginning with a listing followed by more detailed explanations.

4.1. Recommendations & Observations Summary
Modeling

○ Modeling should employ ontological analysis and patterns
○ Modeling should employ foundational ontologies to provide consistent conceptualizations



○ Modeling languages need to support explicit semantics and conceptualizations grounded in
foundational ontologies

Engineering Practice
○ The ontology community needs to develop ontology patterns to facilitate adoption and use of

ontology in engineering
○ Engineering processes have to be expanded to include requirements for ontologies
○ Systems engineering should include ontological analysis as part of its standard practice
○ Modeling practices should recognize the value of conceptual models and understand the differences

between them and logical models and implementations
○ Provenance for design rationale and implementation decisions need to be maintained

Ontology Tools & Infrastructure
○ Tools for ontology development need to be improved and integrated with tools from other

modeling paradigms
○ Configuration control tools and processes need to be extended and expanded for ontologies and

their artifacts (e.g., provenance)
○ Ontology repositories with common interfaces and common metadata need to be readily available

Ontology Quality Practices
○ Quality requirements and metrics for ontologies need to be developed and integrated into

engineering practices

4.2. Modeling
Most aspects of engineering involve models, many times residing solely in the engineer’s mind. In the process of
engineering Big Systems there are many (possibly complex) models developed by different disciplines, teams and
people that may be geographically, linguistically, and culturally dispersed. But, models from different disciplines have
different levels of expressivity or fidelity, different assumptions, different degrees of automation, and are not
interoperable in general. Aside from differences in tools and modeling syntax, more fundamentally, different and not
necessarily compatible conceptualizations and interpretations exist among the models. At various points in the
system's development and operational lifecycle(s) these differences must be resolved and models integrated, or at a
minimum, differences bridged, to achieve interoperability, including syntactic, conceptual, and semantic, in order for
collaboration and continued development to occur. These efforts to resolve incompatibilities add additional time and
costs. Thus the Systems Engineering community gives a strong emphasis on the importance of models and
modeling, and explicating the underlying concepts and their semantics.
Models incorporating formal ontologies can deliver additional value by exploiting the application of rules,
inferencing and transformations between models. Current approaches to modeling include natural language textual
descriptions, mathematical models, free form graphical diagrams (e.g., Microsoft Power Point or Visio), spreadsheets,
or specification based notations (e.g., IDEF, Entity-Relationship diagrams, UML). A number of candidate modeling
languages were considered in the discussions, alongside their deficiencies in semantic and conceptual clarity
(ontology representation languages among those). In each of these cases there emerged a lack of clear
conceptualizations or semantics.
Computer based modeling languages provide some built-in support for component modeling and provide facilities
for extending the language’s ontological commitment, but are usually not sufficient to support formal semantics,
logical inferencing, nor expressive enough to take advantage of rigorous ontological analysis.
To mediate at least the possible semantic differences among models there has been a progression in engineering to
shift from informal modeling toward more explicit semantics, for instance chalk/white board sketches or textual
descriptions, to modeling in formal languages that support more explicit and complete semantics. However, beyond
the issues of semantic differences of models, there can be, and are, differences in conceptualizations. These
differences may not always be readily apparent and sometimes manifest in modeling languages.
The modeling of big, complex or distributed systems, such as linked open data (LOD), in which information data is

http://www.idef.com
http://n.wikipedia.org/wiki/Entity-relationship_model
http://www.uml.org/
http://ontolog.cim3.net/OntologySummit/2012/track1.html#mp-single
http://linkeddata.org


shared and used across organizational, specialty, geographic and even linguistic divides, requires conceptualizations
within multiple domains of relevance to the system(s), their use(s), and engineering processes. Ontologies represent
conceptualizations of aspects of a domain or its environment. Ontological analysis provides a more thorough
analysis methodology for understanding and distinguishing the complexity of Big Systems. Modeling, in all its various
guises, is an area where ontology and ontological analysis is starting to be used and has great potential, as exemplified
by INCOSE’s ontology for Model Based Systems Engineering effort..
Ontologies can be viewed as patterns for what constitutes a system (with parts, connections, processes or events), the
identity, dependence, and unity of systems – models in their own right. Informally a system is an entity that consists
of components, where the components are connected in some way such that the system as a whole exhibits some
behavior. For engineered systems, it is usual for them to be designed such that the components are replaceable. Key
relations like classification, specialization, and whole-part are well understood in the realm of ontology, and see major
application in systems engineering.
It was further noted that developing an ontology of a problem space or domain as a referent conceptual model
allows an organization to decouple this knowledge from any particular information model or technology
implementation. In this way, a technology agnosticism is enabled, allowing the conceptual model to be reused and
realized in whichever technology stack is most appropriate.

4.3. Engineering Practice
The intersection between ontology, Big Systems and Big Data spans many communities, disciplines, and levels of
depth. Regardless of the community, the success of any ontology intervention requires understanding its intended
environment and problem space to be addressed. Clarifying how ontology fits into the larger picture will shape what
level of expressiveness and semantics is required and how they may be employed in a project. Not all ontologies need
to be reasoned over and rarely are they the end product.
In considering the use of ontology one has to gauge the level of “semantic maturity” of the organization and
environment in which the use is proposed. To what degree does the broader organization understand ontology or
the application of ontology? To what extent are such technologies already being deployed? Will the shift be
incremental or might it be perceived as disruptive? Often, existing infrastructure will support traditional software
development far better than large-scale ontologies, developing a migration path that delivers small wins while
transitioning towards a more suited infrastructure makes such change easier to manage. Given that no single
technology or tool currently provides the best solution across all large system use cases, most implementations
should expect to evolve as the technology landscape changes.
Determining exactly which ontology is appropriate for an application is an involved task. Ontology patterns allow
engineers to construct ontologies incrementally, without committing to reusing an entire ontology, by selecting only
those parts which address a limited scope. Selecting the right ontology requires trade-offs in terms of the desired
expressivity, comprehensiveness and breadth. To this end, it was recognized that a number of distinct problems are
often conflated in the case of procedural artifacts. It is wise to disentangle:

1. The level of expressiveness (representation) it takes to develop the ontology needed for your domain. This is
development time expressiveness.

2. The level of expressiveness (representation) it takes to efficiently reason over the ontology at run-time. This
is run-time expressiveness.

3. Transformation of the representation of (1) to (2), i.e., knowledge compilation.
Not enough expressivity may mean that it is not possible or cumbersome to represent essential aspects of the
problem space. Conversely, allowing extraneous expressivity for reasoning can severely affect run time perfomance.
A vital task for any ontology implementation is to understand the level of expressivity as required by the problem
space, while also accounting for performance criteria. Moreover, reasoner and query engine performance are highly
dependent upon the exact formulation of the rules and queries. Alternative representations of the same axioms can
have significant effects in the performance of reasoning. One observation was that ontologies work best when not

http://www.omgwiki.org/MBSE/doku.php?id=mbse:ontology


compromised by implementation tradeoffs.
This means that greater work is required to build adequate support frameworks for such tasks, which is currently
minimal. When it also comes to the deployment or construction of an ontology, while the target community should
be included in the development and evolution of the vocabularies, engineers turned ontologists often don’t have the
necessary background or skills. That said, it is critical to maintain a strong relationship with the domain experts about
the fidelity of the model.
The transition from implicit domain knowledge to explicit encoding requires community consensus, which in turn
requires an organizational commitment to create the necessary infrastructure to manage such consensus. At the same
time, consensus is not always possible, as different subgroups working on different parts of the same system may
have differing views. In these cases, having explicit vocabularies (classifiers) is a necessity in a distributed system.
In those applications where the ontology will impact end users, there is broad consensus that the presentation of the
ontology should be relevant to the users’ context. For example, in one successful project, ontologies were used as
configuration templates which user interface specialists then used to tailor views for their end users.

4.4. Ontology Tools & Infrastructure
Systems engineering is all about understanding the whole and the relationships between the parts. It involves
assembly from components and support for the use of the same parts in different systems. This calls for ontologies
which can themselves be components of other ontologies and be assembled for an ontology of the whole system.
Yet in general ontology developments are one-off with it being rare for ontologies to be reused or be reusable. For
ontology to be useful for engineering reusable ontologies to support reusable engineering models will be important.
Big systems have a long life and usually change over that life. They tend to interact with their environment and
change state as a result of interaction. This means conceptualizations are needed to model state change and system
evolution throughout its lifecycle which in turn means that the ontologies that describe a system need to be able to
change, but in a way where the history of changes is not lost. This requires a sophisticated approach to change and
configuration management, both in model and ontology creation and maintenance.
When deciding what ontologies to use or implement, there is a consensus that where possible, ontologies should be
reused from pre-existing sources. Two such sources were explored, Ontology Repositories and libraries of ontology
patterns that represent successful representations of particular relations or “snippets” of a domain. The former have
the advantage of providing a more comprehensive solution, while the latter afford greater flexibility and in theory,
allow the designer to pick and choose among a variety of patterns to best meet their needs.
Foundational ontologies contain conceptualizations needed for modeling, especially at the enterprise scale.
Ontologies to support dynamic concepts such as time (OWL-Time) and process (PSL, OWL-S) have also been
developed and applied within engineering scenarios. These include processes, events, descriptions, plans, physical
quantities, individuals, types etc. Further ontologies provide relationships between the concepts which can be
exploited to relate data needed to determine program status. Some enterprises have recognized that ontologies
generalize information models and provide better access and organization than traditional data models.

4.5. Ontology Quality Practices
It’s also been observed that the proliferation of ontologies has not been accompanied by adequate tools or
methodologies to gauge the quality of the ontologies. Quality dimensions/criteria/attributes and measures vary with
the specific project at hand. The ontology community currently does not have a clear understanding and virtually no
documentation as to how that variation works. Experienced ontologists develop a sense of this, but it is implicit and
not made accessible to others.
Are they fit for purpose? Any ontology project should not only pay attention to quality, but develop a quality policy.
How would the organization measure the success of the ontology project? While there currently exists no standard
methodology, there are some efforts within the literature. Consequently, a more systematic effort is needed.
Concurrently, it is important to spread the understanding that ontologies need to be viewed as technical artifacts that
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need requirements and quality assurance.

5. Conclusion
Big Systems can garner benefits in many ways from the use of ontology throughout their full lifecycles. To more
completely integrate ontology and ontological analysis into the engineering community and its processes, the skills
most needed include a combined understanding of a scientific or engineering discipline and knowledge of ontological
analysis and ontology-based technologies. To realize this combination a transition based on existing paradigms and
tools will need to be exploited in order to create the infrastructure, both technical and social (i.e. human systems
integration), needed for quality ontology development and more general use.
In particular, the efforts by the Object Management Group (OMG) to provide a formal semantic underpinning to
their Unified Model Languages and its derivatives (e.g., SysML) represent a step in the right direction. Moreover,
organizations such as the International Council on Systems Engineering (INCOSE) are already engaged in fostering
the use of ontological analysis and ontology in their communities.
The engineering ecosystem and Big Data users have much to gain from the use of ontology and ontological analysis.
These capabilities can provide the key to engineer better systems, reduce costs and accelerate the process of scientific
discovery and innovation.


