

SUMMARY

Proposal to add new ColorScheme roles to the Flutter
framework.

Author: Qun Cheng (QuncCccccc)
Go Link: flutter.dev/go/{document-title}
Created: 12/2023 / Last updated: 12/2023

WHAT PROBLEM IS THIS SOLVING?
Provide support for the new ColorScheme roles based on the Material Design 3
guidelines.

The Material Design specification added tone-based surfaces, surface containers,
and accent color roles. Tone-based surfaces and surface containers no longer tie to
elevation and provide more flexibility. Therefore, these color roles help deprecate
the use of surface tint color, which is hard to understand and used by few people.
The following diagram shows what the migration looks like. For example, Surface
Color with level 1 elevation maps to Surface Container low, Surface Color with level
2 elevation maps to Surface Container, and so on. Surface Colors with level 4 and 5
are not used in any widget defaults, but if there are any use cases for these two
colors, Surface Container High and Surface Container Highest will be recommended
to replace them.

PUBLICLY SHARED

https://github.com/QuncCccccc
https://m3.material.io/styles/color/roles/color-roles#0abbf8b7-61e1-49ee-9f97-4967beb1e4fe
https://m3.material.io/styles/color/roles/color-roles#0abbf8b7-61e1-49ee-9f97-4967beb1e4fe

PUBLICLY SHARED

Secondly, the color token system has applied the new tone-based surfaces and
surface containers to all the existing widgets and stopped using surface tint color.
To keep in sync with Material Design, these new colors are needed.

PUBLICLY SHARED

PUBLICLY SHARED

Also, we are going to support more widgets created by Material Design, such as
Carousel. The token system has disconnected with the deprecated tokens and
keeps in sync with new roles. New widgets will also depend on the updated color
scheme.

BACKGROUND
Material Design 3 added 19 new color roles to the Color Scheme and 3 colors will be
deprecated.

The newly added colors can be divided into two groups:

New Surface roles:
●​ Surface Dim
●​ Surface Bright
●​ Surface Container Lowest
●​ Surface Container low
●​ Surface Container
●​ Surface Container High
●​ Surface Container Highest

The updated roles remove the use of opacity overlays. These updated roles are also
no longer tied to elevation, and remove the use of surface tint, which is hard to
understand and not easy to use.

Accent color add-ons:

PUBLICLY SHARED

PUBLICLY SHARED
●​ Primary Fixed
●​ Primary Fixed Dim
●​ On Primary Fixed
●​ On Primary Fixed Variant
●​ Secondary Fixed
●​ Secondary Fixed Dim
●​ On Secondary Fixed
●​ On Secondary Fixed Variant
●​ Tertiary Fixed
●​ Tertiary Fixed Dim
●​ On Tertiary Fixed
●​ On Tertiary Fixed Variant

These colors are add-on roles for accent colors, providing alignment with the
Android team. In the past, Material and Android used two different sets of color
roles (or tokens). These roles were inconsistent or conflicted across the sets in what
colors they produced, how they were named, and how they were applied. By
adding these extended accent color roles, the Material scheme can support all roles
as a coherent set.

The 3 colors being removed:

●​ Background
●​ On Background
●​ Surface Variant

The Material Design 3 removes these 3 colors. Background should be replaced with
Surface; On Background should be replaced with On Surface; Surface Variant
should be migrated to Surface Container Highest.

Glossary
●​ Surface Dim - Surface Dim is the darkest surface color in both light and dark

themes. While the default surface color automatically inverts between light
and dark themes, the surface dim color keeps its relative brightness across
both light and dark themes.

●​ Surface Bright - Surface Bright is the lightest surface color in both light and
dark themes. Similar to Surface Dim, this color also does not invert its
brightness between light and dark.

●​ Fixed roles - Roles with the "Fixed" keyword, such as primaryFixed, stay the
same color between light and dark themes, as appropriate in places where
this behavior is desired.

OVERVIEW
To support these new colors without breaking existing applications, we propose to
add the new colors to the existing ColorScheme class, while deprecating the
removed colors. The solution mostly follows the design doc which establishes a
pattern for adding new colors and deprecating old colors.

PUBLICLY SHARED

https://docs.google.com/document/d/1mY1ahBQEMAfsawGJMX5S34pXb7c8dHGatyotClReeas/edit

PUBLICLY SHARED
A draft PR that implements the changes is available.

USAGE EXAMPLES
The new changes in the draft PR are deployed to the experimental M3 demo (demo
on the right side). Compared with the current M3 demo (demo on the left side), the
difference is subtle.

The Material Design spec has removed surface tint tokens for all widgets. Even
though the widgets' surfaceTint colors are not yet deprecated, their defaults are
changed to transparent color. So the demo with the new changes is not affected by
the surface tint color.

PUBLICLY SHARED

https://github.com/flutter/flutter/pull/138521
https://github.com/flutter/flutter/pull/138521
https://flutter-experimental-m3-demo.web.app/
https://flutter.github.io/samples/web/material_3_demo/

PUBLICLY SHARED
DETAILED DESIGN/DISCUSSION

Starting from version 0.162, Material Design tokens have been gradually updated to
use tonal surfaces. We will keep updating the component tokens to the latest
version, and also apply the tokens changes to Material widgets.

Add new color properties to ColorScheme
In the current ColorScheme, some color parameters are required, such as
ColorScheme.primary, but some later-added color parameters are nullable and
have getters for each that provide a non-null default if the color is null, such as
ColorScheme.primaryContainer.

/// Create a ColorScheme instance.

const ColorScheme({

 required this.primary,

 Color? primaryContainer,

 // …

}) : _primaryContainer = primaryContainer,

 // …

 final Color? _primaryContainer;

 Color get primaryContainer => _primaryContainer ?? primary;

To add new ColorScheme roles, we cannot just add them as required parameters
because that would break all the current apps that use the const constructor
without the new colors. Similar to how we added ColorScheme.primaryContainer,
we can add these colors using the same approach.

PUBLICLY SHARED

 /// Create a ColorScheme instance.

 const ColorScheme({

 …

 Color? primaryFixed,

 Color? primaryFixedDim,

 Color? onPrimaryFixed,

 Color? onPrimaryFixedVariant,

 // …

 }) : _primaryFixed = primaryFixed,

 _primaryFixedDim = primaryFixedDim,

 _onPrimaryFixed = onPrimaryFixed,

 _onPrimaryFixedVariant = onPrimaryFixedVariant,

 // …

 final Color? _primaryFixed;

 Color get primaryFixed => _primaryFixed ?? primary;

 // …

PUBLICLY SHARED

Deprecate unused colors
We can use a similar solution to deprecate the colors being removed. For required
parameters, like background and onBackground colors, they can be changed to
nullable parameters so that apps can remove these colors without causing
compilation issues for apps that haven’t. For the nullable parameter,
surfaceVariant, we can just mark it as deprecated. The draft PR also adds dart fix
for these unused colors.

const ColorScheme({

 required this.primary,

 // …

 @Deprecated(

 'Use surface instead. '

 'This feature was deprecated after 3.18.0-0.0.pre.'

)

 Color? background,

 @Deprecated(

 'Use onSurface instead. '

 'This feature was deprecated after 3.18.0-0.0.pre.'

)

 Color? onBackground,

 @Deprecated(

 'Use surfaceContainerHighest instead. '

 'This feature was deprecated after 3.18.0-0.0.pre.'

)

 Color? surfaceVariant,

}) : _background = background,

 _onBackground = onBackground,

 _surfaceVariant = surfaceVariant;

// …

final Color? _background;

@Deprecated(

 'Use surface instead. '

 'This feature was deprecated after 3.18.0-0.0.pre.'

)

Color get background => _background ?? surface;

// …

Fallback defaults
For the new properties that are nullable, we need to provide appropriate default
values. Rather than picking hard coded values, we can express them in terms of the
existing colors that are required. Here is the proposed list we will use if a property

PUBLICLY SHARED

PUBLICLY SHARED
isn’t provided:

Property Fallback
surfaceDim surface
surfaceBright surface
surfaceContainerLowest surface
surfaceContainerLow surface
surfaceContainer surface
surfaceContainerHigh surface
surfaceContainerHighest surface
primaryFixed primary
primaryFixedDim primary
onPrimaryFixed onPrimary
onPrimaryFixedVariant onPrimary
secondaryFixed secondary
secondaryFixedDim secondary
onSecondaryFixed onSecondary
onSecondaryFixedVariant onSecondary
tertiaryFixed tertiary
tertiaryFixedDim tertiary
onTertiaryFixed onTertiary
onTertiaryFixedVariant onTertiary

OPEN QUESTIONS
●​ If a class xColorScheme extends ColorScheme and overrides ColorScheme's

methods, such as copyWith(), adding new parameters will cause breaking
change. I see this problem on the 1P side, other than broadcasting this
change to users, are there any better ways to avoid this?

TESTING PLAN
Unit tests for new colors will be added to expand the current color scheme tests.

PUBLICLY SHARED

	SUMMARY
	WHAT PROBLEM IS THIS SOLVING?
	BACKGROUND
	New Surface roles:
	Glossary

	OVERVIEW
	USAGE EXAMPLES
	
	DETAILED DESIGN/DISCUSSION
	Add new color properties to ColorScheme
	Deprecate unused colors
	Fallback defaults

	
	OPEN QUESTIONS
	TESTING PLAN

