

GSoC Project Ideas List

Algorithm API Projects

A major theme in OpenMined is the development of APIs around privacy and machine learning
algorithms to make them easy to use. These tend to be slightly more advanced than some other
projects, because it requires a high level understanding of what one seeks to accomplish with
an algorithm with the goal of minimizing the amount of knowledge the end user must have in
order to use it.

For example, we have wrapped the Paillier Homomorphic Encryption system into a tensor
abstraction. This allows users of PyTorch tensors to be able to leverage Paillier Homomorphic
encryption without having to understand how the encryption system itself works.

More advanced projects in this category involve re-implementing the algorithm yourself, while
less advanced projects in this category involve wrapping existing implementations.

Project: Combine Federated Learning & SplitNN APIs

Federated Learning and SpitNN are both methods for distributing the training of a neural
network across multiple machines for the sake of privacy. However, they have different
tradeoffs. At present, one can either choose to use one algorithm or the other, but not a
combination of both. This project seeks to remedy this by creatively combining them in a clean,
cohesive API.

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Ability to understand Federated Learning
●​ Ability to understand SplitNN

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3111

https://github.com/OpenMined/PySyft/pull/2740
https://github.com/OpenMined/PySyft
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://medium.com/analytics-vidhya/split-neural-networks-on-pysyft-ed2abf6385c0
https://github.com/OpenMined/PySyft/issues/3111

While the project itself is not complex (neither Federated Learning or SplitNN are hard to
understand), this project does require some significant API work within PySyft (which is, itself, a
complex library).

Project: Develop an Incident Response Model for Privacy Preserving
Machine Learning

OpenMined provides a vast array of tools to enable privacy-preserving machine-learning.
However, in order to bridge the gap between industry and this new technology, we need to
supply governance models which are relevant to Privacy-Preserving Machine Learning. This
project in particular will be focusing on recommending an incident response model.

Required Skills:

●​ Knowledge of Information Security Management
●​ Familiarity with PySyft, PyGrid and distributed learning
●​ Ability to understand privacy-preserving ML workflows, the methods by which they can

be subverted and how to mitigate these methods.
●​ (Desirable) Certified Information Security Auditor (ISACA etc.)

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/Roadmap/issues/11

While the project itself is not complex (the deliverables here will be mostly documentation), this
project does require background knowledge in PPML, IS management, security audit and
compliance.

Project: Implement FV Homomorphic Encryption from Scratch

FV (Fan-Vercauteren) Homomorphic Encryption is one of the leading approaches to
homomorphic encryption. While current work is under way within our community to wrap the
SEAL homomorphic encryption library, this will have limited portability. However, algorithms
which are natively implemented in PySyft can be automatically run across Python, GPUs,
Javascript, Android (Kotlin), and iOS (Swift). Thus, it is very advantageous for us to
re-implement FV encryption from scratch.

The goal of this project will be to create a new tensor type which allows one to leverage FV to
perform encrypted tensor operations.

https://github.com/OpenMined/Roadmap/issues/11

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Ability to either implement the FV algorithm from the paper, or ability to port an existing

C++ implementation (there are many)

Difficulty: Advanced
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3097

While the API aspects of this project are not complex (we have straightforward instructions for
how to implement new tensor types), the FV algorithm is non-trivial.

Project: Implement BGV Homomorphic Encryption from Scratch

BGV (Brakerski-Gentry-Vaikuntanathan) Homomorphic Encryption is one of the leading
approaches to homomorphic encryption. While current work is under way within our community
to wrap the SEAL homomorphic encryption library, this will have limited portability. However,
algorithms which are natively implemented in PySyft can be automatically run across Python,
GPUs, Javascript, Android (Kotlin), and iOS (Swift). Thus, it is very advantageous for us to
re-implement BGV encryption from scratch.

The goal of this project will be to create a new tensor type which allows one to leverage BGV to
perform encrypted tensor operations.

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Ability to either implement the BGV algorithm from the paper, or ability to port an existing

C++ implementation (there are many)

Difficulty: Advanced
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3098

While the API aspects of this project are not complex (we have straightforward instructions for
how to implement new tensor types), the BGV algorithm is non-trivial.

https://github.com/OpenMined/PySyft
https://github.com/CryptoExperts/FV-NFLlib
http://sealcrypto.org/
https://github.com/jonaschn/awesome-he
https://github.com/OpenMined/PySyft/issues/3097
https://github.com/OpenMined/PySyft
https://github.com/HomEnc/HElib
http://sealcrypto.org/
https://github.com/jonaschn/awesome-he
https://github.com/OpenMined/PySyft/issues/3098

Project: Wrap Open-License Zero-Knowledge Proof Library

Zero-knowledge proofs have an important role to play in the future of verified machine learning
prediction. However, no deep learning framework has the ability to perform verified computation
of neural networks using ZKPs. In this project, you will wrap an existing ZKP library into a new
tensor type allowing users of PySyft to generate, evaluate, and verify tensor computations.

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Ability to wrap an existing Python, C++, Rust, or Javascript library within Python

Difficulty: Easy
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3104

There are many libraries to choose from, some of which are already in Python.

Project: Implement ZKP From Scratch in PyTorch

Zero-knowledge proofs have an important role to play in the future of verified machine learning
prediction. However, no deep learning framework has the ability to perform verified computation
of neural networks using ZKPs.

Furthermore, algorithms which are natively implemented in PySyft can be automatically run
across Python, GPUs, Javascript, Android (Kotlin), and iOS (Swift). Thus, it is very
advantageous for us to re-implement ZKP encryption from scratch using PyTorch tensor
operations.

In this project, you will implement from scratch (from the paper) or port an existing ZKP library
into PyTorch operations. This will allow us to generate, evaluate, and verify ZKP graphs across
all platforms supported by PySyft.

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Ability to understand the mathematics of ZKPs and/or current libraries implementing

them

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft/issues/3104
https://github.com/kendricktan/zk-snarks-py
https://github.com/Charterhouse/pysnark
https://github.com/OpenMined/PySyft

Difficulty: Advanced
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3100

While the API shouldn’t be complex, ZKP algorithms are challenging to understand and
implement. There are, however, many great implementations to use as references.

Project: Transfer Learning

Transfer learning help in transferring knowledge from a source domain to a different target
domain. In NLP, Transfer learning has become ubiquitous as a way of reusing pre-trained
language models and fine tuning them to a target task like Text Classification or Named Entity
Recognition.
The goal of this project is to apply Transfer Learning to a private dataset using SyferText. An
example would be to train a BERT-based model for text auto-completion and personalized per
user.

Required Skills:

●​ Experience with NLP (e.g. Spacy, NTLK)
●​ Experience with PyTorch
●​ Familiarity (or willingness to become familiar) with SyferText
●​ Familiarity (or willingness to become familiar) with PySyft

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/SyferText/issues/16

This project should not be too complicated, but requires some exploratory work.

Project: Implement Functional Encryption in PySyft

Functional Encryption is a technique which relates to Homomorphic Encryption since it performs
computations over encrypted data, but it also provides automatic decryption of the ciphered
result, which allows for interesting non-interactive scenarios. Put formally, given a function f and
an encrypted value Enc(x), it outputs f(x). One classical example of Functional Encryption is
spam filtering: Alice wants to send a confidential email to Bob, and the email server should
analyse whether the email is spam without reading it before forwarding it or not to Bob.

https://github.com/OpenMined/PySyft/issues/3100
https://github.com/OpenMined/SyferText/issues/16

This project will consist of re-implementing the Functional Encryption algorithm proposed in this
Neurips 2019 paper. It relies on a crypto c++ based library named charm and introduces some
crypto primitives that are hard to re-implement from scratch in Python. Therefore, the main focus
of this project will be first to provide a user-friendly Tensor abstraction for Functional Encryption
in PySyft, and make sure having charm as a dependency is not burdensome. Re-implementing
those primitives from scratch will be a second (challenging) part for people with more crypto
background.

Context
I'm the author of the paper linked above and have already provided elements to perform the
implementation in this repo. I'm also leading the Crypto Team, whose roadmap is available here
and I'm very keen to discuss alternative Function Encryption schemes if you have ideas!

Required Skills:

●​ Knowledge of Deep Learning (TensorFlow, PyTorch or JAX)
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Familiarity with Linear Algebra, to understand the mathematics of Functional Encryption.
●​ Autonomy and willingness to take proactive steps

Difficulty: Intermediate to Advanced
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3108

To be clear, this project is not about cleaning my first implementations! The main challenge is
that FE currently allows only quadratic operations: for example x + 2, x * 3, x * y, 2(x-1)*y + 1 are
valid operations but x*x*y is not. Therefore, the computations written by the end user should not
be executed eagerly. Instead they should be buffered and organized to fit as a quadratic
computation when possible. Using PySyft Plans is an excellent way of doing this. When high
orders computations will be required, we will also consider the following trick which consists of
encrypting higher orders monomials (for example encrypting xy alongside x and y allows to
compute in a quadratic way x*(x*y))

Providing an easy-to-use, robust and flexible interface will be a guarantee of success for this
project.

Platform / Cloud Integration Projects

Critical to our roadmap is the ability to easily spin up/down cloud machines running PyGrid
servers. These projects implement such functionality.

https://github.com/OpenMined/PySyft/issues/3108

Project: Implement Auto-Scaling on Google Cloud

In this project, you will implement functionality necessary to automatically spin-up Google cloud
machines, load a PyGrid instance, run a training job, and tear down the instance upon
completion (depositing the results into another long-running instance). The primary feature will
be the ability to run a “hyperparameter sweep”, as exemplified below.

Parameters = {“alpha” : [0, 0.01, 0.02], “batch_size” : [32,64]}

gcloud = gr.GoogleCloud(credentials)

cluster = gcloud.LazyCluster(n_machines=10,
 type="n-series",
 priority="low",
 eviction_policy="Delete",
 max_price_usd=0.55,
 reboot_max_price_usd=0.65)

cluster.sweep(model=model,
 parameters=parameters,
 optim=optim.SGD,
 results_node=grid['my node']
)

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Familiarity (or willingness to become familiar) with Google Cloud’s Infrastructure

Level: Beginner
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3099

While this is a sizeable project, the core functionality is relatively straightforward (provision
machines, install and start PyGrid servers, and run training scripts). Furthermore, there are
plenty of tutorials on how to run PyGrid servers and how to run AWS Cloud machines.

Project: Implement Auto-Scaling on Azure Cloud

https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft/issues/3099

In this project, you will implement functionality necessary to automatically spin-up Azure cloud
machines, load a PyGrid instance, run a training job, and tear down the instance upon
completion (depositing the results into another long-running instance). The primary feature will
be the ability to run a “hyperparameter sweep”, as exemplified below.

Parameters = {“alpha” : [0, 0.01, 0.02], “batch_size” : [32,64]}

azure = gr.AzureCloud(credentials)

cluster = azure.LazyCluster(n_machines=10,
 type="n-series",
 priority="low",
 eviction_policy="Delete",
 max_price_usd=0.55,
 reboot_max_price_usd=0.65)

cluster.sweep(model=model,
 parameters=parameters,
 optim=optim.SGD,
 results_node=grid['my node']
)

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Familiarity (or willingness to become familiar) with Azure’s Cloud Infrastructure

Level: Beginner
Github Issue Link: Coming soon!

While this is a sizeable project, the core functionality is relatively straightforward (provision
machines, install and start PyGrid servers, and run training scripts). Furthermore, there are
plenty of tutorials on how to run PyGrid servers and how to run Azure Cloud machines.

Project: Implement Auto-Scaling on Amazon Web Services

In this project, you will implement functionality necessary to automatically spin-up AWS cloud
machines, load a PyGrid instance, run a training job, and tear down the instance upon

https://github.com/OpenMined/PySyft

completion (depositing the results into another long-running instance). The primary feature will
be the ability to run a “hyperparameter sweep”, as exemplified below.

Parameters = {“alpha” : [0, 0.01, 0.02], “batch_size” : [32,64]}

aws = gr.AWSCloud(credentials)

cluster = aws.LazyCluster(n_machines=10,
 type="n-series",
 priority="low",
 eviction_policy="Delete",
 max_price_usd=0.55,
 reboot_max_price_usd=0.65)

cluster.sweep(model=model,
 parameters=parameters,
 optim=optim.SGD,
 results_node=grid['my node']
)

Required Skills:

●​ Knowledge of PyTorch and Deep Learning
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Familiarity (or willingness to become familiar) with AWS’s Cloud Infrastructure

Level: Beginner
Github Issue Link: Coming soon!

While this is a sizeable project, the core functionality is relatively straightforward (provision
machines, install and start PyGrid servers, and run training scripts). Furthermore, there are
plenty of tutorials on how to run PyGrid servers and how to run AWS Cloud machines.

Project: Replacing PyGrid Transport with DIDComm using
Hyperledger Aries

Hyperledger Aries is an open-source reference architecture for developing self-sovereign
identity agents of which there are many implementations under development, although the
python one is probably the most relevant. As a first step towards understanding how these
agents, could be combined with the OM stack to provide secure communication channels for

https://github.com/OpenMined/PySyft

distributed ML, it would be valuable to develop a docker image combining PyGrid and a
Hyperledger Aries agent. Then attempting to replace the transport protocol, currently a flask http
server, with the agent to agent communication protocol called DIDComm. To test this works and
develop understanding of how Aries and OM might be combined, this PoC could be
reimplemented using the new docker image.

Required Skills:

●​ Experience with Docker
●​ Experience with Dev Ops
●​ Familiarity (or willingness to become familiar) with Hyperledger Aries
●​ Familiarity (or willingness to become familiar) with PyGrid

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/PyGrid/issues/493/

This project should not be too complicated, although it may include some work to get compatible
dependencies across both projects. Exploring the correct flow to replace the current messaging
in PyGrid with DIDComm may require some thought.

Project: Threepio Support Dashboard

Threepio supports translation between a number of different languages and libraries. It will be
some time before we have total support between all API commands. In order for users to
confidently use our worker libraries, they will have to understand what commands are
supported.

Project Scope:

●​ Building a simple OpenMined branded web application to display statistics & API
endpoint support

●​ Expanding any needed documentation crawler functionality to get additional relevant
information on API endpoints.

●​ Building integrations into our existing translation libraries to take into account for custom
translations.

●​ Integrating dashboard with CI to allow for continuous deployment.

Required Skills:

●​ Front end development skills
●​ Javascript
●​ CSS
●​ Python & scrapy

https://github.com/OpenMined/PyGrid/issues/493/

●​ Basic layout design

Difficulty: Beginner
Github Issue Link: https://github.com/OpenMined/threepio/issues/33

This project will be perfect for someone with a web development background to get to touch a
lot of different machine learning libraries without needing significant data science experience.
Furthermore it will greatly enable future contributors to both OpenMined as well as a number of
major machine learning libraries.

Project: Defining a OM/ML Message Type within Hyperledger Aries

Hyperledger Aries is an open-source reference architecture for developing self-sovereign
identity agents of which there are many implementations under development, although the
python one is probably the most relevant. Aries agents send asynchronous messages using a
protocol called DIDComm, these messages have a type which defines the structure of the
message. Each message type has it’s own handler for implementing agent specific responses to
these messages. Currently the message type Basic Message, is implemented in most agent
implementations. We developed a PoC which hijacked this basic messaging feature to send ML
messages in a federated learning example. A better implementation of this would be to define a
specific message type for distributed learning communication - some exploration would be
needed to understand the exact requirements of this message type. For example should there
be one message type for each distributed learning implementation, or should type be in the data
structure of the message?

Required Skills:

●​ Willing to explore a complex code base
●​ Familiarity (or willingness to become familiar) with Hyperledger Aries
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Familiarity (or willingness to become familiar) with PyGrid

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/PyGrid/issues/495

This project should be fairly straightforward, although an initial learning curve to get to grips with
the aries architecture will be required. A best case scenario would be a ML Message Type
ratified by the Hyperledger Aries community and included as an RFC similar to the Basic
Message and implemented as a reference in one of the aries implementations - or a fork of one
of these projects.

https://github.com/OpenMined/threepio/issues/33
https://github.com/OpenMined/PyGrid/issues/495

Project: OpenMined-Android

We are developing a Community App that will have the feature and information about the
OpenMined Community and the It's Projects. In this project, you will be implementing from
scratch and will be working on the project adding more features.

Required Skills:

●​ Knowledge of Android Development with Kotlin
●​ Knowledge of Android Basics, Android UI, Data management, Firebase etc
●​ Familiarity (or willingness to become familiar) with OpenMined Projects and OpenMined

Community
●​ You are highly motivated and want to get involved in the project on a regular basis during

the GSoC program

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/Roadmap/issues/10

The main goal of this project is to make even more accessible to the community members to
navigate through the organization & to get updates from the OpenMined Android App

Project: Framework agnostic support for PySyft - TensorFlow

PySyft functionalities are mostly built on top of Pytorch, but ideally, PySyft should be completely
framework agnostic. This meaning that all operations executed with PySyft should not depend
on the framework that the actual low-level operations are being executed with.

In this project, you will be improving/implementing support for PySyft ops within TensorFlow.

These can be summarised in 3 main areas based on how PySyft is structured:

●​ Support TensorFlow ops and tensors: this is where most of the work is needed and
consists of wrapping TensorFlow so it can be used with PySyft tensors and operations.

●​ Remove execution with TensorFlow: supporting remote operations of executing on
different workers (Virtual or not). This should be more or less straightforward since this
should be the same for all frameworks, maybe some work is needed around TF Tensor
serialization

●​ Privacy related ops: making any changes in the codebase needed in order to have
SMPC, Differential Privacy, SplitNN, etc. working with TensorFlow. Not clear right now
how much work is needed in practice to get this working, but in theory not a lot.

https://github.com/OpenMined/Roadmap/issues/10

Completion criteria:
PySyft Tutorials 1 - 4 running seamlessly on both TensorFlow and Pytorch. If more time
available continue supporting operations for other tutorials.

Development timeline

This is a summarized draft to help you with your proposal, you're free to change this as you'd
like!

1.​ Support simple TensorFlow operations (e.g. tf.add, tf.matmul, tf.nn.relu, …) and basic
Tensor support.

2.​ Support basic remote execution ops with pointers (send, move, get). At this point the
tutorial 1 , tutorial 3 should be executing successfully with TensorFlow.

3.​ Support training logic with TensorFlow (i.e. backprop, optimizers). At this point the
tutorial 2 and tutorial 4 should be ready, notice that this will potentially be very different
from the existing Pytorch tutorial due to framework differences (we can/should discuss
this when implementing).

4.​ You did it :D!!!​

Extra
5.​ Federated Dataset support: should be more or less straightforward :). tutorial 6 should

be ready.
6.​ Grid and dataset support. tutorial 5 and tutorial 7 should be ready.
7.​ Plans and protocols support: this is potentially non-trivial, so we can/should discuss this

when implementing. tutorial 8 and tutorial 8 bis ready.
8.​ Implement SMPC support. tutorial 9 ready.
9.​ SMPC support during training / inference. tutorials 10, 11 and 12 are ready.
10.​You did it again :D!!!

Required Skills:

●​ Knowledge of TensorFlow & Python
●​ Familiarity (or willingness to become familiar) with PySyft
●​ Familiarity (or willingness to become familiar) with OpenMined Projects and OpenMined

Community

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/PySyft/issues/3160

Optional Projects

https://github.com/OpenMined/PySyft/tree/master/examples/tutorials
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2001%20-%20The%20Basic%20Tools%20of%20Private%20Deep%20Learning.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2001%20-%20The%20Basic%20Tools%20of%20Private%20Deep%20Learning.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2002%20-%20Intro%20to%20Federated%20Learning.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2002%20-%20Intro%20to%20Federated%20Learning.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2006%20-%20Federated%20Learning%20on%20MNIST%20using%20a%20CNN.ipynb%5C
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2005%20-%20Welcome%20to%20the%20Sandbox.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2007%20-%20Federated%20Learning%20with%20Federated%20Dataset.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2008%20-%20Introduction%20to%20Plans.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2008%20bis%20-%20Introduction%20to%20Protocols.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2009%20-%20Intro%20to%20Encrypted%20Programs.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2010%20-%20Federated%20Learning%20with%20Secure%20Aggregation.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2011%20-%20Secure%20Deep%20Learning%20Classification.ipynb
https://github.com/OpenMined/PySyft/blob/master/examples/tutorials/Part%2012%20-%20Train%20an%20Encrypted%20Neural%20Network%20on%20Encrypted%20Data.ipynb
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft/issues/3160

Optional Project: Implement the command translation layer inside of
PySyft which will allow for PySyft Tensorflow plans to be converted to
PyTorch

It’s worth noting that this project is considered optional “extra credit” for the Federated Learning
roadmap:
https://github.com/OpenMined/Roadmap/blob/master/web_and_mobile_team/projects/web_and
_mobile_fl.md

Problem:​
Essentially we’ll already have a translation function that exists for Javascript - this project simply
brings the same logic to Python. This may not end up serving a permanent purpose in PySyft,
but we think that this would allow for a developer to create a plan using PySyft for TensorFlow
and still have training available for mobile phones. This would be an incredible achievement
since currently we’re scoped to only allow the training of PyTorch models on mobile devices
(since they require the use of TorchScript). If a developer wanted to write their PySyft model
using TensorFlow, they would then need to convert this plan to use PyTorch, before ultimately
hosting the plan on PyGrid as a TorchScript.

Solution:​
We are building a command translation library for the syft.js web worker library called
"Threepio". This project will need to be extended to support TensorFlow (Python) bindings. By
this point, it should already have bindings for PyTorch and TensorFlow.js.

Requirements:

●​ Willing to work with the Web & Mobile team and be mentored by @Nolski, the author of
Threepio

●​ Familiarity with multiple deep learning frameworks: PyTorch, TensorFlow, and
TensorFlow.js (NumPy is a bonus!)

●​ Good knowledge and understanding of the problems and challenges described in the
Federated Learning roadmap (questions can be directed to @cereallarceny)

Difficulty: Medium​
Github Issue Link: https://github.com/OpenMined/PySyft/issues/2997

https://github.com/OpenMined/Roadmap/blob/master/web_and_mobile_team/projects/web_and_mobile_fl.md
https://github.com/OpenMined/Roadmap/blob/master/web_and_mobile_team/projects/web_and_mobile_fl.md
https://github.com/Nolski
https://github.com/OpenMined/Roadmap/blob/master/web_and_mobile_team/projects/federated_learning.md
https://github.com/cereallarceny
https://github.com/OpenMined/PySyft/issues/2997

Optional Project: Implement changes in PySyft client for federated
learning

Based on the Federated Learning roadmap we need to build a worker library for static federated
learning in PySyft. The worker will be based on the other 3 worker libraries that already exist:
syft.js (web), SwiftSyft (iOS), and KotlinSyft (Android). The API will be a mirror image of the
other federated learning worker libraries, allowing for environments other than a web browser or
mobile device to be supported: IoT, Raspberry Pi, desktop application, Windows phone, etc.

Requirements:

●​ Willing to work with the Web & Mobile team and be mentored by @vkkhare, the author of
KotlinSyft

●​ Familiarity with Websockets
●​ Familiarity with WebRTC
●​ Good knowledge of PySyft
●​ Intimate knowledge of Python
●​ History of developing libraries (in any language)
●​ Good knowledge and understanding of the problems and challenges described in the

Federated Learning roadmap (questions can be directed to @cereallarceny)

Difficulty: High
Github Issue Link: https://github.com/OpenMined/PySyft/issues/2996

This is quite a large project and would more or less allow for static federated learning to be
performed in any environment. A federated learning system of this breadth has not previously
been developed, anywhere. Make no mistake, this is a big project, but it also has very
far-reaching ramifications for federated learning as a whole. Fortunately, the web and mobile
team has already built 3 federated learning worker libraries in the past, so you'll be inheriting the
wisdom, patterns, and roadmap that has basically been finalized by your new colleagues. If
you're not afraid of hard projects with a pretty large payoff, this is the one for you.

Optional Project: Add "test_federated_training" to PySyft

The test_federated_training function will allow a user to spin up a series of
VirtualWorkers with which they run against their FL model. This allows them to locally simulate
the process of deploying their model to the edge. The developer will also want to define their
initial model parameters (e.g. model name, version, hyperparameters, etc.) and federated
learning configuration (e.g. the number of cycles, maximum number of workers, etc.).

https://github.com/OpenMined/PySyft/issues/2996

This process will create a network of VirtualWorkers in PySyft, send the plans to execute to
each of them, execute the model on each of the VirtualWorkers, run any protocols for secure
aggregation, push the results back to PySyft, run the averaging plan to update the global model,
and finally return the model back to the developer for inspection.

These attributes should correspond to inputs in the training_plan
client_config = {
 name: "my-federated-model",
 version: "0.1.0",
 batch_size: 32,
 lr: 0.01,
 optimizer: "SGD"
}

server_config = {
 max_workers: 100,
 pool_selection: "random", # or "iterate"
 num_cycles: 5,
 do_not_reuse_workers_until_cycle: 4,
 cycle_length: 8 * 60 * 60, # 8 hours
 minimum_upload_speed: 2000, # 2 mbps
 minimum_download_speed: 4000 # 4 mbps
}

sy.test_federated_training(
 model=model,
 client_plans={ "training_plan": training_plan },
 client_protocols={ "secure_agg_protocol":
secure_aggregation_protocol },
 client_config=client_config,
 server_averaging_plan=averaging_plan,
 server_config=server_config
)

Requirements:

●​ Willing to work with the Web & Mobile team and be mentored by @mccorby, the author

of KotlinSyft

●​ Very good knowledge and understanding of PySyft

●​ Intimate knowledge of Python

●​ Good knowledge and understanding of the problems and challenges described in the

Federated Learning roadmap (questions can be directed to @cereallarceny)

Difficulty: Medium​

Github Issue Link: https://github.com/OpenMined/PySyft/issues/2995​

​

Optional Project: Develop end-to-end testing suite for all full system
testing in Federated Learning

This issue doesn't need to live in syft-proto, but it must exist as some sort of a Github issue
somewhere. This project is probably the best central location for it for now.

This issue describes how we will need to develop a testing suite that can run span multiple
repositories, languages, and environments. We want to ensure that our worker libraries (syft.js,
KotlinSyft, and SwiftSyft) are always working properly with PySyft and PyGrid. Likewise, we'll
need to test this on various versions of syft-proto and Threepio to ensure that our assisting
libraries pair nicely with the other various projects. We've created a ticket for setting up a CI
system - this is a ticket for actually getting some sort of end-to-end testing framework working
between all 7 repositories in question.

We have already converted all repositories inside of the OpenMined ecosystem (at least all the
ones involved with federated learning) to use Github Actions instead of TravisCI. Working with
Github Actions and workflows will be the basis of this issue.

Requirements:

●​ Willing to work with the Web & Mobile team and be mentored by @vvmnnnkv, the author
of syft.js

●​ Intimate knowledge and understanding of the problems and challenges described in the
Federated Learning roadmap (questions can be directed to @cereallarceny)

●​ Good knowledge of syft.js, KotlinSyft, SwiftSyft, syft-proto, PySyft, PyGrid, and
Threepio... primarily as an understanding of knowing how these systems relate and work
together to accomplish federated learning

●​ Intimate knowledge of GitOps: actions, workflows, and projects

Difficulty: Medium
Github Issue Link: https://github.com/OpenMined/syft-proto/issues/37

https://github.com/OpenMined/PySyft/issues/2995
https://github.com/OpenMined/syft-proto/issues/37

Optional Project: Allow for periodic status updates of current FL
cycles on PyGrid

A model developer may want to inspect the progress of the current federated learning cycle in
progress, as well as potentially see how previous cycles have gone. We should allow for the
creation of an inspect_federated_training() method (or whatever name is appropriate) to inspect
the current or former progress of FL cycles in PyGrid.

Github Issue Link: https://github.com/OpenMined/PyGrid/issues/441

https://github.com/OpenMined/PyGrid/issues/441

