

A Series of Notes Summarizing…

By Benjamin Cao

1

Table of Contents

Chapter 1 - Introduction​ ​ ​ ​ ​ ​ ​ ​ ​ 3
Chapter 2 - Scalar Data​ ​ ​ ​ ​ ​ ​ ​ ​ 5
Chapter 3 - Lists and Arrays​ ​ ​ ​ ​ ​ ​ ​ ​ 10
Chapter 4 - Subroutines​ ​ ​ ​ ​ ​ ​ ​ ​ 14
Chapter 5 - Input and Output​​ ​ ​ ​ ​ ​ ​ ​ 17
Chapter 6 - Hashes​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 21
Chapter 7 - In the World of Regular Expressions​ ​ ​ ​ ​ ​ 23
Chapter 8 - Matching with Regular Expressions​ ​ ​ ​ ​ ​ 25
Chapter 9 - Processing Text with Regular Expressions​ ​ ​ ​ ​ 28
Chapter 10 - More Control Structures​ ​ ​ ​ ​ ​ ​ 30
Chapter 11 - Perl Modules​ ​ ​ ​ ​ ​ ​ ​ ​ 34
Chapter 13 - Directory Operations​ ​ ​ ​ ​ ​ ​ ​ 37
Chapter 14 - Strings and Sorting​ ​ ​ ​ ​ ​ ​ ​ 40
Chapter 15 - Smart Matching and given-when​ ​ ​ ​ ​ ​ 42
Chapter 16 - Process Management​ ​ ​ ​ ​ ​ ​ ​ 44
Chapter 17 - Some Advanced Perl Techniques​ ​ ​ ​ ​ ​ 46

2

This guide is in no way in partnership with O’Reilly Media or Randal L. Schwartz,

brian d foy, and Tom Phoenix and should only used as supplement to “Learning
Perl, 6th Edition” by Randal L. Schwartz, brian d foy, and Tom Phoenix (O’Reilly).

As a personal project to enrich my mind and increase my education, this document

acts as an overall summary to the lessons learned in the listed textbook.

The distribution of these notes should only be allowed with permission from the
owner, Benjamin Cao. If you wish to distribute these notes, contact Benjamin Cao at

bencao@bcao.me.

3

Chapter 1 - Introduction
Questions and Answers

Is This the Right Book for You?
●​ This is not a reference book.
●​ A tutorial on the basics of Perl.

​ Why Are There So Many Footnotes?
●​ Perl has a lot of exceptions to its rules.

​ What About the Exercises and Their Answers?
●​ You need the chance to make mistakes.
●​ Answers to the exercises are in Appendix A.

​ What Do Those Numbers Mean at the Start of the Exercise?
●​ Rough estimate of how many minutes expected to spend on exercise.

​ What If I’m a Perl Course Instructor?
●​ Most exercises are short enough so students finish in 45 minutes to an hour.

What Does Perl Stand For?
Practical Extraction and Report Language
​ Why Did Larry Create Perl?

●​ Larry Wall is Perl’s creator.
●​ Mid 1980’s, tried to produce reports from a Usenet-news-like hierarchy of files for

bug report system and awk ran out of steam.
●​ He wanted a general purpose tool to use in at least one other place.

​ Why Didn’t Larry Just Use Some Other Language?
●​ Nothing met his needs.
●​ Perl tries to fill gap between low-level programming (C, C++, assembly) and

high-level programming (“shell”).
○​ Low-level is hard to write and ugly, but fast and unlimited.
○​ High-level is slow, hard, ugly, and limited.
○​ Perl is easy, nearly unlimited, mostly fast, and kind of ugly.

Is Perl Easy or Hard?
●​ It is easy to use, but hard to learn.

​ How Did Perl Get to Be So Popular?
●​ Released to Usenet readers and features grew, along with portability.

​ What’s Happening with Perl Now?
●​ Mostly maintained by group called Perl 5 Porters.

​ What’s Perl Really Good For?
●​ Good for quick or long programs.
●​ Optimized for problems that are 90% working with text and 10% everything else.

​ What is Perl Not Good For?
●​ If you’re trying to make an opaque binary.

How Can I Get Perl?
It comes pre-installed with most Linux, BSD systems, Mac OS X, etc.
​ What Is CPAN?

●​ Comprehensive Perl Archive Network
●​ One stop shopping for Perl.
●​ Comes with Perl source code, ports of Perl, documentation, etc.

4

​ How Can I Get Support for Perl?
●​ You get the complete source code for Perl… Bugs could potentially be fixed on your

own.
​ Are There Any Other Kinds of Support?

●​ Perl Mongers (www.pm.org)
●​ Perl Documentation (www.cpan.org, www.perldoc.perl.org, www.faq.perl.org)
●​ The book “Programming Perl” (O’Rielly)
●​ Perl newsgroups on Usenet (located in comp.lang.perl)
●​ The Perl Monastery (www.perlmonks.org)
●​ Perl support on Stack Overflow.
●​ www.learn.perl.org
●​ Perlsphere (www.perlsphere.net)

​ What If I Find a Bug in Perl?
●​ Check documentation.
●​ Ask around.
●​ Make test case.

○​ Use perlbug utility (comes with Perl) to report bug.

How Do I Make a Perl Program?
Perl programs are text files. They can be created and edited using your favorite text editor.
Unix - emacs or vi
Mac OS X - BBEdit or TextMate
Windows - UltraEdit or PFE (Programmer’s Favorite Editor)
If you use a word processor, make sure to save it as “text only”.
​ A Simple Program

●​
●​ Certain systems may require you to do something so it knows it’s an executable.

○​ chmod a=x my_program

●​ Running a program.
○​ ./my_program

●​ say, instead of print, runs in Perl 5.10 or later.
●​ Put “use 5.010;” to indicate you’re using new features of the specified version.

​ What’s Inside That Program?
●​ Perl lets you use insignificant whitespace.
●​ Comments are denoted by “#”. No block comments in Perl.
●​ #! denotes name of program executing the rest of the file.
●​ Most statements are an expression followed by a semi-colon.

​ How Do I Compile My Perl Program?
●​ perl my_program

A Whirlwind Tour of Perl

Basically takes a command in an array and potentially makes changes to to it based on markers (<
>) and then prints out the potentially modified line.

http://www.pm.org
http://www.cpan.org
http://www.perldoc.perl.org
http://www.faq.perl.org
http://www.perlmonks.org
http://www.learn.perl.org
http://www.perlsphere.net

5

Chapter 2 - Scalar Data
Numbers
scalar - simplest kind of data Perl manipulates
 - most often a number or a string
​ All Numbers Have the Same Format Internally

●​ Can declare integers and floating point.
●​ Perl computers with double-precision floating-point values.

​ Floating-Point Literals
●​ literal - how you represent a value in your Perl source code
●​ Not the result of a calculation or an I/O operation; It’s data you type directly into

your program.

●​
​ Integer Literals

●​
●​ Perl lets you use underscores for clarity in integer literals.

○​
​ Nondecimal Integer Literals

●​ Can use octal, hexadecimal, and binary literals as well.

●​
●​ Underscores can be used as well for clarity.

​ Numeric Operators
●​ Supports addition, subtraction, multiplication, and division.
●​ Modulus division (%) is supported.
●​ Also provides FORTRAN-like exponentiation operator (ex. 2**3).

Strings
Perl fully supports Unicode, though Perl doesn’t automatically interpret your source code as
Unicode.
To use Unicode, you need to add utf8 pragma (use utf8;).
​ Single-Quoted String Literals

●​ To get backslash in single quote string, use ‘\\’.
●​ To get single quote in single quote string, use ‘\’’.

​ Double-Quoted String Literals
●​ Backslash has full power in specifying control characters (i.e. \n).

6

●​
●​ Variable interpolated - some variable names within string are replaced with their

current values when strings are used.
​ String Operators

●​ Concatenate, or join strings using . operator.
●​ String repetition operator is lowercase x.

○​ Not commutative. String is always the left operand.

○​
Automatic Conversion Between Numbers and Strings

●​ Conversion depends on operator used.

Perl’s Built-in Warnings
Use warnings pragma (use warnings;) for Perl version 5.6 or later.
-w option when compiling.

​
-w on shebang.

​
Works on non-Unix systems (#!perl -w)
Longer description of problem using diagnostics pragma.

​
-M to load pragma only when needed.

​
Scalar Variables
variable - name for a container that holds one or more values
Begins with a dollar sign (sigil), followed by a letter or underscore.

7

​ Choosing Good Variable Names
●​ Choose names that mean something.

​ Scalar Assignment
●​ Use ‘=’ to assign values to variables.

​ Binary Assignment Operators
●​ Shorthand for expression where the same variable appears on both sides of an

assignment.

○​

Output with print
print takes scalar argument and puts it out.
​ Interpolation of Scalar Variables into Strings

●​ When string literal is double-quoted, it is subject to variable interpolation.
○​ Variable name is replaced with its value upon output.

○​
●​ Delimiter { } for variables for better recognition.

​ Creating Characters by Code Point​
●​ For using characters not on the keyboard.
●​ Use code point with chr().

○​
●​ Reverse with ord().

○​
Operator Precedence and Associativity

●​

8

​ Comparison Operators

●​

●​

The if Control Structure

Boolean Values

●​
●​ To get the opposite of a boolean value, use unary not (!) operator.

Getting User Input
Use <STDIN> operator.

The chomp Operator
Removes newline at the end of a variable if it exists.
chomp()’s return value is the number of newlines it removes (typically and most likely 1).
If a line ends with one or more newlines, chomp() removes only one.

The while Control Structure
Repeats a block of code as long as the condition is true.

9

The undef Value
The value given to a scalar variable before giving it a value.

The defined Function
<STDIN> can return value undef.
Use defined function to tell if a value is undef. If undef, it returns false.

10

Chapter 3 - Lists and Arrays

list - ordered collection of scalars
array - variable that contains a list
List is the data, array is a variable that stores the data.
Each element in an array or list is a separate scalar value.
First element is always indexed as element zero.
Each element can hold a number, string, undef, or a mixture of scalars.

Accessing Elements of an Array

Number is truncated to the next lowest integer when used as index.

If the subscript indicates element is beyond end of array, the value is undef.

Special Array Indices

$#name gives last element index in array

Can use negative indices. Works from last element to first.

List Literals
This is the way you represent a list value in your program.
List of comma-separated values enclosed in parentheses.

Last example above uses the range operator.

11

​ The qw Shortcut
●​ Allows for list creation w/o commas or quotes
●​ AKA “quoted words” or “quoted by whitespace”

●​
●​ Can use any punctuation as delimiter.

○​
○​ If you need to use the enclosing delimiter in the string, preface it with a

backslash.

○​

List Assignment
@ refers to the entire array.

Arrays can’t contain other arrays.
​ The pop and push Operators

●​ pop takes the last element off the array and returns it

○​
●​ returns undef if array is empty
●​ push adds element to end of array

○​
The shift and unshift Operators

●​ Perform similar actions to push and pop on the “start” of an array.

●​
​ The splice Operator

●​ Splice works in the middle of the array.

●​
●​ Takes 4 arguments, 2 are optional.

○​ 1. Array 2. Position to start 3. Length 4. Replacement List

○​

12

Interpolating Arrays into Strings
Can interpolate array values into a double-quoted string.

Perl expands array and automatically adds spaces between elements.
No extra spaces before or after an interpolated array.
@ like for email, Perl will try to interpolate it.

​ use \@ in double-quotes or use @ in single quotes.

​

The foreach Control Structure
Loops through a list of values, executing one iteration for each value.
Value of control variable is the same as before the loop started.
Perl automatically saves and restores the value of the control value of a foreach loop.

​ Perl’s Favorite Default: $_

●​ Default control variable of foreach loop.

●​
​ The reverse Operator

●​ Takes a list of values and returns the list in the opposite order.

●​
​ The sort Operator

●​ Takes a list of values and sorts them in the internal character ordering.
●​ For strings, it’s sorted by code point order.

●​
​ The each Operator

●​ Useable starting with Perl 5.12 and is used on arrays.
●​ Using each on an array returns two values for the next element in the array - the

index and the value.

●​

Scalar and List Context
The context of how you use an expression is important.

13

​ Using List-Producing Expressions in Scalar Context

●​ Some expressions don’t have a scalar-context value.
●​ sort always returns undef in scalar context.
●​ reverse returns reversed string in scalar context

○​

●​
​ Using Scalar-Producing Expressions in List Context

●​ If an expression doesn’t normally have a list value, the scalar values if
automatically promoted to make a one-element list.

●​
●​ A catch is using undef since it’s scalar value, assigning it to an array doesn’t clear

the array

○​
Forcing Scalar Context

●​ Use “fake” function scalar
○​ Just tells Perl to provide scalar context.

○​

<STDIN> in List Context
<STDIN> returns the next line of input in scalar context.
In list context, it returns all of the remaining lines up to end of file.
How to get end of file from keyboard?
​ Linux & Mac OS X - Control-D
​ DOS/Windows - Ctrl-Z
Use chomp to remove newlines from each item in the list.

14

Chapter 4 - Subroutines

subroutine - user defined function
 - allow you to recycle a chunk of code many times in one program
 - name (anything except digit) with ampersand (&) in front when calling it

Defining a Subroutine
Use keyword “sub”, then name of subroutine, with the block of code in curly braces.

Invoking a Subroutine

Return Values
All subroutines have a return value.

Return value of example above is the sum of $fred and $barney.

Arguments
To pass arguments, place them in a list expression in parentheses, after subroutine invocation.

Perl stores parameter list in array variable @_, which is private to the subroutine.

Private Variables in Subroutines
All Perl variables are global by default.
To create private (lexical) variables, use my operator.

Variables in this case are scoped to enclosing block.

Variable-Length Parameter Lists
Use @_ array to check if subroutine has right number of arguments.

​

15

A Better &max Routine

●​
●​ Uses “high-water mark” algorithm, which keeps track of the largest number seen.

​ Empty Parameter Lists
●​ If you pass empty parameters, the subroutine returns undef.

Notes on Lexical (my) Variables
Variable is private to the enclosing block.

The use strict Pragma
Enforces good programming rules.
The return Operator
Way to stop subroutine.

​ Omitting the Ampersand

●​ You can omit the ampersand if the compiler sees the subroutine definition before
the invocation.

●​ Or if Perl can tell from syntax that it’s a subroutine call.
●​ The catch: if you use the same name as a built-in function

Non-Scalar Return Values
If you call your subroutine in list context, it can return a list.

16

Persistent, Private Variables
state - private variables scoped to subroutine, but Perl keeps values between calls.

Can’t create state variables in list context.

17

Chapter 5 - Input and Output
Input from Standard Input
<STDIN> operator

Shortcut only works if there’s ONLY the line-input operator in the conditional.

Input from the Diamond Operator
<>

Useful for making programs that work like Unix utilities.
Instead of getting input from the keyboard, it’s from the user’s choice of input.

Can use shortcut like before, to use $_.

The Invocation Arguments
@ARGV array holds invocation arguments.
Diamond operator looks in @ARGV to determine what filenames to use.

Output to Standard Output
print operator takes list of values and sends each item to standard output as a string.
Has optional parentheses.

Formatted Output with printf
Takes a format string followed by a list of things to print.
conversions - begins with % followed by a letter.

%g automatically choses floating-point, integers, or even exponential notation

%d is decimal integer
​ %#d adds number of spaces (insert to #) before printing integer.

​
%s is string
​ %#s sets field width (justification of string)

​

18

%f is floating point, lets you determine number of digits after decimal point.

​
​ Arrays and printf

●​ Format strings work only with fixed number of items, so it’s impractical to use
array.

●​ Is possible using a format string.

○​

Filehandles
Name in a Perl program for an I/O connection between your Perl process and the outside world.
Filename cannot start with a digit.
Recommendation to name filehandles with uppercase letters.

Opening a Filehandle
open operator tells Perl to ask operating system to open connection between your program and
the outside world.

Can use scalar expression in place of filename specifier.

3 argument open is available starting with Perl 5.6.

-​ Perl never confuses 2nd and 3rd arguments.
-​ Can specify encoding

-​

-​ (shortcut for specifying encoding)
Specifying encoding to deal with DOS line endings.

​
​ Binmoding Filehandles

●​ binmode turns off line ending processing

○​
●​ Can specify layer as second argument.

○​
Bad Filehandles

●​ Trying to read from a bad filehandle (not properly opened or closed network
connection) will end with end of file

Closing a Filehandle
●​ Use the close operator to close a filehandle.

○​

19

Fatal Errors with die
die function prints out message you give it to standard error stream and makes sure your
program exits with a nonzero exit status.

$! - human readable complaint from system
die will automatically append the Perl program name and line numbers to the end of the message
to easily identify where in the program it exited.
Add newline at the end of to leave off line number and file on usage errors

​ Warning Messages with warn

●​ warn does the same as die, but doesn’t exit program.
​ Automatically die-ing

●​ Starting with Perl 5.10, the autodie pragma is available so you don’t have to use
die every time

●​

Using Filehandles
Can read lines from open filehandle just like STDIN.

You can use a filehandle open for writing or appending with print or printf, appearing
immediately after the keyword but before the list of arguments.

​ Changing the Default Output Filehandle

●​ By default, if no filehandle is given to print or printf, the output goes to STDOUT.
●​ Default is changed with select operator.
●​ $| = 1 flushes the buffer so entries won’t get stuck.

○​
Reopening a Standard Filehandle

Reopening STDERR, error message from Perl go to new file.

20

If die is executed in statement above, the original standard filehandle (in this case, STDERR) picks
up the error message.

Output with say
say is like print except it adds newline to the end.

Filehandles in a Scalar
Using scalar variable without a value, your filehandle ends up in the variable.

Surround anything that should be a filehandle in braces so Perl does the right thing.

21

Chapter 6 - Hashes
What is a Hash?
A hash is a data structure.
You look up hash values by name.
The indices are known as keys and are arbitrary, unique strings.
Keys are always converted to strings.

​ Why Use a Hash?

●​ For a set of data related to another set of data.
●​ Ex. Given name, family name
●​ Ex. Hostname, IP Address

Hash Element Access

​ The Hash As a Whole

●​ % as a prefix.
●​ Can turn a hash into a list.

●​
​ Hash Assignment

●​ Assign one hash to another OR make inverse hash.

●​
○​ Inverse hash good only if no duplicate values.

○​
The Big Arrow

●​ => Easy way to identify key-value pairs when making a hash.

22

○​

Hash Functions
​ The keys and values Functions

●​ keys - yields a list of all keys in a hash
●​ values - gives the corresponding values
●​ Empty list is returned if there are no elements in hash.

●​
●​ In scalar context, it will return the number of keys in the hash.

○​
The each Function

●​ Used for iterating over an entire hash.
●​ Returns key-value pair as two-element list.

●​

Typical Use of a Hash
Ex. A library system that uses a hash to determine the number of books a person has checked out.
​ The exists Function

●​ Used to see if a key exists in a hash.

●​
​ The delete Function

●​ Removes given key and values from hash.
●​ NOT the same as storing undef into hash element.

●​
​ Hash Element Interpolation

●​

The %ENV hash
Perl stores information about your environment in the %ENV hash.

Ex. Getting your PATH from %ENV -

23

Chapter 7 - In the World of Regular Expressions
What Are Regular Expressions?
regular expression (pattern in Perl) - a template that either matches or doesn’t match a given
string

Using Simple Patterns
To match pattern against contents of $_, put pattern between forward slashes.

​ Unicode Properties

●​ \p{PROPERTY} to match particular unicode property.

●​
●​ Also \p{Digit} and \p{Hex} available.
●​ To negative property, use \P{PROPERTY}.

​ About Metacharacters
●​ Metacharacters have special meanings in regular expressions.
●​ Dot (.) is wildcard character. It matches any single character except a newline.

​ Simple Quantifiers
●​ * - to match preceding item zero or more times

○​
●​ + - to match preceding item one or more times

○​
●​ ? - preceding item is optional

○​
Grouping in Patterns

●​ Parentheses to group parts of a pattern.
●​ Parentheses give a way to reuser part of the string directly in the match.

○​ Use back references to refer to text that you matched in parentheses, called
capture group.

○​ Denote back reference as backslash followed by a number.
○​ Number denotes capture group.

○​
○​ In Perl 5.10 a new way to denote back references is \g{N}.

■​ N is the number of the back reference.
■​ Can use negative numbers (relative back reference.

​ Alternatives
●​ | - match either left or right side

○​

24

Character Classes
character class - list of possible characters in square brackets ([]) matches any single character
from within the class.

^ negates character class

​ Character Class Shortcuts

●​ Abbreviate character class for digits with \d.
●​ /a at the end of the match operator tells Perl to use old ASCII interpretation

(feature in Perl 5.14).
●​ \s for matching any whitespace (similar to \p{Space}).
●​ \h for horizontal whitespace.

○​
●​ \v for vertical whitespace.

○​
●​ \R matches linebreak.
●​ \w matches set of characters [a-zA-z0-9_].

​ Negating the Shortcuts
●​ You can use ^ or just uppercase the shortcuts (\D \W \S).

25

Chapter 8 - Matching with Regular Expressions

Matches with m//
/fred/ is shortcut for m// operator.
Like qw//, can look like m(fred), m<fred>, with different paired delimiters.
Shortcut is only valid with the forward slash delimiter.

Match Modifiers
Can append as a group right after ending delimiter to change behavior from the default.
​ Case-Insensitive Matching with /i

●​
​ Matching Any Character with /s

●​ Used for matching strings that have newlines in them.
○​ Applies to . in the pattern.

○​
●​ \N shortcut complements \n for matching newline.

​ Adding Whitespace with /x
●​ Allows arbitrary whitespace to pattern for readability.

●​
​ Combining Option Modifiers

●​ Put modifiers at the end. Order is not important.

●​
​ Choosing a Character Interpretation

●​ /a - ASCII
●​ /u - Unicode
●​ /l - locale

●​

Anchors
\A anchor matches at the absolute beginning of a string, so pattern doesn’t float down string.

Use \z to anchor at the end of a string.

\Z allows option newline after it.

26

​ Word Anchors
●​ Use \b to match at either end of a word.
●​ /\bfred\b/ matches fred ONLY.
●​ \B matches where \b would not match.
●​ /\bsearch\B/ matches “searches”, “searching”, but NOT “search” or

“researching”.

The Binding Operator =~
Tells Perl to match pattern on the right to string on left instead of matching to $_.

Interpolating into Patterns

The Match Variables
Made by using parentheses to make capture groups.
Match variables become $1, $2, … based on order of capture groups.

​ The Persistence of Captures

●​ Capture variables stay until next successful pattern match.
●​ This is the reason why pattern match is mostly found in conditionals

​ Noncapturing Parentheses
●​ Add ?: to parentheses to tell Perl you don’t want to use a capture group.

●​
​ Named Captures

●​ 5.10+ lets you name match variable (?<LABEL>PATTERN).

○​
●​ Use \g{label} to refer to them for back reference.

○​
●​ \k<label> has same effect.

27

○​
The Automatic Match Variables

●​ $& - stores part of string actually matched
●​ $` - stores before matched section
●​ $’ - stores after matched section

●​
●​ 5.10+ allows use of /p modifier to grant ${^PREMATCH}, ${^MATCH}, and

${^POSTMATCH} with same effect as above.

○​

General Quantifiers
quantifier - to repeat the preceding item a certain number of times in a pattern.
Ex. *, +. ?
Use comma separated numbers in curly braces to specify number of repetitions.
Ex. /a{5,15} - matches repetition of a from 5 to 15 times.
 /a{5,} - matches repetition of a 5 or more times.
 /a{,15} - matches repetition of a up to 15 times.

Precedence

A Pattern Test Program

A generic pattern match program to test any combination of patterns you want.

28

Chapter 9 - Processing Text with Regular Expressions

Substitutions with s///
Search and Replace

​ Global Replacements with /g

●​ Calls s/// to make all possible non-overlapping replacements.

●​
●​ Most commonly used to collapse whitespace.

●​
​ Different Delimiters

●​ Can use nonpaired delimiters as normal.
●​ Delimiters with open/close, use 2 pairs.

○​
Substitution Modifiers

●​ Can use /i, /x, and /s in addition to /g.

●​
​ The Binding Operator

●​
​ Nondestructive Substitutions

●​
●​ /r modifier allows copy, keeping original intact.

○​
Case Shifting

●​ \U forces uppercase.

○​
●​ \L forces lowercase.

○​
●​ \E turns off case shifting.

○​
●​ \l and \u affect only next character.

○​
●​ Stacking is allowed (i.e using \u with \L to make all lowercase except first

character).

29

○​

The split Operator
Splits string based on separator.

Default is to break up string based on whitespace.

The join Function
Uses no patterns, but glues piece of strings into one.

m// in List Context
Return value is a list of capture variables created in the match or empty list if the match failed.

More Powerful Regular Expressions
​ Nongreedy Quantifiers

●​ + - greedy
●​ +? - nongreedy, prefers to match as few times as possible.

​ Matching Multiple-Line Text
●​ /m regular expression option lets string match at internal newlines.

●​
​ Updating Many Files

●​ <> helps with editing files.
●​ Example Program

○​
○​ $^I saves original file while edits are saved in new file.

​ In-Place Editing from the Command Line

●​
●​ Works similar to example program above.

30

Chapter 10 - More Control Structures
The unless Control Structure
Executes block of code when conditional is false (opposite of if).

​ The else Clause with unless

●​

The until Control Structure
Reverse condition of while loop, repeats as long as conditional is false.

Expression Modifiers
An expression may be followed by a modifier that controls it.

The conditional is still evaluated first, even though it’s at the end.

The Naked Block Control Structure
A block without a keyword or conditional. The block of code is executed only once.

The elsif Clause
Used for checking a number of conditional expressions.

Autoincrement and Autodecrement
++ adds one to scalar variable
-- substracts one to scalar variable

31

​ The Value of Autoincrement
●​ Preincrement/Predecrement

○​
●​ Postincrement/Postdecrement

○​

The for Control Structure

​ The Secret Connection Between foreach and for

●​ foreach is equivalent to for in Perl parser.

Loop Controls
​ The last Operator

●​ Immediately ends execution of the loop.

●​
​ The next Operator

●​ Jumps to the inside of the bottom of the current loop block.

●​
​ The redo Operator

●​ Goes back to the top of the current loop block, without testing any conditional
expression or advancing to the next iteration.

32

●​
●​ Example program to test 3 operators.

○​
Labeled Blocks

●​ Use labeled blocks to work with a loop block that’s not the innermost one.
●​ Labels are made of letters, digits, and underscores.

○​ Can’t start with a digit.
○​ No prefix character.
○​ Recommended to be all uppercase.

●​ Put label and colon in front of loop to specify loop block.

○​

The Conditional Operator ?:
Shorthand if-then-else statement

Logical Operators
AND (&&)
OR (||)
short circuit operator - evaluates left side ONLY if it meets logical operator criteria.
​ The Values of a Short Circuit Operator

●​ Value is the last part evaluated.
○​ True if the whole thing is true, false if the whole thing is false.

The defined-or Operator
●​ // - short circuits when it finds a defined value, no matter if the value of the left

hand side is true or false.

33

​ Control Structures Using Partial-Evaluation Operators
●​ &&, ||, //, ?: may or may not evaluate an expression.

●​
○​ Logical AND isn’t being assigned anywhere. Only if the left side is true will

the right side be evaluated. Equivalent to this:

■​

34

Chapter 11 - Perl Modules
Finding Modules
Two types: one that come with Perl or those from CPAN you install yourself.
perldoc (module) is used to search documentation of a Perl module.
cpan -a creates a list of installed modules with version numbers.

Installing Modules

​ Using Your Own Directories

●​ local::lib (provided by CPAN) is to keep new modules in their own directories,
rather than placed where Perl is.

●​

Using Simple Modules
Example to get basename from a directory

The problem?
1. The . regular expression can’t detect a newline and with a UNIX type directory name, this is
possible.
2. It’s UNIX-specific, meaning it’s assuming that all directories are going to have forward slash
separators.
3. We are trying to solve a problem that has already been solved…
​ The File::Basename Module

●​ Extracts the basename of a file without the need of the example above.

●​
​ Using Only Some Functions from a Module

●​ File::Basename allows import list of functions to use.

35

●​ Why? In case your script and the module have the same subroutine name.
○​ If you need to use your subroutine, then to invoke the modules subroutine,

you must use the full name.

○​
​ The File::Spec Module

●​ Manipulating file specifications (files, directories, etc.)

●​
​ Path::Class

●​ Doesn’t come with Perl, but has a more pleasant interface than File::Spec.

●​
​ CGI.pm

●​ Used for creating CGI program.
●​ Example: Creating HTML tag.

○​
Database and DBI

●​ Database Interface module doesn’t come with Perl.
●​ One installed, needs a Database Driver (DBD).

Dates and Times
DateTime module by Dave Rolshy

36

Date/Time Arithmetic

37

Chapter 13 - Directory Operations
Moving Around the Directory Tree
working directory - starting point for relative pathnames
chdir - changes working directory
Tilde prefix with chdir will not work. That is a function of the shell, not the operating system,
which Perl is using.

Globbing
Shell expands any filename patterns on each command line into matching filenames (globbing).

glob operator is used to match filenames as well.

An Alternate Syntax for Globbing
Angle-bracket syntax was the old way of globbing.

readline operator used to get operation of an indirect filehandle read.

Directory Handles
Looks and acts like a filehandle.
Use opendir to open, readdir to read, and closedir to close.

Instead of reading contents of a file, you read the names of files.
Directory handles are automatically closed at the end of the program or if the directory handle is
is reopened into another directory.

Recursive Directory Listing
File::Find library for recursive directory processing.
Can convert Unix find to Perl find using find2perl. Uses the same arguments as find.

Manipulating Files and Directories
Perl is very Unix-centric, but works the same way on non-Unix systems.

38

Removing Files
Perl uses unlink operator with a list of the file you want to remove.

Can combine unlink and glob since they both take lists.

Renaming Files
rename function

Ex. Renaming files with .old to .new.

Links and Files
mounted volume - hard disk drive
inode - disk real estate, a number assigned to a file or directory
 - holds a number called a link count
 - How many times it’s listed in a directory.
link function creates a new link.

Can’t add links to directories, it would break the hierarchy and commands like find and pwd
would get lost.
Can use symlink as a workaround.

readline tells you where symlink leads.

unlink will remove association, decrement link count, and possibly free inode.

39

Making and Removing Directories
mkdir (requires octal number for setting permissions)

oct() forces octal interpretation of string.

rmdir

rmdir fails on non-empty directories. Use unlink to remove directory contents, then use rmdir.

Modifying Permissions
chmod

Symbolic permissions (i.e +x, go=u-w) do not work in Perl.

Changing Ownership
chown - need numeric user and group ID values

Changing Timestamps
utime (access time, modification time)

40

Chapter 14 - Strings and Sorting
Finding a Substring with index
index gives you the integer location of the first character of the substring you’re looking for.

A third parameter is available to tell index where to start.

rindex gives integer location of the last character.
Third parameter will give the maximum permitted return value.

Manipulating a Substring with substr
Works with part of a larger string.

Formatting Data with sprintf
Takes the same arguments as printf (except for optional filehandle), but returns string instead of
printing it.

​ Using sprintf with “Money Numbers”

●​ %.2f formats numbers with a certain number of places after decimal point.

○​
●​ For “Money Numbers” that may need commas.

○​
Interpreting Non-Decimal Numerals

●​

Advanced Sorting
Numeric sort

​

41

​ Numeric sort shortcut using spaceship operator (<=>)

​ ​
cmp is like the spaceship operator, but applies to strings.

​
​ Case Insensitive Sort

​ ​
Reverse sorting

​
​ Reverse sorting just by switching the variables!

​ ​
​ Sorting a Hash by Value

●​
●​ You are comparing the numeric values, rather than key values.

●​
​ Sorting by Multiple Keys

●​

42

Chapter 15 - Smart Matching and given-when

The Smart Match Operator
smart match operator (~~) looks at both operands and decides how to compare them.
Applies to any Perl version starting with 5.10.1 and beyond.

Smart Match Precedence

Match operator is not always commutative.

The second one is the only one that prints anything.

The given Statement
Allows you to run a block of code when the argument to given satisfies a condition.
This is the Perl equivalent to C’s switch statement.

​ Dumb Matching

●​ Using explicit comparison operators rather than using the default smart matching
operator.

●​

43

Using when with Many Items
You can use foreach in the form of given to use when with many items such as an array.

44

Chapter 16 - Process Management
The system Function
This creates a copy of your Perl program, called the child process.
Parameter is whatever you normally type in a shell.

​ Avoiding the Shell

●​ Invoking the system operator with more than one argument doesn’t get the shell
involved.

○​

The Environment Variables
System environment variables are stored in a Hash called %ENV.

The exec Function
Causes Perl process itself to perform request action rather than creating a child process.

Using Backquotes to Capture Output
Capture output of command as string value rather than processing it using backquotes.

qx() quoted operator does the same thing.

​ Using Backquotes in a List Context

●​ Backquoted string in list context yields a list containing one line of output per
element.

○​

External Processes with IPC::System::Simple
Available through CPAN.
Provides simpler interface that hides the complexity of operating system specific stuff when
running or capturing output from external commands.

Gives a more robust system command, systemx (avoiding invoking shell), capture (backquoting),
and capturex.

45

Processes As Filehandles
Launching child process that stays alive, put command as filename in open call, preceding or
following it with a pipe (|). AKA “piped open”.

Getting Down and Dirty with Fork
Low-level system call.
Allows for full control over creating pipes, rearranging filehandles, and knowing Process ID of
parent process.

 equivalent to

Sending and Receiving Signals
Use kill to send SIGINT to a process. Must know process’ ID to do so.

46

Chapter 17 - Some Advanced Perl Techniques
Slices
Simplest way to pull items from a list.
“A list slice has to have a subscript expression in square brackets after a list in parentheses.”

​ Array Slice

●​
●​ $name[] represents getting one element.
●​ @name[] represents getting a list of elements.

●​
​ Hash Slice

●​

●​

Trapping Errors
​ Using eval

●​ Wrap potential crashing code in eval block to allow normal program flow.

○​
●​ Returns undef if fatal error is found.

47

●​ Use defined-or operator to set own default value.

○​
●​ 4 problems eval can’t trap.

○​ Syntax errors in literal sense (mismatched quotes, missing semicolons,
missing operands, invalid literal regular expressions)

○​ Serious errors that crash Perl (out of memory)
○​ Warnings (user generated or Perl’s internal ones)
○​ exit operator (can’t stop its intended job!)

More Advanced Error Handling
●​ Throw an exception with die and catch with eval.

●​
​ autodie

●​ Pragma that gives you more control over how you handle errors in your program.
●​ Applies error message to operators by default.

○​ You are used to this:

■​
■​ With autodie:

●​

Picking Items from a List with grep

Transforming Items from a List with map
Makes a copy from a list, changes the format, and returns the newly formatted list.

Fancier List Utilities
List::Util module to perform high level performance versions of common list processing
utilities at the C level.
Ex. Using sum subroutine in module to add numbers from 1 to 1000.

	Chapter 1 - Introduction
	Chapter 2 - Scalar Data
	Chapter 3 - Lists and Arrays
	Chapter 4 - Subroutines
	Chapter 5 - Input and Output
	Chapter 6 - Hashes
	Chapter 7 - In the World of Regular Expressions
	Chapter 8 - Matching with Regular Expressions
	Chapter 9 - Processing Text with Regular Expressions
	Chapter 10 - More Control Structures
	Chapter 11 - Perl Modules
	Chapter 13 - Directory Operations
	Chapter 14 - Strings and Sorting
	Chapter 15 - Smart Matching and given-when
	Chapter 16 - Process Management
	Chapter 17 - Some Advanced Perl Techniques

