## emf and Ir topic questions

1. A circuit consists of a cell of electromotive force (emf) 6.0V and negligible internal resistance connected to two resistors of  $4.0\Omega$ .



The ammeter has resistance equal to  $1.0\Omega$  and the voltmeter is ideal. What are the readings of the ammeter and the voltmeter?

|    | Ammeter | Voltmeter |
|----|---------|-----------|
| A. | 2.0 A   | 3.0 V     |
| B. | 3.0 A   | 3.0 V     |
| C. | 2.0 A   | 4.0 V     |
| D. | 3.0 A   | 4.0 V     |

**2.** A circuit contains a cell of electromotive force (emf) 9.0 V and internal resistance 1.0  $\Omega$  together with a resistor of resistance 4.0  $\Omega$  as shown. The ammeter is ideal. XY is a connecting wire.



What is the reading of the ammeter?

- A. 0 A
- B. 1.8 A
- C. 9.0 A
- D. 11 A

3. A circuit consists of a cell of electromotive force (emf) 6.0V and negligible internal resistance connected to two resistors of  $4.0\Omega$ .



The resistance of the ammeter is 1.0  $\Omega\!.$  What is the reading of the ammeter?

- A. 2.0A
- B. 3.0A
- C. 4.5A
- D. 6.0A

**4.** A battery of emf 12 V and negligible internal resistance is connected to a resistor of constant resistance 6  $\Omega$ , an ideal ammeter and an ideal voltmeter.



What is the reading on the ammeter and on the voltmeter?

|    | Ammeter reading / A | Voltmeter reading / V |
|----|---------------------|-----------------------|
| A. | 2.0                 | 0                     |
| В. | 2.0                 | 12                    |
| C. | 0                   | 0                     |
| D. | 0                   | 12                    |

**5.** A battery of internal resistance 2  $\Omega$  is connected to an external resistance of 10  $\Omega$ . The current is 0.5 A.



What is the emf of the battery?

- A. 1.0 V
- B. 5.0 V
- C. 6.0 V
- D. 24.0 V

6. The circuit shows a resistor R connected in series with a battery and a resistor of resistance  $~10~\Omega$  . The emf of the battery is 20 V and it has negligible internal resistance. The current in the circuit is 1.0 A.



Which of the following is the resistance of R?

- $A. 1.0 \Omega$
- $_{\rm B.}~2.0~\Omega$
- c.  $10~\Omega$
- $D. 20 \Omega$

7. A battery of emf 6.0V is connected to a  $2.0\Omega$  resistor. The current in the circuit is 2.0A. The internal resistance of the battery is

- A. zero.
- Β. 1.0 Ω.
- C.  $3.0 \Omega$ .
- D. 4.0  $\Omega$ .

**8.** Two resistors, of resistance  $R_1$  and  $R_2$ , are connected in series with a cell of emf  $\varepsilon$  and negligible internal resistance.



Which expression gives the potential difference across the resistor of resistance R<sub>1</sub>?

A. 
$$\left(rac{R_1}{R_1+R_2}
ight)arepsilon$$

B. 
$$\left(rac{R_1+R_2}{R_1}
ight)arepsilon$$

$$_{ ext{C.}}\left(rac{R_{2}}{R_{1}+R_{2}}
ight)arepsilon$$

D. 
$$\left(rac{R_1+R_2}{R_2}
ight)arepsilon$$

- **9.** The electromotive force (emf) of a cell is defined as
  - A. the power supplied by the cell per unit current from the cell.
  - B. the force that the cell provides to drive electrons round a circuit.
  - C. the energy supplied by the cell per unit current from the cell.
  - D. the potential difference across the terminals of the cell.

**10a.** In an experiment a student constructs the circuit shown in the diagram. The ammeter and the voltmeter are assumed to be ideal.



State what is meant by an ideal voltmeter.

| • |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| • |  |  |
| • |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| • |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
|   |  |  |
| • |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

**10b.** The student adjusts the variable resistor and takes readings from the ammeter and voltmeter. The graph shows the variation of the voltmeter reading *V* with the ammeter reading *I*.



Use the graph to determine

- (i) the electromotive force (emf) of the cell.
- (ii) the internal resistance of the cell.

| <br> | <br> | <br> |  |
|------|------|------|--|
| <br> | <br> | <br> |  |
|      | <br> | <br> |  |
| <br> | <br> | <br> |  |
|      |      |      |  |
|      |      |      |  |