A Series of Notes Summarizing...

Making Easy Things Easy
& Hard Things Possible

Leammg

] . Randal L. Schwartz,
O'REILLY brian d foy & Tom Phoenix

By Benjamin Cao

Table of Contents

Chapter 1 - Introduction

Chapter 2 - Scalar Data

Chapter 3 - Lists and Arrays

10

Chapter 4 - Subroutines

14

Chapter 5 - Input and Output

17

Chapter 6 - Hashes
Chapter 7 - In the World of Regular Expressions

21
23

Chapter 8 - Matching with Reqular Expressions

25

Chapter 9 - Processing Text with Reqular Expressions

28

Chapter 10 - More Control Structures

30

Chapter 11 - Perl Modules

34

Chapter 13 - Directory Operations

37

Chapter 14 - Strings and Sorting

40

Chapter 15 - Smart Matching and given-when

42

Chapter 16 - Process Management

44

Chapter 17 - Some Advanced Perl Technigues

46

This guide is in no way in partnership with O’Reilly Media or Randal L. Schwartz,
brian d foy, and Tom Phoenix and should only used as supplement to “Learning
Perl, 6th Edition” by Randal L. Schwartz, brian d foy, and Tom Phoenix (O’Reilly).

As a personal project to enrich my mind and increase my education, this document
acts as an overall summary to the lessons learned in the listed textbook.

The distribution of these notes should only be allowed with permission from the
owner, Benjamin Cao. If you wish to distribute these notes, contact Benjamin Cao at
bencao@bcao.me.

Chapter 1 - Introduction

Questions and Answers
Is This the Right Book for You?
e This is not a reference book.
e A tutorial on the basics of Perl.
Why Are There So Many Footnotes?
e Perl has a lot of exceptions to its rules.
What A he Exerci nd Their Answers?
e You need the chance to make mistakes.
e Answers to the exercises are in Appendix A.
What Do Those Numbers Mean at the Start of the Exercise?
e Rough estimate of how many minutes expected to spend on exercise.
What IfI'm a Perl Course Instructor?
e Most exercises are short enough so students finish in 45 minutes to an hour.

What Does Perl Stand For?

Practical Extraction and Report Language
Why Did Larry Create Perl?
e Larry Wall is Perl’s creator.
e Mid 1980’s, tried to produce reports from a Usenet-news-like hierarchy of files for
bug report system and awk ran out of steam.
e He wanted a general purpose tool to use in at least one other place.
Why Didn’t Larry Just Use Some Other Language?
e Nothing met his needs.
e Perl tries to fill gap between low-level programming (C, C++, assembly) and
high-level programming (“shell”).
o Low-level is hard to write and ugly, but fast and unlimited.
o High-level is slow, hard, ugly, and limited.
o Perlis easy, nearly unlimited, mostly fast, and kind of ugly.
Is Perl Easy or Hard?
e Itiseasy to use, but hard to learn.
HQMZ I!ld Eerl !iet IQ Be SQ Egpnlar?
e Released to Usenet readers and features grew, along with portability.
What’s Happening with Perl Now?
e Mostly maintained by group called Perl 5 Porters.
— What’s Per] Really Good For?
e Good for quick or long programs.
e Optimized for problems that are 90% working with text and 10% everything else.
— Whatis Perl Not Good For?
e Ifyou’re trying to make an opaque binary.
How Can I Get Perl?
It comes pre-installed with most Linux, BSD systems, Mac OS X, etc.
What Is CPAN?
e Comprehensive Perl Archive Network
e One stop shopping for Perl.
e Comes with Perl source code, ports of Perl, documentation, etc.

How Can I Get Support for Perl?
e You get the complete source code for Perl... Bugs could potentially be fixed on your

own.

Are There Any Other Kinds of Support?
e Perl Mongers (Www.pm.org)

Per]l Documentation (www.cpan.org, www.perldoc.perl.org, www.faq.perl.org)
The book “Programming Perl]” (O’Rielly)
Perl newsgroups on Usenet (located in comp.lang.perl)
The Perl Monastery (www.perlmonks.org)
Perl support on Stack Overflow.
www.learn.perl.org
e DPerlsphere (www.perlsphere.net)
What IfI Find a Bug in Perl?
e Check documentation.
e Askaround.
e Make test case.
o Use perlbug utility (comes with Perl) to report bug.
How Do I Make a Perl Program?
Perl programs are text files. They can be created and edited using your favorite text editor.
Unix - emacs or vi
Mac OS X - BBEdit or TextMate
Windows - UltraEdit or PFE (Programmer’s Favorite Editor)
If you use a word processor, make sure to save it as “text only”.
A Simple Program

B! fust fbin/perl
print “Hello, world!yn<™;
e Certain systems may require you to do something so it knows it’s an executable.
o chmod a=x my_program
e Running a program.
o ./my_program
e say, instead of print, runs in Perl 5.10 or later.
e Put “use 5.010;” to indicate you’re using new features of the specified version.
What’s Inside That Program?
e Perl lets you use insignificant whitespace.
e Comments are denoted by “#”. No block comments in Perl.
e #! denotes name of program executing the rest of the file.
e Most statements are an expression followed by a semi-colon.

How Do I Compile My Perl Program?

e perl my_program

A Whirlwind Tour of Perl

#1 fusrfbinfper]
Elines - “perldoc -u -f atam?”
foreach (@limes) {
e ([*2]+)> NUS1 /g
print;

Basically takes a command in an array and potentially makes changes to to it based on markers (<
>) and then prints out the potentially modified line.

http://www.pm.org
http://www.cpan.org
http://www.perldoc.perl.org
http://www.faq.perl.org
http://www.perlmonks.org
http://www.learn.perl.org
http://www.perlsphere.net

Chapter 2 - Scalar Data

Numbers

scalar - simplest kind of data Per]l manipulates
- most often a number or a string

All Numbers Have the Same Format Internally
e Can declare integers and floating point.

e Perl computers with double-precision floating-point values.

Floating-Point Literals
e literal - how you represent a value in your Perl source code

e Not the result of a calculation or an I/O operation; It’s data you type directly into
your program.

1.25%
255.000
255.0
7-25e45 & 7.25 times 10 to the 45th power (a big rumber)
-6.5e3q & negative 6.5 times 10 to the 24th
& (a big negative mumber)
-12e-34 & negative 12 times 10 to the -24th
& (2 very small negative mumber)
° -1.2€-23 & another way to say that the F may be uppercase

Integer Literals

o
2001
-4
255
o 1208040283758

e Perl lets you use underscores for clarity in integer literals.
§1_298 040 183 T68

Nondecimal Integer Literals
e Can use octal, hexadecimal, and binary literals as well.

o377 # 377 octal, same 3t 295 decimal
onff & FF hex; also 255 decimal
° Ob11111111 # also 255 decimal

e Underscores can be used as well for clarity.
Numeric Operators
e Supports addition, subtraction, multiplication, and division.
e Modulus division (%) is supported.
e Also provides FORTRAN-like exponentiation operator (ex. 2**3),

Strings
Perl fully supports Unicode, though Perl doesn’t automatically interpret your source code as
Unicode.
To use Unicode, you need to add utf8 pragma (use utf8;).
Single-Quoted String Literals
e To get backslash in single quote string, use ‘\\’.
e To get single quote in single quote string, use *’.
Double-Q 1 String Li]

e Backslash has full power in specifying control characters (i.e. \n).

Table 2-1. Double-quossd sorimg badkdach snrapes

Comtruct Meaning

Escape (RSN escape chatatet}
\007 Jay ot ASCH e (hefe, 007 = bell)
| Ay e A5 waboe (hede, 7§ = delete}
W74 Anybex Unicode code pont (hefe, L2744 = sowilae)
Wl A “contfol”™ chafacted (hefe, (-}
] Backslash
'y Do quote
Ll lioweetcase met el
U | rweesicase il fodllowing letmets until \E
w Uppefcase nexd bedied
W Uppeticare all ollowng letiers. watil
Wl Chusie: rucwrmcane] ¢huariers by il & backdicds il \ £
W fnd L, WU, or 40

e Variable interpolated - some variable names within string are replaced with their
current values when strings are used.
String Operators
e Concatenate, or join strings using . operator.
e String repetition operator is lowercase x.
o Not commutative. String is always the left operand.

“fred™ x 3 £ is “frediredfred”
“barney” x (4+1} # is “harmey” x %, or “barmeybarmeybarmeybarneybarmey”
o L x 4.8 £ is really ™%" x 4, which is "555%7

Automatic Conversion Between Numbers and Strings

e Conversion depends on operator used.
Perl’s Built-in Warnings
Use warnings pragma (use warnings;) for Perl version 5.6 or later.
-w option when compiling.
$ perl -w my_program

-w on shebang.
#! fust/binfper]l -w
Works on non-Unix systems (#!perl -w)
Longer description of problem using diagnostics pragma.

B! fusrbinfperl
wse diagnostics;

-M to load pragma only when needed.
3 perl -Mdiagnostics . fay progras
Scalar Variables

variable - name for a container that holds one or more values
Begins with a dollar sign (sigil), followed by a letter or underscore.

Choosing Good Variable Names
e Choose names that mean something.

Scalar Assignment
e Use ‘=’ to assign values to variables.

Binary Assignment Operators
e Shorthand for expression where the same variable appears on both sides of an

assignment.
$fred = $fred + §; ¥ without the binary assignment operator
o Sfred += 5 # with the binary assigmment operator

Output with print

print takes scalar argument and puts it out.
Interpolation of Scalar Variables into Strings
e When string literal is double-quoted, it is subject to variable interpolation.
o Variable name is replaced with its value upon output.

$meal = “brontosaurus steak”;
tharmey = “fred ate 2 $eeal”; F Shamey is now “fred ate 3 brontosaurus steak”™
o fharney = “fred ate a2 * . $meal: # aether woy to write that

e Delimiter { } for variables for better recognition.
Creating Characters by Code Point

e For using characters not on the keyboard.

e Use code point with chr().

falef = chr{ owsDo J;
$alpha = chr{ hex("0381") };
o $omega = chr om03(s);
e Reverse with ord().

o $code point = ord("=-

Operator Precedence and Associativity

Table 2-2. Associativity and precedence of operators (highest to lowest)
left patenthees and 3 guments 1o ke apetatons
et -%
b = - | 2] el ahd A OdesT et |
right el
right \ 1= fmaty opetators)
ket w =
et = fLx
left * - - by opefatofi)
Ief T35

e unay cpetaton | - X e, rand)
<=3 »= 1t 1o gt e (the “wmegual” ones)
== 1= g=» pqne cmp (The “equal” ones)

Iefl &
leh |*
lefl 55
left 1
Tight 7 {conditional opefatod)
tight =t = (2] similal assiqmement opef aiols)
left =
et et s, ghtrwead)

right not
left and
left

OF NOT

mparison rator

Table 2-3. Numeric and siving comparison operators

0 . Numesic St
boqual - eq
Not equal I- ne
Less than £ 1t
Lfeatef than » gt
Liesss thaan o equal bo = 1=
o Gleates than of equal o >~ e
35 1= 30 + § ¥ false
35 = 35.0 ¥ true
357 e "3%.07 § false (comparing as strings)
“fred” 1t "bammey” § false
“fred” 1t “free’ ¥ true
“fred” eq “fred” ¥ true
“fred® eq “Fred” ¥ false
. O £t

The if Control Structure

if ($nome gt “fred’) |
print " $name” comes after “fred” in sorted order.\m”;
]

if ($nome gt “fred”)

print "'$nome’ comes after “fred’ in sorted order.\n”;
] else |

print “"$name’ does not come after "fred”.\n";

print Maybe it"s the same strimg, in fact.\n";
]

Boolean Values
= 1f the value is 2 number, 0 means false; all other numbers mean oue.

= Ortherwise if the value is 2 string the empty stmng [* ") means false; all adher strings

misamn e,

= Ortherwise (that is, ¥ the valne is another kind of scalar than 2 number or a string],

° convert it to 2 number or a string and try again 3

e To get the opposite of a boolean value, use unary not (!) operator.

Getting User Input
Use <STDIN> operator.
fline = «5TDIN:;
if ($line eg “\n") {
print “That was just a blank line!yn™;
} else {
print ~That line of input was: $line™;
}

The chomp Operator

Removes newline at the end of a variable if it exists.
chomp()’s return value is the number of newlines it removes (typically and most likely 1).
If a line ends with one or more newlines, chomp() removes only one.

The while Control Structure
Repeats a block of code as long as the condition is true.

fcount = 0]
while ($count < 10) {

$count e= 37

print “count i< now Soounty\n™; & Gives values 2 4 6 8 10
}

The undef Value

The value given to a scalar variable before giving it a value.
The defined Function

<STDIN> can return value undef.

Use defined function to tell if a value is undef. If undef, it returns false.

fmadorna = <STDIN:
if (dhe=i e [Smadonna))

print “The input was Saadonna®:
I else {

print "Wo imput awailable!\n™;
]

Chapter 3 - Lists and Arrays

list - ordered collection of scalars

array - variable that contains a list

List is the data, array is a variable that stores the data.

Each element in an array or list is a separate scalar value.

First element is always indexed as element zero.

Each element can hold a number, string, undef, or a mixture of scalars.

FALUES
[] n
= 1 14
25
=¥ 1 el
=2
3 3 1.70e30
- 4 e’

Figure 3-1_ A lisr wich five lements

Accessing Flements of an Array

$fred[0] - “yabba®;
$fred[1] = “dabba";
tFred[2] = “doo™;

$rumber = 7.T1828;
print $fred|fmmber - 1]; & Same as printing $Fred(i]
Number is truncated to the next lowest integer when used as index.

$blank = $fred] 142 857]; @ umsed array elesent gives undef
thlanc = fmel; # unmrsed scalar feel also gives undef

If the subscript indicates element is beyond end of array, the value is undef.

Special Array Indices

drocks[o] = “hedmock”; & One element.

frocks[1] = “slate”; & another. . .

drocks[2] = “lawa’; & and another. .

drocks[3] - “crushed rock®; & and another ..

drocks[99) - “schist"; & nw there are §5 undet slements

$#name gives last element index in array

fend - $¥Tocks; f o9, which is the last element s index
trumber of rocks = Send + 1: § okay, but you'll see 3 better way later
$rocks| $Srocks | = “hard rock’; £ the last reck

Can use negative indices. Works from last element to first.

frocks] -1] = "hard rock’; @ easier may to do that last example
$dead rock = $rocks[-100]; @ pets “bedrock”
frocks] -200] = "crystal”; # fatal exror!

List Literals
This is the way you represent a list value in your program.

List of comma-separated values enclosed in parentheses.

(1, 2, 1) # list of thres values 1, 2, and 3

(15 25 3,) £ the same three valees (the trailing comms is ignored)
(“fred”, 4.5) £ two values, “Fred” and 4.5

() # empty list - rero elements

(1..100) # list of 100 intepers

Last example above uses the range operator.

10

The qw Shortcut

e Allows for list creation w/o commas or quotes

e AKA “quoted words” or “quoted by whitespace”
qui{ fred barmey betty wilma dino) & same 25 abhowe, but less typing

e (Can use any punctuation as delimiter.

gu! fred barmey betty wilma dino !
g/ fred bammey betty wilma dino [
gud# fred barmey betiy wilma dino # & like in 3 comsent!

o Ifyou need to use the enclosing delimiter in the string, preface it with a
backslash.

o gu! yahoo!! poogle ask msm ! & imclude yahoo! as an elesent

List Assignment

@ refers to the entire array.
#rocks

Arrays can’t contain other arrays.

The pop and push Operators

e pop takes the last element off the array and returns it

farray = 5..9;
ffred = pop{larray); & $fred pets 9, Barray now has (5, 6, 7, §)
$harney = pop Barray; #& Shamey gets 8, @array now has (5, 6, 7)

o pop Earray; £ Rarray now has (5, 6). (The 7 is discarded.)

e returns undef if array is empty
e push adds element to end of array

push{Barray, 0); £ Barray mow has (5, &, 0)

push @array, §; # Barray now has (5, 6, 0,)

push @array, 1..10; @ #array now has those 10 new elewents
Eothers = gu/ 902 10 J;

o push Barray, Eothers; # #array now has those five new elesents (15 total)

The shift and unshift Operators
e Perform similar actions to push and pop on the “start” of an array.

Earray = gud dino fred barmey £

fa = shift{@array); F fm pets “dino”, #array now has (“fred™, “bammey™)
in = shift @array; F %0 pets “fred”, BarTay now has (Thamey”)

shift @array; § marTay iz now empty

0 - shift @array; £ S0 pets undef, Sarray is still empty
unshi £t (#array, 5); f @array now has the one-slemenmt list (5)

unshift Marray, 4; # Barray now has (4, 5)

Eothers - 1..3;

unchift @array, Sothers; § @array now has (1, 2, 3, 4, 5)

The splice Operator
e Splice works in the middle of the array.

Barray = ge{ pebbles dino fred bammey betty);
fremoved = splice Rarray, 2; ¥ remove everything after fred

§ #removed s qu{fred barney betty)
o £ @array is qu{pebbles dino)

e Takes 4 arguments, 2 are optional.
o 1. Array 2. Position to start 3. Length 4. Replacement List

farray = gu{ pebbles dino fred bammey betty);
fremoved = splice Warray, 1, 2, qu{wilma); # resowe dino, fred
Fremoved is qui{dino fred)
#array is quipebbles wilma
barney betty)

11

12

Interpolating Arrays into Strings

Can interpolate array values into a double-quoted string.
frocks = quf flintstone slate rubble };
print “guartz @rocks limestone\n™; @& prints five rocks separated by spaces
Perl expands array and automatically adds spaces between elements.
No extra spaces before or after an interpolated array.
@ like for email, Perl will try to interpolate it.

{email = “fredibedrock.edu”™; # MRONG! Tries to interpolate @bedrock

use \@ in double-quotes or use @ in single quotes.
denail - “fred\@bedrock.edu”; # Correct
$enail - “fredibedrock.edu’; # Another way to do that
The foreach Control Structure
Loops through a list of values, executing one iteration for each value.
Value of control variable is the same as before the loop started.
Perl automatically saves and restores the value of the control value of a foreach loop.

foreach frock (qu/ bedrock slate lawva [) {
print “One rock is $rock.\n"; # Prints names of three rocks
}
Perl’s Favorite Default: $
e Default control variable of foreach loop.

foreach (1..10) { & Uses § by default
print "I can count to & !\n";
1

The reverse Operator
e Takes a list of values and returns the list in the opposite order.

#fred = 6..10;

Bbarney = reverse{@fred); & gets 10, 4, 8, 7, &

Bwilma = reverse 6..10; & pets the sawe thing, without the other array
o Pfred = reverse @fred; & puts the result back into the original array

The sor rator
e Takes a list of values and sorts them in the internal character ordering.

e For strings, it’s sorted by code point order.
frocks = gw,/ bedrock slate mubble gramite f;

#sorted = sort(@rocks); & gets bedrock, granite, rubble, slate
dhack = reverse sort @rocks; & these go from slate to bedrock
#rocks = sort #rocks; & puts sorted result back into Srocks
grumbers = sort o7..10%; # gets 100, 101, 102, 97, o8, 99

Th h rator
e Useable starting with Perl 5.12 and is used on arrays.
e Using each on an array returns two values for the next element in the array - the
index and the value.

rocks = gu/ bedrock slate rubble gramite J;
while{ my(findex, $walue) = each @rocks) {
say “hindex: fvalue”;

Scalar and List Context

The context of how you use an expression is important.

42 + something # The something must be 3 scalar
sort something # The something must be a list

#people - gqu{ fred barmey betty);
#sorted = sort @people; # list comtext: bammey, betty, fred
$mmber = 42 + @people; & scalar context: 42 + 3 gives 45

#list - gpeaple; # a list of three people
4n = @people; it the mumber 3

Using List-Producing Expressions in Scalar Context
e Some expressions don’t have a scalar-context value.

e sort always returns undef in scalar context.
e reverse returns reversed string in scalar context

Bbackwards = reverse gqw/ yabba dsbba doo [
gives doo, dabba, yabba
ibackwards = reverse gw/ yabba dabba doo [
o # gives podabbadabbay

4fred = something; B scalar context
épebbles - something; # list comtext
(fwilma, fhetty) - something; # list comtext

° ($dino) = something; # still list comtext!

Using Scalar-Producing Expressions in List Context
e If an expression doesn’t normally have a list value, the scalar values if

automatically promoted to make a one-element list.
Bfred = 6 * 7; § gets the one-element list (42)

° Bbarney = “helle” . * ° . “world®;

e A catch is using undef since it’s scalar value, assigning it to an array doesn’t clear
the array

Bwilma - undef; & 00P5! Cets the one-element list (undef)
which is not the same a5 this:
o gbetty = (); & A correct way to empty an array

Forcing Scalar Context
e Use “fake” function scalar
o Just tells Perl to provide scalar context.
#rocks - ge(talc quartz jade obsidian);
print “How many rocks do you have?in":
print *T have °, @rocks, * rocks!\m": # MRONG, prints nomes of recks
primt "I have °, scalar frocks, ~ recks!\n®; & Correct, gives 3 mumber
<STDIN> in List Context
<STDIN> returns the next line of input in scalar context.
In list context, it returns all of the remaining lines up to end of file.
How to get end of file from keyboard?
Linux & Mac OS X - Control-D
DOS/Windows - Ctrl-Z
Use chomp to remove newlines from each item in the list.
chomp(#lines = «5TDIN:); # Read the lines, not the newlines

13

Chapter 4 - Subroutines

subroutine - user defined function
- allow you to recycle a chunk of code many times in one program
- name (anything except digit) with ampersand (&) in front when calling it

Defining a Subroutine

Use keyword “sub”, then name of subroutine, with the block of code in curly braces.

sub marine {
$0 - 1; # Global ariable o
print *Helle, sailor msber galin®;

Invoking a Subroutine

Imarine; & says Belle, sadlor mmber 11
Smarime; & says Belle, sailor mmber 21
Smarine; & says Belle, sailor mmber 31
Smarime; § says Helle, sailer member 41

Return Values

All subroutines have a return value.
sub sum of fred and barmey |

print "Hey, you callad the sum of fred and barmey subrowtinelin";
ffred « fharmey; ¥ That's the retum wvalue

1
Return value of example above is the sum of $fred and $barney.

Arguments

To pass arguments, place them in a list expression in parentheses, after subroutine invocation.

$n = &max(10, 15); # This sub call has two parameters

Perl stores parameter list in array variable @_, which is private to the subroutine.

Private Variables in Subroutines
All Perl variables are global by default.
To create private (lexical) variables, use my operator.

sub max {
my($m, $n); i new, private variables for this block
(fm, tn) - @ ; # give names to the parameters
if ($m > %n) { $m } else { $n }

1

Variables in this case are scoped to enclosing block.
Variable-Length Parameter Lists
Use @_ array to check if subroutine has right number of arguments.

sub max {
(8 1=2){
print "WARNING! &max should get exactly two argumentsi\n”;
}

continue as before...

14

15

A Better &max Routine
gmaximum = Bmax(3, 5, 10, 4, 6);

sub max {
my($max_so far) = shift @ ; # the first one Is the largest yet seen
foreach (@) { # look at the remaining arguments

1f (4 > $max_so far) { # could this one be bigger yet?
$max_so far = §_;

}

$max_so_far;

]

[]
e Uses “high-water mark” algorithm, which keeps track of the largest number seen.

Empty Parameter Lists
e If you pass empty parameters, the subroutine returns undef.

Notes on Lexical (my) Variables

Variable is private to the enclosing block.

foreach (1..10) {
my($square) = 4 * % ; ¥ private variable in this loop
print *$_ squared iz $square.\n";
}
MNote also that the my operator doesn’t change the context of an assignment:

my(§num) = @ ; # list context, same as ($num) = @ ;
my foom = @ ; # scalar context, same as foum - @ ;

The use strict Pragma

Enforces good programming rules.

The return Operator
Way to stop subroutine.

my @names - qw, fred bammey betty dino wilma pebbles bamm-bamn [;
my fresult - Swhich element 1s{"dino”, Enames);

sub which element 1s {
my($what, Earray) - @ ;
foreach (0..$4#array) { # Indices of #array’s elements
1f ($what eq darray[$]} {
return § ; ¢ return early once found

L # element not found (return 1s optional here)

Omitting the Ampersand
e You can omit the ampersand if the compiler sees the subroutine definition before

the invocation.
e Or if Perl can tell from syntax that it’s a subroutine call.
e The catch: if you use the same name as a built-in function
Non-Scalar Return Values
If you call your subroutine in list context, it can return a list.

sub 115t fron fred to barmey {
1f (fred < gharney) {
Count upwards from $fred to fharney
Sfred. . fharney ;
b oelse {
Count dowmards from $fred to fharney
reverse Sharney. . $fred;

}
$lired - 11;
$bamey = b;

Bc - Rlist from fred to barmey; ¥ #c pels (11, 10, 9, 8, 1, &)

Persistent, Private Variables
state - private variables scoped to subroutine, but Perl keeps values between calls.
use 5.040;

runndng sum{ 5, &);
running sum{ 1..3);
Tunning sum{ 4 });

sub running sum {

state fsum - 0
state @mumbers;

foreach my $nmber { @) {
push @mmbers, $number;
dsm +- fnumber;

}

say “The sum of (Prumbers) 15 $sum™;
}

Can’t create state variables in list context.
state @array - gwia b c); # Error!

17

Chapter 5 - Input and Output

Input from Standard Input
<STDIN> operator

while {<STDIN:) {
print “T saw £ ";
b

Shortcut only works if there’s ONLY the line-input operator in the conditional.
Input from the Diamond Operator

<>

Useful for making programs that work like Unix utilities.

Instead of getting input from the keyboard, it’s from the user’s choice of input.

while (defined($line = <)) {
chomp({$lina};
print "It was $line that I saw!n";
I

Can use shortcut like before, to use $_.

while (€3} {

chomp;

print "It was % that I saw!in®;
}

The Invocation Arguments
@ARGV array holds invocation arguments.
Diamond operator looks in @ARGV to determine what filenames to use.
@ARCY = qwh larry moe curly #; # force these three files to be read
while (&) {
chomp

i
print "It was & that I saw in some stooge-like file!\n";
}

Output to Standard Output
print operator takes list of values and sends each item to standard output as a string.
Has optional parentheses.

fname = "Llarry Wall";
print "Hello there, $name, did you know that 3+4 is ", 3+4, "¥\n";

Formatted Output with printf

Takes a format string followed by a list of things to print.
conversions - begins with % followed by a letter.

printf "Hello, %s; your password expires in Xd days!\n",
fuser, $days_to die;

%g automatically choses floating-point, integers, or even exponential notation
printf "¥g ¥g L\n", 5/2, 51/17, 51 ¥ 17; ® 1.5 3 1.0683e+19
%d is decimal integer

%#d adds number of spaces (insert to #) before printing integer.

printf “Eed\n®, 42; ¥ oulput like """ 742 (the * symbol slands for a space)
printf “Ead\n”, 23 + 1.95; & 200

%s is string
%#s sets field width (justification of string)

printf “Ei0syn®, “wilma®™; ¥ looks llke "°°°° wllma

18

%f is floating point, lets you determine number of digits after decimal point.

printf “E12:n", & * 7 + 2/3; it looks 11ke ~""42.66GGEET
printf “¥12.3n°, 6 * 7+ 2f3; @ looks Iike “""""" 42 667
printf “Ei12.0P\n", & * 7+ 2/3; @& looks 1ike ~""""""""" 41
Arrays and printf
e Format strings work only with fixed number of items, so it’s impractical to use
array.
e Ispossible using a format string.

my @items = qw(wilma dino pebbles };

my $format = “The items are:\n® . (“%10s\n" x @items);

it print “the format is »»$formatecin®; # for debugging
o printf $format, Eitems;

Filehandles

Name in a Perl program for an I/O connection between your Perl process and the outside world.
Filename cannot start with a digit.

Recommendation to name filehandles with uppercase letters.

Opening a Filehandle

open operator tells Perl to ask operating system to open connection between your program and
the outside world.

open CONFIG, 'dino';

open CONFIG, '«<dino';

open BEDROCK, '»fred';

open LOG, “»»logfile’;

Can use scalar expression in place of filename specifier.
my $selected output = ‘my_output';
epen LOG, *» $selected output®;
3 argument open is available starting with Perl 5.6.
open CONFIG, '<';, 'dino;
open BEDROCK, '»', $file name;
open LOG, "»»', Blogfile name();
- Perl never confuses 2nd and 3rd arguments.
- Can specify encoding
open CONFIG, '<:encoding{UTF-8)', "dino";

- open BEDROCK, ‘»:utfB', $file mame; # probably not right (shortcut for Specifying encoding)
Specifying encoding to deal with DOS line endings.
open BEDROCK, 's:crlf', $file name;

Binmoding Filehandles
e binmode turns off line ending processing

binmode STDOUT; # don't translate line endings
o |lnmode STOERR; # den't translate line endings
e Can specify layer as second argument.

o binmode STDOUT, ':encoding(UTF-8)";

Bad Filehandles
e Trying to read from a bad filehandle (not properly opened or closed network
connection) will end with end of file
Closing a Filehandle
e Use the close operator to close a filehandle.
o close BEDROCK;

19

Fatal Errors with die
die function prints out message you give it to standard error stream and makes sure your
program exits with a nonzero exit status.
if { ! open LOG, '»»', "logfile') {
\ die "Cannot create logfile: $17;
$! - human readable complaint from system
die will automatically append the Perl program name and line numbers to the end of the message
to easily identify where in the program it exited.
Add newline at the end of to leave off line number and file on usage errors

it (BARCV ¢ 2) {
die "Not enough arguments\n";

}
Warning M it]

e warn does the same as die, but doesn’t exit program.
Automatically die-ing
e Starting with Perl 5.10, the autodie pragma is available so you don’t have to use

die everytime
use autodie;

° open LOG, "»3', 'logfile’;

Using Filehandles
Can read lines from open filehandle just like STDIN.

if { ! open PASSWD, "fetcfpasswd") {
die "How did you get lopped in? (£1)";
}

while (<PASSWD>) {
chomp;
}
You can use a filehandle open for writing or appending with print or printf, appearing
immediately after the keyword but before the list of arguments.
print LOG "Captain's log, stardate 3.14159\n"; ¥ output goes to LOG
printf STOERR "¥%d percent complete.\n", $done/$total * 100;

Changing the Default Output Filehandle
e By default, if no filehandle is given to print or printf, the output goes to STDOUT.

e Defaultis changed with select operator.
e $| = 1flushes the buffer so entries won’t get stuck.

select LOG;

%] = 1; # don't keep LOC entries sitting in the buffer

select STDOUT;

... time passes, babies learm to walk, tectonic plates shift, and then...

o Print LOG “This gets written to the LOG at oncelin®;

Reopening a Standard Filehandle

it Send errors to my private error log

if { ! open STDERR, "»>/homefbarmey/.error log®) {
die “Can't open error log for append: $1%;

}

Reopening STDERR, error message from Perl go to new file.

20

If die is executed in statement above, the original standard filehandle (in this case, STDERR) picks
up the error message.

Output with say
say is like print except it adds newline to the end.

usa 4.010;

print “Hello!yn™;
print “Helle!®, “\n";
say “Hello!®;

Filehandles in a Scalar

Using scalar variable without a value, your filehandle ends up in the variable.
my frocks_fh;
open frocks fh, ‘<", 'rocks.txt’

or die "Could not open rocks.txt: $!";

Surround anything that should be a filehandle in braces so Perl does the right thing.
print { $rock fh }; 0 uses § by default
print { $rocks[o] } "sandstone\n”;

Chapter 6 - Hashes
What is a Hash?
A hash is a data structure.
You look up hash values by name.
The indices are known as keys and are arbitrary, unique strings.
Keys are always converted to strings.

VALUES

“Toa" - £

Dar® ———= 124

E ar—» “hell”
“wikma” —— 172e30
"betty” —— “bye\n”

Figure 6-1. Hash keyz and valuss

Why Use a Hash?
e For a set of data related to another set of data.
e Ex. Given name, family name
e Ex. Hostname, IP Address
Hash Element Access

$hash{fsome_key}

The Hash As a Whole
e %as a prefix.
e Can turn a hash into a list.
%some_hash - ('foo', 35, 'bar’, 12.4, 2.5, "hello®,
'wilma', 1.72e30, 'betty’, “"bye\n");
The value of the hash (in a list contewt) iz a simple list of key-value pairs:
gany array = %some hash;
Perl calls thiz unwindingthe hash; turning it back intoa list of lkey-value pairs. Of course,
the pairs won't necessarily be in the same order as the original list:

print "any_array\n®;
i might give something like this:

° # betty bye (and a newline) wilma 1.72e+30 foo 35 2.5 hello bar 12.4

Hash Assignment
e Assign one hash to another OR make inverse hash.

° my Enew hash = ¥old hash;

o Inverse hash good only if no duplicate values.

o my Xinwerse hash = reverse ¥any hash;

The Big Arrow
e => Easy way to identify key-value pairs when making a hash.

22

my Xlast name = (F a hash may be a lewical variable
‘fred" -» 'flintstone’,
‘dino" =» wundef,
'barney” => 'rubble',
'betty’ =3 'rubble’,
o) ¥

Hash Functions

The keys and values Functions
e keys - yields a list of all keys in a hash
e values - gives the corresponding values
e Empty list is returned if there are no elements in hash.

my %hash = ("a' <> 1, 'b' = 2, '¢' = 3);
my @k - keys Ehash;
my @v - valuss ¥hash;

e In scalar context, it will return the number of keys in the hash.

o My $count = keys Xhash; # gets 3, meaning three key-value pairs

The each Function
e Used for iterating over an entire hash.
e Returns key-value pair as two-element list.

while { (%key, $value) = each ¥hash } {
print "$key =» $waluen";

o |

Typical Use of a Hash

Ex. A library system that uses a hash to determine the number of books a person has checked out.
The exists Function
e Used to see if a key exists in a hash.

if {exists $hooks{"dino"}) {
print "Hey, there's a library card for dino!\n®;
[]

The delete Function
e Removes given key and values from hash.
e NOT the same as storing undef into hash element.

my $person = “bhetty";
o delete $books{8person}; M Revoke the library card for Sperson

Hash Element Interpolation
You can interpclate a single hash element into a double-quoted string just as vou'd
expect:

foreach $person (sort keys Xbooks) { # each patron, in order
if ($books{$persen}) {
print “$person has $books{fperson} items\n"; # fred has 3 items
}

° I
The %ENV hash
Perl stores information about your environment in the %ENV hash.

Ex. Getting your PATH from %ENV - Print "PATH is SENV{PATH}\n";

23

Chapter 7 - In the World of Regular Expressions
What Are Regular Expressions?
regular expression (pattern in Perl) - a template that either matches or doesn’t match a given
string
Using Simple Patterns

To match pattern against contents of $_, put pattern between forward slashes.

4 = "yabba dabba doo®;
if {fabba/} {

print *It matched!\n";
}

Unicode P .
e \p{PROPERTY} to match particular unicode property.

if {/\p{Space}/} { # 26 different possible characters
print "The string has some whitespace.\n";

I
[]
e Also \p{pigit} and \p{Hex} available.
e To negative property, use \P{PROPERTY}.
About Metacharacters
e Metacharacters have special meanings in regular expressions.
e Dot (.)iswildcard character. It matches any single character except a newline.
Simple Quantifiers
e *.-tomatch preceding item zero or more times
o ,n"-F_re.::I‘-.,t:t barney/1
e +-to match preceding item one or more times
o [fred +barney/

e ?-preceding item is optional
o {bamm-bamm/

Grouping in Patterns
e Parentheses to group parts of a pattern.
e Parentheses give a way to reuser part of the string directly in the match.
o Use back references to refer to text that you matched in parentheses, called
capture group.
Denote back reference as backslash followed by a number.
Number denotes capture group.

1 = "abba";
if (70000 {4 matches "bb'
print "It matched same character next to itselflin";
o 1}

o InPerl 5.10 a new way to denote back references is \g{N}.
m N is the number of the back reference.

m Can use negative numbers (relative back reference.
Alternatives

e | - match either left or right side
o [fred|barney|betty/

24

Character Classes
character class - list of possible characters in square brackets ([]) matches any single character
from within the class.

[abowxyz]

~ negates character class
[*def]
— Character Class Shortcuts
e Abbreviate character class for digits with \d.

/a at the end of the match operator tells Perl to use old ASCII interpretation
(feature in Perl 5.14).
\s for matching any whitespace (similar to \p{Space}).
\h for horizontal whitespace.

if {/\h/) {
say "The string matched some hor izontal whitespace.";

o I
e \v for vertical whitespace.
if (M) {
say "The string matched some vertical whitespacse.';
¥
o

e \R matches linebreak.
e \wmatches set of characters [a-zA-z0-9_].

Negating the Shortcuts
e You can use ~ or just uppercase the shortcuts (\D \W \S).

Chapter 8 - Matching with Regular Expressions
Matches with m//
/fred/ is shortcut for m// operator.
Like qw//, can look like m(fred), m<fred>, with different paired delimiters.
Shortcut is only valid with the forward slash delimiter.
Match Modifiers

Can append as a group right after ending delimiter to change behavior from the default.
Case-Insensitive Matching with /i
print "Would you like to play a game? ";
chomp($ = <STDIN:);

if {fyesfi) { # case-insensitive match
print "In that case, I recommend that wou po bowling.\n";

o |}
Matching Any Character with /s
e Used for matching strings that have newlines in them.
o Applies to . in the pattern.

$ = "I saw Barney\ndown at the bowling alley\mwith Fredinlast night.n®;
it (fBarney.*Fred/s) {
print "That string mentions Fred after Barmey!\n";
o !}
e \Nshortcut complements \n for matching newline.

Adding Whitespace with /x
e Allows arbitrary whitespace to pattern for readability.

/-[0-9]+\.?[0-9]*/ # what is this doing?
e [-1I[o-9]+\.? [0-9]* /x # a little better

Combining Option Modifiers
e Put modifiers at the end. Order is not important.

if (fbarney.*fred/is) { # both /i and /s
print "That string mentions Fred after Barmey!\n®;
I
°

Choosing a Character Interpretation
e /a-ASCII

e /u-Unicode
e /1-locale

use 5.014;

Mwefa U A2, a-z, 0-9, _

ywfu # any Unicode word charcter

Sowef1 # The ASCII wersion, and word chars from the locale,
° it perhaps characters like & from Latin-9

Anchors

\A anchor matches at the absolute beginning of a string, so pattern doesn’t float down string.
m{\Ahttps?://}i

Use \z to anchor at the end of a string.

m{}.prghz}ti

\Z allows option newline after it.

while {<STOING) {
print if /\.png\Z/;
}

25

26

Word Anchors
e Use \b to match at either end of a word.
e /\bfred\b/ matches fred ONLY.
e \B matches where \b would not match.
e /\bsearch\B/ matches “searches”, “searching”, but NOT “search” or

“researching”.

The Binding Operator =~
Tells Perl to match pattern on the right to string on left instead of matching to $_.

my $some other = "I dream of betty rubble.”;
1f ($some other =~ f\brub/) {

print "Aye, there's the rub.\n";
}

Interpolating into Patterns
it fusr fbin/perl -w
my fwhat = *larry”;

while (<3} {
if {(\A(Swhat)/) { # pattern is anchored at beginning of string
print "We saw fwhat in beginming of §_°;
H

t

The Match Variables

Made by using parentheses to make capture groups.
Match variables become $1, $2, ... based on order of capture groups.

$ = "Hello there, neighbor®;
1F (A0S (s, (S0

print "words were $1 %2 $3\n";
1

The Persistence of Captures
e Capture variables stay until next successful pattern match.

e This is the reason why pattern match is mostly found in conditionals
Noncapturing Parentheses
e Add ?: to parentheses to tell Perl you don’t want to use a capture group.

if (/{?:bronto)?saurus (steak|burger)/) {
print “Fred wants a $1\n";

o !}
Named Captures
e 5.10+ lets you name match variable (?<LABEL>PATTERN).

use 5.010;

my $names = ‘Fred or Barney';
iF (fnames == mf(*<named>\we) (7:and|or) (Penamezz\we)/) {
say "I saw $o{namet} and $o{name2 }";

1
o
e Use \g{label} to refer to them for back reference.

if { $names =~ m/{?<last names\we) and \we \g{last name}/) {
say "I saw $+{last_name}";
o

e \k<label> has same effect.

27

if { #names =~ m/(7<last names\we) and ‘we \k<last names/) {
say "I saw $+{last name}";
o |}

The Automatic Match Variables
e $&- stores part of string actually matched
e ¢ -stores before matched section
e $° -stores after matched section

if ("Hello there, neighbor® == s,/ {
print *That actually matched '$&'.\n";
}

if {"Hello there, meighbor" == Ms{\w+),/) {
: print “That was (")($&)(4").\n";

5.10+ allows use of /p modifier to grant ${~*PREMATCH}, ${"MATCH}, and

${~POSTMATCH} with same effect as above.

use 5.010;
if ("Hello there, neighbor™ == M\s(\w+),/p) {

print *That actually matched '${*MATCH}'.\n";
}

if ("Hello there, neighbor™ == \s(\w+),/p) {
print "That was (${*PREMATCH})(${*MATCH})(${*POSTMATCH]}). \n";
¥
o

General Quantifiers
quantifier - to repeat the preceding item a certain number of times in a pattern.
EX. * +.?
Use comma separated numbers in curly braces to specify number of repetitions.
Ex. /a{5,15} - matches repetition of a from 5 to 15 times.

/a{5,} - matches repetition of a 5 or more times.

/a{,15} - matches repetition of a up to 15 times.

Precedence

Table 8-1. Regular expression precedence
Requiar expression feature Example
Parenthesss (grouping or capturing) (), (?:.), (?<LABEL>_)
(Ouantifiers a* a+ a?, a{n,m}
Anchors and saquence abe, *, %, %4, 0\b, N N
Altermation alb|e
Atoms a,[abc], \d, N\, \g{ 2}

A Pattern Test Program

#! Jusrfbin/perl
while {¢3) { # take one input line at a time
chomp;
if (/¥OUR_PATTERM GOES HERES) {
print “Matched: |3 <$f23'|\n"; o the special match wars
¥ else {
print "Mo match: |$_|\n";
¥

¥

A generic pattern match program to test any combination of patterns you want.

28

Chapter 9 - Processing Text with Regular Expressions

Substitutions with s///

Search and Replace

4 = "He's out bowling with Barmey tomight.";
s/Barney/Fred/; & Replace Barney with Fred
print "$ \n";

Global Replacements with /g
e C(alls s/// to make all possible non-overlapping replacements.

4 = "home, sweet home!®;
s homefcave g;
e print "$ \n"; # “cave, sweet cave!®

e Most commonly used to collapse whitespace.
3 = "Input data\t may have extra whitespace.®;
° af\sef fgi o Mow it says "Input data may have extra whitespace.”
Different Delimiters
e (Can use nonpaired delimiters as normal.
e Delimiters with open/close, use 2 pairs.
s{fred{barney};
s[fred](barney);
o scfreds#barneyd;
Substitution Modifiers
e Canuse /i, /x,and /s in addition to /g.
sitwilmadilmatigl; & replace every WilmA or WILMA with Wilma

o SL_END_.*H}s; & chop off the end marker and all following lines

The Binding Operator

o ifile name =~ s#".¥/##s; # In $file name, remove any Unix-style path
Nondestructive Substitutions

my foriginal = 'Fred ate 1 rib';
my $copy = foriginal;

o Stopy = s/\d+ ribs?/10 ribs/;

e /r modifier allows copy, keeping original intact.

use 5.014;
o my $copy = foriginal =~ s/\d+ ribs?/10 ribs/r;
Case Shifting

e \Uforces uppercase.

t = "I saw Barney with Fred.";
o sf(fred|barney)/\Ud1/gi; # % is now "I saw BARNEY with FRED.®

e \L forces lowercase.

o sf(fred|barney)/\L$1/gl; # % s now "I saw barney with fred.”
e \E turns off case shifting.

o sf(%w) with (\we)\USIAE with $1/1; # § 1s now "I saw FRED with barney."
e \1and \u affect only next character.

o sf(fred|barney)Mudifig: # %_ 1s now "I saw FRED with Barney.®

e Stacking is allowed (i.e using \u with \L. to make all lowercase except first
character).

o sf(fred|barney) v L$1/ig; # % 1s now "I saw Fred with Barney.”

The split Operator

Splits string based on separator.

my @fields = split fseparatorf, $string;

my @fields - split f:f, "abc:def:g:h"; # gives ("abc", "def", "g", "h")
Default is to break up string based on whitespace.

my @fields = split; # like split f\s+/, $_;

The join Function

Uses no patterns, but glues piece of strings into one.
my $result = join $glue, @pieces;

w $x = join ":%, 4, &, 8, 10, 12; # fx is "4:6:8:10:12"

m// in List Context

Return value is a list of capture variables created in the match or empty list if the match failed.

$_ = "Hello there, neighbor!®;
my($First, $second, $third) = f{\S+) (\S+), (\5+)/;
print "$second is my $third\n®;

More Powerful Regular Expressions
Nongreedy Quantifiers
e +-greedy

e +?-nongreedy, prefers to match as few times as possible.

Matching Multiple-Line Text

e /mregular expression option lets string match at internal newlines.
print "Found ‘wilma' at start of line\n" if /*wilma\b/im;

Updating Many Files
e <> helps with editing files.

e Example Program
#! fust/bin/perl -w

use strict;

chomp(my $date = “date’ };
£ = ".bak";

while (<») {

s/*Author: . */Author: Randal L. Schwartz/;

s *Phone: . ¥\n/f/;
s/ "Date: . */Date: $date/;
print;

o I}

o $~I saves original file while edits are saved in new file.

In-Place Editing from the Command Line

° % perl -p -i.bak -w -e& "s/Randall/Randal/g" fred*.dat
e Works similar to example program above.

29

Chapter 10 - More Control Structures

The unless Control Structure

Executes block of code when conditional is false (opposite of if).

unless ($fred =~ AA[A-7 \w*\zfi) {
print "The value of \ifred doesn't look like a Perl idemtifier mame.\n";
1

The else Clause with unless

unless ($mon -~ [\AFeb/) {
print "This month has at least tharty days.\n";
} else {

print "Do you see what's poing on here?\n®;
° }
The until Control Structure

Reverse condition of while loop, repeats as long as conditional is false.

until (%3 > i) {
$i *= 25
1

Expression Modifiers

An expression may be followed by a modifier that controls it.
print "$n is a negative number.\n" if $n < 0;

The conditional is still evaluated first, even though it’s at the end.

herror("Invalid input") unless &valid($input);
41 *= 2 until $1 » $3;

print " ", ($n += 2} while $n < 10;

bpreet($) foreach @person;

The Naked Block Control Structure
A block without a keyword or conditional. The block of code is executed only once.

{
bady ;
body;
body ;
1

The elsif Clause
Used for checking a number of conditional expressions.

if { ! defined $dinc) {

print “The value is undef.\n";
} elsif (8dimo == fa-2hde\. 2403 {

print “The value is an integer.\n";
} elsif ($dino == fA-\d*\ A\de$)) {

print "The value is a _simple floating-point number.\n";
} elsif ($dino eq '') {

print “The value iz the empty string.\n";
} else {

print “The value is the string 'd$dino’.\n";
1

Autoincrement and Autodecrement
++ adds one to scalar variable

- - substracts one to scalar variable

my fbedrock = 42;
fbedrock++; # add one to $bedrock; it's now 43
$bedrock--; ¥ subtract one from $hedrock; it's 42 again

30

The Value of Autoincrement
e Preincrement/Predecrement

my $m = 5;
my $n = ++m; # increment fm to 6, and put that value into $n
o my $c = --$m; & decrement $m to 5, and put that value into $c

e Postincrement/Postdecrement

my $d = $mes; # $d gets the old value (5), then increment ¢m to &
o My fe = fm--; ¥ fe gets the old value (6), then decrement $m to &

The for Control Structure

for (initialization; test; increment) {
bady;
body ;

}

for ($i = 1; $i ¢= 10; $i+e) { # count from 1 to 10
print *I can count to $i'\n";

}

The Secret Connection Between foreach and for
e foreach is equivalent to for in Perl parser.

Loop Controls
The last Operator

e Immediately ends execution of the loop.
#t Print all input lines mentioning fred, until the END marker
while {<STODIN:) {
if (J_ENe_f) {
Mo more input on or after this marker lime
last;
¥ elsif (ffred/) {
print;
¥

° W last comes here W4

The next Operator
e Jumps to the inside of the bottom of the current loop block.

Analyze words in the input file or files

while {¢3) {
foreach (split) { & break $_ into words, assign each to $_ in turn
Stotales:
next if J\W/; ft strange words skip the remainder of the loop
fwvalide;

fcount{$ Je+; # count each separate word
#¥ next comes here W4

h

o |}
The redo Operator
e Goes back to the top of the current loop block, without testing any conditional
expression or advancing to the next iteration.

32

Typing test
my @words = qw{ fred barmey pebbles dine wilma betty };
my $errors = 0;

foreach (@words) {
A¥ redo comes here A
print *Type the word "$_': °;
chomp(my $try - <STDIN»};
if ($try ne 4) {
print "Sorry - That's mot right.\nn";
ferrarstr;
redo; # jump back up to the top of the loop
1
}
print "You've completed the test, with 3errors errors.\n";
e Example program to test 3 operators.

foreach (1..10) {
print "Iteration number § .%\nin";
print "Please choose: last, next, redo, or none of the abowve? “;
chomp{my %choice = <STOIN>};
primt *yn";
last if dchoice =~ flast/i;
next if fchoice =~ frext/i;
redo if Jchoice =~ fredofi;
print *That wasn't any of the cheices... omard!inin";

}

o print "That's all, folks!\n";

Labeled Blocks
e Use labeled blocks to work with a loop block that’s not the innermost one.
e Labels are made of letters, digits, and underscores.
o Can’t start with a digit.
o No prefix character.
o Recommended to be all uppercase.
e Putlabel and colon in front of loop to specify loop block.

LINE: while (<) {
foreach (split) {
last LINE if / END_f; # bail out of the LINE loop

}...

o !}

The Conditional Operator ?:

Shorthand if-then-else statement

expression 7 if true expr : if false expr

Logical Operators
AND (&8)

OR(|]
short circuit operator - evaluates left side ONLY if it meets logical operator criteria.
The Values of a Short Circuit Operator
e Value is the last part evaluated.
o True if the whole thing is true, false if the whole thing is false.
The defined-or Operator
e // -short circuits when it finds a defined value, no matter if the value of the left
hand side is true or false.

33

Control Structures Using Partial-Evaluation Operators
e && ||,//,?: may or may not evaluate an expression.

($m < $n) && ($m = $n);
o Logical AND isn’t being assigned anywhere. Only if the left side is true will
the right side be evaluated. Equivalent to this:
iF ($m < dn) { $m = $n }

34

Chapter 11 - Perl Modules
Finding Modules
Two types: one that come with Perl or those from CPAN you install yourself.
perldoc (module) is used to search documentation of a Perl module.
cpan -a creates a list of installed modules with version numbers.
Installing Modules

1f the module uses MakeMaker,f the sequence will be something like this:

4 perl Makefile.pl
$ make install

If you can’t install modules in the system-wide directories, you can specify another
directory with an INSTALL BASE argument to Makefile PL:

4 perl Makefile.PL INSTALL BASE=/Users/fred/1ib

Some Perl medule authors use another module, Module: :Build, tobuild and mseall their
creations. That sequence will be something like this:

i perl Build.PL
4 . /Build install

As before, vou can specify an alternate installation directory:
4 perl Build.PL --install base=/Users/fred/1ib

Using Your Own Directories

e local::1lib (provided by CPAN) is to keep new modules in their own directories,
rather than placed where Perl is.
% perl -Mlocal::1lib
expert PERL_LOCAL_LIE ROOT="/Users/fred/perls®;
export PERL_MB OPT="--install _base [Users/#red/perls”;
export PERL MM OPT="INSTALL BASE={Users/fred/perls";
export PERLLLIB="...";

e export PATH="/Users/brian/perls/bin:$PATH";

Using Simple Modules

Example to get basename from a directory
use 5.014;

my $name = “jusr/local fbinfperl®;

my fhasename = $name =~ s§. % #¥r; # Oops!

The problem?
1. The . regular expression can’t detect a newline and with a UNIX type directory name, this is
possible.
2. It’'s UNIX-specific, meaning it’s assuming that all directories are going to have forward slash
separators.
3. We are trying to solve a problem that has already been solved...

The File: :Basename Module

e Extracts the basename of a file without the need of the example above.
use File::Basename;

my $name = "fusr/local/bin/perl”;

o M $basename = basename $name; W gives 'perl’

Using Only Some Functions from a Module
e File::Basename allows import list of functions to use.

35

e Why? In case your script and the module have the same subroutine name.
o Ifyou need to use your subroutine, then to invoke the modules subroutine,
you must use the full name.

use File::Basename qw/ [; # import no function names

my $betty = &dirname($wilma); # uses your own subroutine &dirname
(not shown)

my $name = "/usr/local/bin/perl”;
o my #dirname = File::Basename: :dirname $namel; # dirname from the module
e Manipulating file specifications (files, directories, etc.)
use File::Spec;

print "PFlease enter a tilename: *;
chomp(my $old name = <STDIN>);

my fdirname

dirname $old name;
my $hasename

basename $old_name;

thasename =~ s/*fnot/; & Add a prefix to the basename
my $new name = File::Spec-scatfile($dirname, $basename);

rename($old_name, $new name)
° or warn "Can't rename 'dold name' to '$new name': £1";
Path::Class

e Doesn’t come with Per], but has a more pleasant interface than File: :Spec.

my $dir = dir{ gw({Users fred lib) };
my fsubdir = $dir-ssubdir(“perls'); f Users/fred/lib/perls
my fparent = ddir-sparent; # Users/fred

o M fwindir = $dir-»as_foreign{ 'Win3z'); # Users\fred)lib

CGLpm
e Used for creating CGI program.
e Example: Creating HTML tag.
#1fust /bin/perl

use CGI qw{:all};

print header(),
start_html("This is the page title"),
hi{ "Input parameters" };
my $list items;
foreach my $param (param{)) {
$list items .= 1i{ "$param: ° . param(fparam));
o !

Database and DBI

e Database Interface module doesn’t come with Perl.
e One installed, needs a Database Driver (DBD).
Dates and Times

DateTime module by Dave Rolshy
print fdt->ymd; B 2011-04-23
print fdt-rymd('/"); F 2011 04/23
print $dt->ymd("''); # 20010423

Date/Time Arithmetic
my $dt1 - DateTime- :new|

year -» 1587,
month =» 12,
day = 18,
Y

my $dt2 = DateTime->new(
year =» 2011,
month =3 Gy
daT = 1,
}H

my fduration = $dta - fdta;

36

37

Chapter 13 - Directory Operations

Moving Around the Directory Tree

working directory - starting point for relative pathnames

chdir - changes working directory

Tilde prefix with chdir will not work. That is a function of the shell, not the operating system,
which Perl is using.

Globbing

Shell expands any filename patterns on each command line into matching filenames (globbing).

t echo *.pm
barney.pm dino.pm fred.pm wilma.pm
3

glob operator is used to match filenames as well.

my @all files = glob "*°;
my @pm files = glob "*.pm';

An Alternate Syntax for Globbing
Angle-bracket syntax was the old way of globbing.

my @all files = «*»; & exactly the same as my @all files = glob "*";

my @files = <FRED/™>; & a glob

my @lines = <FRED:; fi a filehandle read

my @lines = <freds; i a Filehandle read

my $name = "FRED';

my @files = <fname/*s; # a glob

readline operator used to get operation of an indirect filehandle read.

my $name = "FRED';
my @lines = readline FRED; # read from FRED
my @lines = readline $mame; # read from FRED

Directory Handles
Looks and acts like a filehandle.
Use opendir to open, readdir to read, and closedir to close.

opendir DIR, $dir to process
ar die "Cannot open $dir to process: $1°;
foreach $file (readdir DIR) {
print "ene file in $dir to process is $file\n";

}
closedir DIR;

Instead of reading contents of a file, you read the names of files.

Directory handles are automatically closed at the end of the program or if the directory handle is
is reopened into another directory.

Recursive Directory Listing

File::Find library for recursive directory processing.

Can convert Unix find to Perl find using find2perl. Uses the same arguments as find.
Manipulating Files and Directories

Perl is very Unix-centric, but works the same way on non-Unix systems.

Removing Files

Perl uses unlink operator with a list of the file you want to remove.

unlink "slate', 'bedrock', "lava’;

unlink gw(slate bedrock lava);

Can combine unlink and glob since they both take lists.
unlink glob "*.0';

Renaming Files

rename function
rename "old', "new';
Ex. Renaming files with .old to .new.

foreach my tfile (glob "*.old") {
my $newfile = ifile;
tnewfile =~ s/\.oldd/. new/;
if (-e $newfile) {
warn "can't rename $file to $newfile: fnewfile exists\n":
} elsif (rename tfile =» tnewfile) {
success, do nothing
} else {
warn "rename $file to fnewfile failed: $1yn";

}
}

Links and Files
mounted volume - hard disk drive
inode - disk real estate, a number assigned to a file or directory
- holds a number called a link count
- How many times it’s listed in a directory.
link function creates a new link.
link ‘chicken', 'egg'
or warn "can't link chicken to egg: $1";
Can’t add links to directories, it would break the hierarchy and commands like find and pwd
would get lost.

Can use symlink as a workaround.

symlink 'dodgson', 'carroll’
of warn "can't symlink dodgson to carvell: $1%;

inode 7033 n inode 919 n
et what are all such qaieties tome ‘ N9
Whose thoughts are full of indicas " 002
and surds? dodgson 7033

chicken 613
+Tn+53 abacus 11320

g 813
=11 carroll - dodgson

Figure 13-3. A symlink to inode 7033

readline tells you where symlink leads.
my $where = readlink 'carroll’; i Glves "dodgson”

unlink will remove association, decrement link count, and possibly free inode.

38

Making and Removing Directories

mkdir (requires octal number for setting permissions)
mkdir 'fred', o755 or warn "Cannot make fred directory: $1°;
oct() forces octal interpretation of string.

mkdir $name, oct(fpermissions);

rmdir

foreach my tdir (gw{fred bammey betty)) {
mdir $dir or warn "cannot redir $dir: £0\n";

1
rmdir fails on non-empty directories. Use unlink to remove directory contents, then use rmdir.
my $temp_dir = "/tmp/scratch $4"; # based on process ID; see the text

mkdir $temp dir, 0700 or die "cannot create $temp dir: $!°;
use $temp dir as lecation of all tesporary files

|;r.|i1nk glob "$temp dir/* $temp dir/.*"; # delete contents of $temp dir
mdir $temp dir; i delete now-empty directory
Modifying Permissions

chmod

chmod o755, "fred', 'barney";

Symbolic permissions (i.e +x, go=u-w) do not work in Perl.
Changing Ownership

chown - need numeric user and group ID values

my $user = 1004;

my $group = 100;

chown $user, $group, glob '¥.0';

Changing Timestamps

utime (access time, modification time)

my $now = time;

my $ago = $now - 24 * 60 * 60; # seconds per day

utime $now, $ago, glob "*'; # set access to now, mod to a day ago

40

Chapter 14 - Strings and Sorting

Finding a Substring with index
index gives you the integer location of the first character of the substring you’re looking for.
fwhere = index(dbig, $small);

A third parameter is available to tell index where to start.

my $stuff = “Howdy world!™;

my fwherel = index(dstuff, "w"); # $wherel gets 2

my $where? = index(istuff, "w", fwherei + 1); # Swhere2 gets &

my fwheres = index(fstuff, “w*, fwherez + 1); # fwhere3d gets -1 (not found)
rindex gives integer location of the last character.

Third parameter will give the maximum permitted return value.
my $fred - "Yabba dabba doo!™;

my $wherel = rindex($fred, "abba®); # fwhere1 gets 7

my fubered = rindex($fred, “abba®, fwheren - 1); # fwhere? gets 1
my fwhered = rindex($fred, “abba®, fwherez - 1); # fwhered pets -1
Manipulating a Substring with substr
Works with part of a larger string.

my $part = substr{istring, $initial position, $length);

Formatting Data with sprintf
Takes the same arguments as printf (except for optional filehandle), but returns string instead of
printing it.

my $date tag - sprintf
"¥ad Xo2d Mo2d ¥ad:¥o2d:%Xo2d",
$yr, fmo, 3da, th, fm, $s;

Using sprintf with “Money Numbers”

e %.2f formats numbers with a certain number of places after decimal point.
o my fmoney = sprintf "¥.2f", 2.49997;

e For “Money Numbers” that may need commas.
sub big money {
my fnumber = sprintf "¥.2f*, shift @ ;
Add one conma each time through the do-nothing loop
1 while $number =~ sfa(-M\d+){\d\d\d) fe1,82/;
Put the dollar sign in the right place
fumber == s/5%(-7) [f1\$/;
Fnumber ;
o 1

Interpreting Non-Decimal Numerals

hex({ ' DEADBEEF') 3 735 928 559 decimal
hex(' ONDEADBEEF ') # 3_735 928 559 decimal

oct('0377") i 255 decimal
oct("377") B 255 decimal
oct('0xDEADBEEF') # 3 735 928 559 decimal, saw leading ox
oct("ob1101"} # 13 decimal, saw leading ob
° oct{"obfbits"}) # conwert $hits from binary
Advanced Sortin

Numeric sort

sub by number {

#f a sort subroutine, expect %a and th

if ($a < $b) { -1 } elsif (%a > 3b) { 1 } else { 0}
1

41

Numeric sort shortcut using spaceship operator (<=>)
sub by number { fa <=» $b }

cmp is like the spaceship operator, but applies to strings.
sub by code point { $a cmp th }

my @strings = sort by code point @any strings;

Case Insensitive Sort
sub case insensitive { "\L$a" cmp "\L$b" }

Reverse sorting
my @descending = reverse sort { $a <=» b } @some_numbers;

Reverse sorting just by switching the variables!
my @descending = sort { $b <=> $a } Bsome_numbers;
Sorting a Hash by Value
my Ascore = ("barney" => 195, "fred" =» 205, "dino" =» 30);
e My Bwinners = sort by score keys Xscore;
e You are comparing the numeric values, rather than key values.

o sub by score { $score{$b} <=> $score{$a} }

Sorting by Multiple Keys

my @winners = sort by score and name keys Xscore;

sub by score_and name {
$score{th} <=» $score{fa} # by descending numeric score
or
$a cmp tb ¥ code point order by name
}

Chapter 15 - Smart Matching and given-when

The Smart Match Operator
smart match operator (~~) looks at both operands and decides how to compare them.
Applies to any Perl version starting with 5.10.1 and beyond.

say "I found Fred in the name!® if $name = [Fred/;

Smart Match Precedence

Table 15-1. Smart match operations for pairs of operands

Example Type of match

%a = %h hash keys identical

%a == @borga = %h at least one key in %a is in @b

fa = [Fred/or fFred/ ~ %h atleast one key matches pattem
"Fred" = %a exists fa{Fred}

#a ~ @b amays afe the same

fa = [fFred/ at least one element i @ matches pattern
$name ~~ undef $name is not defined

fname = fFred/ pattern match

123 =~ "123.0° numefic equality with “numish” string
Fred' = 'Fred’ stfing equality

123 = AL6 numefic equality

Match operator is not always commutative.
say "match number ~ string" if 4 ~ "4abc’;
say "match string = mumber" if "aabc' = 4;

The second one is the only one that prints anything.

The given Statement

Allows you to run a block of code when the argument to given satisfies a condition.
This is the Perl equivalent to C’s switch statement.

given ($ARGV[0]) {
when { "Fred' 3} { say "Mame is Fred' }
when (ffred/i) { say "Name has fred in it' }
when (f\AFred/) { say 'Name starts with Fred' }
default { say "I don't see a Fred" }

Dumb Matching

42

e Using explicit comparison operators rather than using the default smart matching

operator.

given { $ARGV[O]) {
when (& eq 'Fred') { say 'Name is Fred'; continue }
when (& =~ AAFred/) { say 'MName starts with Fred'; continue }
when { $_ == ffred/i) { say "Mame has fred in it'; }
default { say "I don't see a Fred® }

Using when with Many Items

You can use foreach in the form of given to use when with many items such as an array.

foreach { #names) { # don't use a named variable!
when (ffred/i)} { say "Mame has fred in it"; continue }
when { /\AFred/) { say "Mame starts with Fred'; continue }
when { "Fred') { say 'Name is Fred'; }
default { say "I don't see a Fred")

43

44

Chapter 16 - Process Management

The system Function

This creates a copy of your Perl program, called the child process.
Parameter is whatever you normally type in a shell.

system "date’;

Avoiding the Shell
e Invoking the system operator with more than one argument doesn’t get the shell
involved.

my $tarfile = "something*wicked.tar';
my @dirs = gw(fred|flintstone <barneyBrubbles betty };

o System "tar', "cwf', $tarfile, édirs;

The Environment Variables
System environment variables are stored in a Hash called %ENVv.

$ENV{ "PATH' } = " /home/Tootbeer/bin: $ENV] 'PATH' }";

delete $ENVTTFS'};

my $make result = system "make’;
The exec Function
Causes Perl process itself to perform request action rather than creating a child process.
chdir 'ftmp' or die "Cannot chdir /tmp: $1";

exec "bedrock', '-o', 'args1', BARGY;

Using Backquotes to Capture Output

Capture output of command as string value rather than processing it using backquotes.

my $now = “date”; # grab the output of date
print "The time 15 now $now"; # newline already present

gx(quoted operator does the same thing.

foreach (@functions) {
fabout{t } = gqu{perldoc -t -f 4);
}

Using Backquotes in a List Context
e Backquoted string in list context yields a list containing one line of output per
element.
my $who text = “who";
my #who lines = split /\n/, $who text;

(o]

External Processes with IPC: :System: :Simple
Available through CPAN.
Provides simpler interface that hides the complexity of operating system specific stuff when
running or capturing output from external commands.

use IPC::System::Simple gqw(system);

my $tarfile = "something*wicked.tar';

my @dirs = gw(fred|flintstone cbarneyfirubbles betty);

system "tar’, 'cvf', ftarfile, @dirs;
Gives a more robust system command, systemx (avoiding invoking shell), capture (backquoting),
and capturex.

45

Processes As Filehandles
Launching child process that stays alive, put command as filename in open call, preceding or
following it with a pipe (]). AKA “piped open”.
open DATE, "date|' or die "cannot pipe from date: $1";
open MAIL, "|mail merlyn' or die "cannot pipe to mail: $1";
Getting Down and Dirty with Fork
Low-level system call.
Allows for full control over creating pipes, rearranging filehandles, and knowing Process ID of
parent process.

defined(my $pid = fork) or die "Cannot fork: $1";
unless ($pid) {

Child process is here

exec "date’;

die "cannot exec date: £1";

}
Parent process is here
waltpid($pid, 0); equivalent to system 'date’;

Sending and Receiving Signals

Use kill to send SIGINT to a process. Must know process’ ID to do so.
kill 2, 4201 ar die "Cannot signal 4200 with SIGINT: $1%;

Chapter 17 - Some Advanced Perl Techniques
Slices

Simplest way to pull items from a list.

“A list slice has to have a subscript expression in square brackets after a list in parentheses.”
my $card num = (split /:/)[1];

my $count = (split /:/)[5];

Array Slice
my @numbers = @names| 9, 0, 2, 1, 0];

e $name[] represents getting one element.
e @name[] represents getting a list of elements.

one element
Snames|[...]
from an array

@names|[...]

a list of elements

° Figure 17-1. Array slices versus single elements
Hash Slice

my @three scores = ($score{"barmey"}, $score{"fred"}, $score{"dina"}};
e My Bthree scores = @score{ gqw/ barney fred dino/ };

one element
Sscore|...}

from a hash

@Wscore { ...}

a list of elements

° Figure 17-2. Hash slices versus single elements

Trapping Errors

Using eval
e Wrap potential crashing code in eval block to allow normal program flow.

o eval { $harney = $fred { $dino };

e Returns undef if fatal error is found.

46

47

e Use defined-or operator to set own default value.
o my $barney = eval { $fred / $dino } // 'MaN';

e 4problems eval can’ttrap.
o Syntax errors in literal sense (mismatched quotes, missing semicolons,
missing operands, invalid literal regular expressions)
o Serious errors that crash Perl (out of memory)
o Warnings (user generated or Perl’s internal ones)
o exit operator (can’t stop its intended job!)
More Advanced Error Handling
e Throw an exception with die and catch with eval.
eval {
éi;l"ﬁm unexpected exception message" 1f funexpected;

die "Bad denominator® if ddino 0;
tharney = $fred / $dino;
1

iF ($8 == Junexpected/) {

s&liif[t@ == Sdenominator/) {
° }
autodie
e Pragma that gives you more control over how you handle errors in your program.
e Applies error message to operators by default.
o You are used to this:
open my $th, '»', dfilename or
- die "Couldn't open $filename for writing: $1°;
m With autodie:
use autodie;

° open my $th, 's', $Filename; § still dies on error

Picking Items from a List with grep
my @odd_numbers = prep { £ X 2 } 1..1000;

Transforming Items from a List with map
Makes a copy from a list, changes the format, and returns the newly formatted list.

my @data = (4.75, 1.5, 2, 1234, 6.94%6, 12345678.9, 29.95%);
print "The money numbers are:yn",
map { sprint#("¥25s\n", Abig money($)) | Bdata;

Fancier List Utilities
List::Util module to perform high level performance versions of common list processing

utilities at the C level.

Ex. Using sum subroutine in module to add numbers from 1 to 1000.

use List::ltil qu{sum};
my $total = sum{ 1..1000); # 500500

	Chapter 1 - Introduction
	Chapter 2 - Scalar Data
	Chapter 3 - Lists and Arrays
	Chapter 4 - Subroutines
	Chapter 5 - Input and Output
	Chapter 6 - Hashes
	Chapter 7 - In the World of Regular Expressions
	Chapter 8 - Matching with Regular Expressions
	Chapter 9 - Processing Text with Regular Expressions
	Chapter 10 - More Control Structures
	Chapter 11 - Perl Modules
	Chapter 13 - Directory Operations
	Chapter 14 - Strings and Sorting
	Chapter 15 - Smart Matching and given-when
	Chapter 16 - Process Management
	Chapter 17 - Some Advanced Perl Techniques

