

Iceberg UpdateTable Fine-Grained Metadata
Commit Support
Author: Drew Gallardo (dru@amazon.com)
WIP PR: https://github.com/apache/iceberg/pull/9237

Motivation
Based on our experience implementing the REST catalog specification we are proposing these changes to
improve performance and enrich API semantics. This document is a breakdown of the data operations within
Iceberg and a proposal to streamline snapshot creation to the REST catalog service.

Currently, the process of committing data to an Iceberg table is linked to the 5 data operations, namely
AppendFiles, OverwriteFiles, DeleteFiles, RewriteFiles and RowDelta. See ⚓︎ Appendix 1: Iceberg Data Commit
Operations for more details about these data operations. Ultimately these are responsible for managing
changes to table metadata by adding, or removing data to table metadata, and are critical to creating a new
snapshot for reflecting these changes. ​
​
By shifting the responsibility of the data operations to the REST catalog, we are essentially granting catalogs
with fine grained control over the tables metadata, allowing for several key benefits.

Goals
●​ Standardize fine-grained metadata commits through a well-defined REST API for appends, deletes,

overwrites.
●​ Ensure synchronous processing for all data operations, where clients receive updated metadata after

a commit.
●​ Enable centralized governance by enforcing permissions and user intent (e.g., inserts, deletes,

overwrites).
●​ Enable the REST Catalog to improve conflict resolution strategies.

Goals
by moving the client side data commit logic to the service side, the use cases enable us to have control of the
data committing process. See ⚓︎ Appendix 3: Iceberg Commit Workflow for more details on the current
client-side data committing process.

Use Case 1: Improve commit conflict resolution mechanism
By shifting the data commit process to the service, we empower the catalog to take full control of the conflict
resolution, allowing it to manage operations more effectively. This gives the catalog the flexibility to determine
how to handle conflicts in real time, ensuring smoother concurrent operations without manual intervention
from the client.

mailto:dru@amazon.com
https://github.com/apache/iceberg/pull/9237
https://docs.google.com/document/d/1LhkEaYc3HWixqnCdQ6fZa5vUbkkF-jnrVefRU0LbfCI/edit#heading=h.qkkhm0bqqigx
https://docs.google.com/document/d/1LhkEaYc3HWixqnCdQ6fZa5vUbkkF-jnrVefRU0LbfCI/edit#heading=h.qkkhm0bqqigx

For instance, we have seen a common issue arise for Spark users, when multiple operations, such as rewrite
(compaction) and overwrite operations, are executed concurrently. These operations often conflict because
both try to modify the table’s metadata at the same time, causing a commit conflict validation failure.

Example: Compaction and Update conflict
Nowadays, users have the option to leverage third-party solutions to perform compaction on their tables or
they can set up Spark procedures to run automatically in the background. While these jobs optimize the
datafiles and metadata, by merging smaller files into larger ones, they can conflict with overwrite operations, as
both attempt to modify the same table metadata concurrently. In the current model, this typically results in one
operation failing, requiring users to manually retry or resolve the conflict.

How the Catalog can Manage this Conflict
With the commit enabled catalog, the catalog has the flexibility to detect and manage such conflicts. In the
case where a rewrite operation is already in progress and an overwrite operation is initiated, we can introduce a
check. This check is responsible for identifying if the failure is due to compaction, if so we will:

1.​ Revert the rewrite operation/s
2.​ Allow the overwrite operation to commit it’s change
3.​ rerun the compaction operation

By introducing this new change we can reduce the amount of exceptions thrown to the user, and ensure table
updates are always reflected.

Some Iceberg REST catalog vendors like Tabular implement this feature with the current UpdateTable API, but
we believe the proposed changes will drive more efficiency and also allow more graceful handling of other
commit conflicts.

Enhanced commit conflict resolution workflow

Use Case 2: Improve concurrent append files operations
Append operations, just add new data to a table without modifying existing data. Unlike overwrite operations,
which can lead to conflicts if concurrent changes modify the table. Therefore, In situations where users are

https://iceberg.apache.org/docs/latest/spark-procedures/#rewrite_data_files

frequently committing data to a table especially in parallel workloads, append operations can be robust and
conflict free as they dont interfere with existing data.

By shifting the data commits to the REST catalog we can allow the service to implement their own mechanism
on top of Icebergs retry logic to ensure operations that should succeed have a higher success rate.

Concurrent Write Performance
Given this context, we explore the success rate of committing data to a table using Icebergs Glue catalog and
our implementation of the REST catalog with data commits enabled. The Glue catalog allows for up to 4 retries
for data operations.

With our restful data commits the retry mechanisms are as follows:

Native Iceberg client-side retry logic: This involves leveraging Iceberg’s exponential retry logic in the context
of restful data operations. This process allows for up to 4 retries and initiates retries when a
CommitFailedException is returned by the server.

REST service with retry logic: this involves the service ingesting the files from an append files request, and
invoking their own retry logic.

 (threads, operations) GlueCatalog REST (with data commits enabled)

(5, 20) Failures: 5 Failures: 0

(10, 50) Failures: 23 Failures: 0

(20, 100) Failures: 72 Failures: 0

(25, 200) Failures: 152 Failures: 0

(30, 1000) Failures: 813 Failures: 1

(30, 2000) Failures: 1643 Failures: 2

This analysis clearly demonstrates that the REST catalog outperformed the Glue catalog in terms of success
rate.

Use Case 3: Iceberg integration with non-JVM languages
Additionally, moving data operations into the REST catalog enables easier integration of Iceberg with non-JVM
languages. Moving the logic to the catalog service lightens the load on the client, because the catalog service
now handles the process of committing data and constructing a snapshot as opposed to the client. This
means by following the REST OpenAPI specification the catalog service will be responsible for ingesting the
changes and following the process of writing manifests, constructing the diff and creating a manifest list even
if written in non-JVM languages.

Use Case 4: Enforcing Governance

With the new protocol, we directly capture the user’s intent behind each operation. Whether it’s an INSERT,
DELETE, or UPDATE. giving the catalog insights into the user’s actions and allowing it to enforce permissions
more effectively.

●​ Enforcing Permissions: The catalog knows whether a user is appending new data, deleting files, or
performing an overwrite. It can strictly enforce permissions according to the user’s actions.

●​ Governance: Policies can be enforced more precisely, such as allowing users to append data but
blocking deletes or overwrites, creating stronger governance.

Example Operation Breakdown:

●​ INSERT: Only data files are added.
●​ DELETE: Involves adding delete files, removing data files, or applying a delete filter.
●​ UPDATE: A combination of the INSERT and DELETE payloads.

Example: Enforcing Permissions Through Intent

Suppose User A grants User B access to a table, but only with READ and INSERT permissions. In this
scenario:

●​ If User B submits a payload with only DataFiles for appending, the catalog recognizes this as an
INSERT and successfully updates the table.

●​ If the payload contains DeleteFiles, DataFiles for removal, or a delete filter, the catalog detects that
User B is attempting to modify or delete existing data. Since User B only has INSERT permissions, the
catalog rejects the operation.

This ability to interpret the user's intentions from the payload ensures that the catalog enforces governance in
real time, preventing unauthorized operations and aligning with the permissions granted by User A.

Non-Goals
●​ Async operation commits executing in the background or in a job where updates are processed behind

the scenes without returning the updated metadata immediately.
●​ Async polling for operation completion where the client would wait for the server for completion.

Proposal

Proposal Part 0: overall workflow between client and service
The current workflow for committing data happens on the client within the Iceberg library. The current
workflow can be found here: ⚓︎ Appendix 4: Current data commit workflow

By shifting the data commit process to the REST service. With the introduction of restful data commits we can
make a POST request to the service with a metadata update of one of the 5 data operations.

When a user performs INSERT INTO sample VALUES (1,'a').

Proposal Part 1: Restful Data Operations
To achieve this, we are proposing restful data operations to enable restful catalog implementers with the ability
to manage data operations. In this proposal we are focusing on these 5 data operations:

●​ RESTAppendFiles: Handles appending data files to tables.
●​ RESTDeleteFiles: Manages deletions from a table whether it be through an expression or the deletion

of data files from tables.
●​ RESTOverwriteFiles: Overwrites files from a table including expressions for overwrites, and conflicts
●​ RESTRewriteFiles: Adding a set of files and removing another set of files.
●​ RESTRowDelta: Handles appending set of files and adding a set of position or equality delete files

Each operation constructs and performs POST requests to the REST service, equipped with all necessary
details for the service to execute against the table. This necessary information includes the DataFiles and
Expressions, and other metadata.

Proposal Part 2: Managing DataFiles with Manifests
In our approach to manage DataFiles in the restful data operations, we are relying on the client to create the
DataFiles and send the file locations to the REST service. It will then be up to the service to ingest the files and
commit the changes to the table.

To manage this effectively, we propose these three strategies:

1.​ DataFiles: Send the service a direct list of DataFile locations constructed during a commit.
2.​ ManifestFile: When committing changes, this strategy compiles a list of ManifestFiles that hold the

DataFile changes for table operations. It then sends the locations of these ManifestFiles. This process
leverages the RollingManifestWriter, which determines both the size and the number of the
ManifestFiles created. Meaning, users have the flexibility to configure the size of these Manifests using
the commit.manifest.target-size-bytes property.

3.​ ManifestList: In scenarios involving extensive data operations, we can construct a ManifestList, which
would be a single file consisting of Multiple of the aforementioned ManifestFiles containing the
DataFile changes.

https://github.com/apache/iceberg/blob/main/core/src/main/java/org/apache/iceberg/RollingManifestWriter.java

For our initial prototype, we have opted for the ManifestFile strategy. This strategy offers a balanced approach,
providing reasonable performance, and allows for configurability with the target size property. The choice
between these strategies can ultimately be configurable, allowing users to select the most suitable approach
based on their operational scale and requirements.

Proposal Part 4: REST Catalog Changes
To commit files, a client first indicates its intention to append files to a table. It then retrieves the operation
from the Table returned from the REST catalog, which is an instance of Icebergs BaseTable class. Therefore,
to leverage the aforementioned REST data operations, it’s essential to introduce a REST table inheriting the
BaseTable class. This REST Table determines if the commit should be delegated to the server.

Furthermore, we will also introduce a configuration named rest-data-commit-enabled. When initializing the
rest catalog, the client requests the server for configurations. The server then decides whether to enable this
configuration. We then will pass this into the REST table and if enabled the new data operations will be
returned.

Now we can see that commit conflict/resolution logic is now delegated to the service. Which allows the server
to have full freedom to modify the conflict resolution workflow.

Proposal Part 5: client side OpenAPI change
In order to make data operations requests against the service we will need to improve the OpenAPI models

UpdateTable API Model changes
It's crucial to introduce specific table update models that correspond to each data operation. Furthermore,
since all these models are considered Table Updates they will all share the same endpoint and request JSON
structure.

Following the structure of the UpdateTable API we will be extending the updates section of the request to
include the changes for each model. Thus, the following models will be rolled out:

AppendFilesUpdate
The AppendFilesUpdate model is designed to add new data files via a Manifest containing the appended
DataFiles to a table. Its structure is as follows:

AppendFilesUpdate: ​
 type: object​
 required:​
 - appended-manifests​
 properties:​
 action:​
 type: string​
 appended-manifests:​
 type: array​

 items:​
 type: string​
 description: Manifest files of DataFiles appended to a table

DeleteFilesUpdate
The DeleteFilesUpdate model is responsible for the removal of specific data files from a table. The model can
either require a manifest of DataFiles to be deleted or an expression specifying which files to remove. Its
structure is:

DeleteFilesUpdate:​
 type: object​
 - oneOf:​
 - required:​
 - deleted-manifests​
 properties:​
 deleted-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles deleted from a table​
 - required:​
 - delete-expression​
 properties:​
 delete-expression:​
 $ref: '#/components/schemas/Expression'​
 properties:​
 action:​
 type: string ​
 case-sensitive:​
 type: boolean

OverwriteFilesUpdate
The OverwriteFilesUpdate model is for situations where data files in a table are both added and removed.
Providing an expression for both conflict detection, and overwrite by row filter. Its structure is given by:

OverwriteFilesUpdate:​
 type: object​
 properties:​
 action:​
 type: string ​
 appended-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles appended to a table​

 deleted-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles deleted from a table​
 overwrite-by-row-filter-expression:​
 $ref: '#/components/schemas/Expression'​
 conflict-filter:​
 $ref: '#/components/schemas/Expression'​
 case-sensitive:​
 type: boolean

RowDeltaUpdate
The RowDeltaUpdate model is for situations at a row level. We track added DataFiles and DeleteFiles.
Providing an expression for conflict detection. Its structure is given by:

RowDeltaUpdate:​
 type: object​
 properties:​
 action:​
 type: string ​
 appended-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles appended to a table​
 appended-delete-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles deleted from a table​
 conflict-filter:​
 $ref: '#/components/schemas/Expression'​
 case-sensitive:​
 type: boolean

RewriteFilesUpdate
The RewriteFilesUpdate model is for situations where data files and delete files are both added and removed
from a table. Its structure is given by:

RewriteFilesUpdate:​
 type: object​
 properties:​
 action:​
 type: string ​

 appended-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles appended to a table​
 appended-delete-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DeleteFiles deleted from a table ​
 deleted-files-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DeleteFiles deleted to a table​
 deleted-manifests:​
 type: array​
 items:​
 type: string​
 description: Manifest files of DataFiles deleted from a table

These models will encapsulate the necessary information and requirements of their respective operations,
ensuring the service has the necessary information to infer what change is taking place.

Appendices

Appendix 1: Iceberg Data Commit Operations
The Iceberg UpdateTable APIs are designed to commit data changes to a table while providing concurrency
control preventing conflicting operations. If no conflicts occur these operations will result in a new Snapshot
committed to the table. Currently there are 5 data operations we are focusing on.

Operation Type Description Important methods API link

AppendFiles API for appending new files in a table. ●​ appendFile(DataFile file) Link

DeleteFiles API for removing a set of files or delete
based on a filter expression. This is
typically used for a copy-on-write DELETE,
when the delete filter is a bijection to a set
of files (e.g. deleting an entire partition).

●​ deleteFile(DataFile file)
●​ deleteFromRowFilter(Expression

expr)

Link

https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/AppendFiles.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/expressions/Expression.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DeleteFiles.html

OverwriteFiles API for adding a set of files and removing
a set of files from a table. The contents of
the files are logically different. This is
typically used for copy-on-write
DELETE/MERGE/INSERT/UPDATE.

●​ addFile(DataFile file)
●​ deleteFile(DataFile file)

Link

ReplaceFiles/
RewriteFiles

API for adding a set of files and removing
another set of files. The content of added
files and removed files are logically
equivalent. This is typically used for file
compaction.

●​ addFile(DataFile file)
●​ deleteFile(DataFile file)
●​ rewriteFiles(Set<DataFile>

dataFilesToReplace,
Set<DeleteFile>
deleteFilesToReplace,
Set<DataFile> dataFilesToAdd,
Set<DeleteFile> deleteFilesToAdd)

Link

RowDelta API for removing a set of files and adding
a set of position or equality delete files.
This is typically used for a merge-on-read
DELETE/UPDATE/MERGE.

addDeletes(DeleteFile
deletes)addRows(DataFile inserts)

Link

Appendix 2: Iceberg UpdateTable Rest API
In Iceberg, the process of committing updates to a table is divided into two parts, requirements and updates.

1.​ Requirements: These are assertions that must be validated before any changes are made and
committed to the table. They act as safety checks to ensure the state of the table aligns with
expectations before updates are applied. An example is assert-ref-snapshot-id, which verifies if a
ref’s snapshot ID matches an expected value.

2.​ Updates: These represent the actual changes or modifications to be applied to a table's metadata. For
example, after asserting that the current main ref is at a particular snapshot, a commit can append a
new child snapshot and then update the reference to the new snapshot ID.

The updates correspond to Iceberg’s MetadataUpdate API. The requirements are in place to ensure updates
are conflict-free and consistent.

Per the OpenAPI specification, all table updates use a common endpoint. The specific changes are within the
request payload. Successful updates receive a 200 status, returning the table’s updated metadata. If any
requirements aren’t met, a 409 status (CommitFailedException) is returned allowing the client to retry. For the
full list of responses, see the spec here.

Example: Inserting data into a table would invoke the endpoint containing the payload below

Endpoint:

●​ POST: /v1/{prefix}/namespaces/{namespace}/tables/{table}

https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/OverwriteFiles.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DeleteFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DeleteFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/RewriteFiles.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DeleteFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/DataFile.html
https://iceberg.apache.org/javadoc/0.13.1/org/apache/iceberg/RowDelta.html
https://github.com/apache/iceberg/blob/aa891acf20040d15e7ca59dc503adb3c1e4325b8/core/src/main/java/org/apache/iceberg/MetadataUpdate.java#L30
https://github.com/apache/iceberg/blob/main/open-api/rest-catalog-open-api.yaml#L679C9-L679C9

○​ prefix: catalog ID
○​ namespace: namespace name
○​ table: table name

{​
 "identifier": {​
 "namespace": ["default"],​
 "name": "sample"​
 },​
 "requirements": [​
 {​
 "type": "assert-table-uuid",​
 "uuid": "3aa0de73-af7e-4644-be01-8e356261ddb5"​
 },​
 {​
 "type": "assert-ref-snapshot-id",​
 "ref": "main"​
 }​
],​
 "updates": [​
 {​
 "action": "add-snapshot",​
 "snapshot": {​
 "snapshot-id": 3668384965176171500,​
 "timestamp-ms": 1698360493429,​
 "manifest-list": "s3://bucket/sample/metadata/snap-uuid.avro",​
 "summary": {​
 "changed-partition-count": "1",​
 "added-data-files": "1",​
 "total-equality-deletes": "0",​
 "added-records": "1",​
 "total-position-deletes": "0",​
 "added-files-size": "845",​
 "total-delete-files": "0",​
 "total-files-size": "845",​
 "total-data-files": "1",​
 "total-records": "1",​
 "operation": "append"​
 },​
 "sequence-number": 1,​
 "schema-id": 0​
 }​
 },​
 {​
 "action": "set-snapshot-ref",​
 "ref-name": "main",​
 "type": "branch",​

 "snapshot-id": 3668384965176171500​
 }​
]​
}

Appendix 3: Iceberg Commit Workflow
Iceberg’s data operations are managed by the SnapshotProducer class, which oversees the creation and
committing of table snapshots. A snapshot represents the state of a table at a point in time, including a
comprehensive list of DataFiles and the related metadata for operation. During a data operation like
AppendFiles, after providing the DataFiles, the SnapshotProducer forms a snapshot, verifies concurrent
operations, and then prompts the REST catalog to commit this new snapshot to the table’s metadata.

Current Iceberg commit workflow for inserting into an Iceberg table
Consider an Iceberg table named sample with columns (id int, data string). If we run INSERT INTO
sample VALUES (1, 'a'), the AppendFiles operation is invoked, and the workflow can be seen below:

In this diagram, you can see how AppendFiles is responsible for collecting the Data files produced by the
SparkWrite class and committing the changes to the table. When initiating the commit, the data operation
begins the snapshot creation process. After its completion, the client will construct a MetadataUpdate with
this new snapshot. The client interprets the update to send to the REST service as a UpdateTableRequest.
Which includes the current table UUID to be a requirement to commit the new snapshot, the new snapshot to
be added to the table, and an update set then new snapshot as the current snapshot.

The REST service would then ingest this request, assert the current snapshot ID to be equivalent to the one
sent in the request. and apply the new snapshot to the table, update it to be the current. and atomically swap
the old metadata with the new one containing the changes.

Appendix 4: Optimistic Concurrency Locking Strategy

In the process of committing updates to a table, Iceberg adopts an optimistic concurrency locking strategy.

Meaning the writer (AppendFiles) assumes that the table version won’t change before their updates are
committed. Writers will generate the necessary metadata files, and attempt to commit their changes by
swapping the metadata file pointer from the existing version to the newly created version.

If a conflict arises, meaning the base snapshot our changes are being built against is no longer current. This
means the writer must retry by re-applying its changes based on the new current snapshot. For some data
operations such as AppendFiles this is okay because we’d likely have no conflicts to the table.

However, a change that rewrites files can be applied to a new table snapshot if all of the rewritten files are still
in the table. An example of this would be running an overwrite statement (MERGE/UPDATE/DELETE) at the
same time of compaction.

Commit Failed Exception workflow
Given this information, If we create a session and run a compaction on our previously created table sample,
and meanwhile, we create another session and run a MERGE statement (overwrite) we would expect one of the
commits to fail.

	Iceberg UpdateTable Fine-Grained Metadata Commit Support
	Motivation
	Goals

	Goals
	Use Case 1: Improve commit conflict resolution mechanism
	Example: Compaction and Update conflict
	How the Catalog can Manage this Conflict

	Use Case 2: Improve concurrent append files operations
	Concurrent Write Performance

	Use Case 3: Iceberg integration with non-JVM languages
	Use Case 4: Enforcing Governance
	Example Operation Breakdown:
	Example: Enforcing Permissions Through Intent

	Non-Goals
	Proposal
	Proposal Part 0: overall workflow between client and service
	Proposal Part 1: Restful Data Operations
	Proposal Part 2: Managing DataFiles with Manifests
	Proposal Part 4: REST Catalog Changes
	Proposal Part 5: client side OpenAPI change
	UpdateTable API Model changes
	AppendFilesUpdate
	DeleteFilesUpdate
	OverwriteFilesUpdate
	RowDeltaUpdate
	RewriteFilesUpdate

	Appendices
	Appendix 1: Iceberg Data Commit Operations
	Appendix 2: Iceberg UpdateTable Rest API
	Appendix 3: Iceberg Commit Workflow
	Current Iceberg commit workflow for inserting into an Iceberg table
	Appendix 4: Optimistic Concurrency Locking Strategy
	Commit Failed Exception workflow

