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The CME Project: Some Distinguishing Features 



The CME Project, developed by EDC’s Center for Mathemat- ics Education, is a coherent, 
four-year, NSF-funded high school program designed around how knowledge is organized and 
gen- erated within mathematics: the themes of algebra, geometry, and analysis. Many standard 
curricula look at each of these ar- 

Other important parts of 
eas as sets of results and techniques. Many integrated programs look at them as threads that run 
through varying contexts. The 

the discipline—probability, statistics, combina- torics, number theory, CME Project sees these 
branches of mathematics not only as compartments for certain kinds of results, but also as 

descriptors 
measurement—are inte- grated into these themes. 

for methods and approaches—the habits of mind that determine how knowledge is organized and 
generated within mathematics itself. As such, they deserve to be centerpieces of a curriculum, 
not its byproducts. 

The primary goal of the CME Project is to develop robust 

The CME Project provides teachers and schools with a third alternative mathematical proficiency 
in students. To achieve this, the CME Project strikes a balance between the common wisdom and 

tra- 

to the choice between traditional texts driven by low-level skill development dition in this 
country—that students need to focus on one piece of mathematics at a time—and what has been 

learned about 

and more progressive texts that have unfamiliar organizations. The CME the added value of 
seeing connections among mathematical top- ics and to fields outside mathematics. The program 

builds on 

Project gives teachers the option of a problem- based, student-centered lessons learned from 
high-performing countries: develop an idea thoroughly and then revisit it only to deepen it; 

organize ideas in 
program, organized around the mathematical themes with which teachers and a way that is faithful to how they are 

organized in mathemat- 

parents are familiar. ics; 
and reduce clutter and extraneous topics. It also employs the best American models that call for 
struggling with ideas and problems as preparation for instruction, moving from con- crete 
problems to abstractions and general theories, and situat- ing mathematics in engaging contexts 
(including mathematics 

You can find a more de- 
itself). The CME Project is a comprehensive curriculum that meets the dual goals of 



mathematical rigor and accessibility for 
tailed description of the de- sign principles and philos- ophy for the CME Project a broad range of students. 

later in this handout in the paper Towards a Cur- The program also employs some unusual and 
effective ap- proaches to mathematical topics—approaches that have been 

riculum Design Based on Mathematical Thinking. 

tested and refined, in some cases for several decades, by teach- ers and others affiliated with the 
program. The purpose of this note is to describe some of these approaches. 
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Solving Simple Equations 



In the Algebra 1 course, students begin to make the connection between finding solutions to 
equations and finding inverses for functions. Before any of the formalisms about solving linear 
equations, they use a method we call backtracking to solve equations like this 

3(x + 5 

2) − 7 

= 4 

The course presents such equations with descriptions like 

“When I took a number, added 2, tripled the result, subtracted 7 from the answer, and divided the 
result by 5, I got 4. What number did I start with?” 

So, the left-hand side becomes a description of an algorithm, a function defined by a sequence of 
arithmetic calculations. Stu- dents model this algorithm in many ways; one useful represen- 

This machine image is tation is 
as a machine network: 

useful as a starting point, especially if students build computational models of functions on their calculators. Later, in 
Algebra 2, we move from the machine metaphor to the more robust notion of function as pairing, so that students 
begin to see that a function is defined by its behavior. 

A machine model for 
3(x+2)−7 5 

Students practice running several inputs through the network, and then we ask them to “pull 
back” an output to get the corresponding input. To do this, they do the “inverse steps in reverse 
order,” finding a solution of the equation. In fact, as an extension, we ask them to build a 
network that solves the equation 

3(x+2)−7 5 

= k for any value k of the right-hand side: 
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In another direction, one that connects to expression simplification and equality of functions, we ask students to find a 
simpler network that produces the same input-output pairs as the original network. 



Algebra Word Problems 
The difficulties that high school students have with algebra word problems are legendary. The 
quintessential word problem (“Mary is 10 years older than her brother was 5 years ago ...”) is the 
topic of cartoons and jokes. Teachers have devoted a great deal of effort to exposing the roots of 
the difficulties people have with word problems. Two very common perceptions are that students 
have difficulty with word problems because 

• they have a general difficulty with reading 

• they are often not familiar with the contexts described in the problems. 

But an analysis by some middle and high school teachers in Woburn MA showed that there’s got 
to be more to it. They observed that the following problem 

Mary drives from Boston to Washington, a trip of 500 miles. If she travels at an average rate of 
60 MPH on the way down and 50 MPH on the way back, how many hours does her trip take? 

causes no difficulty with prealgebra students who understand the connection between rate, time, 
and distance. But this prob- lem 
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Mary drives from Boston to Washington, and she travels at an average rate of 60 MPH on the 



way down and 50 MPH on the way back. If the total trip takes 181 3 

hours, how far is Boston from Washington? 

is baffling to many of the same students a year later in algebra class. This analysis led to an 
effective method—that we call 

Guess-Check-Generalize 
Guess-Check-Generalize—for solving these kinds of problems. Here’s how it works for the 
second problem above: 
is different from the well-known Guess and Check strategy for finding 

The first step is to guess at an answer; suppose Boston is 

solutions or approximate solutions to numerical 500 miles from Washington. The purpose of the 
guess is not to 

problems. 

stumble on a right answer; rather, it’s to focus students on the 

In spite of our proclama- 
steps they take to check the guess. So, if the guess is 500 miles, then hours Mary to get takes 500 
60 

= 82 3 hours the right answer, tions that the point is not 

to drive down home. but The that’s total OK. trip We is ask 182 

3 students hours, and so 500 500 50 

is = not 10 

to be explicit 

to get the right answer by guessing, many students are at first reluctant to take a guess, fearing 
they’ll be incorrect. about what they did to check the guess. If they are not sure, they take 

another guess, and another, and another, until they are able to articulate something like 

“You take the guess, divide it by 60, then divide it by 50, add you answers and see if you get 181 
3 

.” 

The generic “guess checker” is then 
This method was inspired guess 

guess 

1 
in part by some educational theories about how people 60 

50 
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“encapsulate” isolated actions into coherent This gives them the equation that models the 
problem: 

processes. 

x 60 

+ 
= ? 

18 

x 50 

1 3 and from here, it’s “pure” algebra. 

Extension 
One of the main themes in the program is extension. Extension in the CME Project takes two 
forms: algebraic (extending oper- ations via their defining properties) and analytic (extension by 
continuity). 

Example: Arithmetic with Signed Numbers 

Students have practiced arithmetic with non-negative integers since first grade. Our approach is 
to extend the “number facts” 

4 

+ 

= 18 

 



that many have memorized by extending patterns in the “ta- bles” in ways that preserve the 



properties of the operations. Here’s a piece of the multiplication table: 

χ 

12 

0 12 24 36 48 60 72 84 96 108 120 132 144 

Notice the reorientation to make the table look 11 

0 11 22 33 44 55 66 77 88 99 110 121 132 

more like a coordinate 

10 

0 10 20 30 40 50 60 70 80 90 100 110 120 

system. This is on purpose. For example, by graphing 

9 

0 9 18 27 36 45 54 63 72 81 90 99 108 

the line with equation x + y = 12 on this table, 8 

0 8 16 24 32 40 48 56 64 72 80 88 96 

you get a picture of all the products of integers that 7 

0 7 14 21 28 35 42 49 56 63 70 77 84 

sum to 12. Which product 

6 

0 6 12 18 24 30 36 42 48 54 60 66 72 

is largest? 

5 

0 5 10 15 20 25 30 35 40 45 50 55 60 

4 

0 4 8 12 16 20 24 28 32 36 40 44 48 

3 

0 3 6 9 12 15 18 21 24 27 30 33 36 

2 

0 2 4 6 8 10 12 14 16 18 20 22 24 

1 

0 1 2 3 4 5 6 7 8 9 10 11 12 

χ 

-4 

-3 -2 -1 0 

0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 χ -1 

-2 

-3 



-4 χ 

The multiplication table, reoriented 

So, how could one extend the table in ways that make the patterns in the rows and columns 
continue? There are several ways, but not surprisingly, the one that is most natural for many 
students is exactly the one that ensures that the extended 

A detailed verification 
that arithmetic works the way it’s supposed to: use the rows to continue the linear patterns to the 
left, and use the columns 

the usual extension of the multiplications and addi- tion tables preserves arith- to extend down. 
We present students with some other ideas, as well (the rows increase again to the left of 0, for 

example) and we 

metic properties like asso- ciativity and commutativity is too technical for most investigate why 
such choices “break” the rules of arithmetic. In other words, this is not an exercise in “extending 

the pattern;” 
students at this stage. The development in the pro- gram is more informal, but rather, it is a search for an extension 

that preserves rules for calculating. 

it is faithful to the princi- ples of this verification. 
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Example: Integer, Rational, and Real Exponents 



Most students come from middle school with some experience with positive integer exponents; 
they know that 23 means 2 × 2 × 2 and, more generally, if n is a positive integer, 

2n means 2 ︸ × 2 ×···× ︷︷ 2 ︸ n 

times 

In Algebra 1, we use this definition to develop rules for arith- metic with positive integer 
exponents: 
1. an · am = an+m 

2. (an) 
m 

= anm 

If we insist that these definitions extend to all integers, we 

This kind of extension is 
are forced to make some definitions: 
connected to what we call the “duck principle.” To 

• 30 would have to be 1 if we want rule 1 to extend: 
show that some expression is equal to 

35 · 30 = 35+0 = 35 

but the only number that can be multiplied by 35 to get 35 is 1, so 30 would have to be 1. 

• Similarly, 3−1 would have to be 1 3 
√ 

10, show that it is positive and that its square is 10. If it walks like a duck ... . 

if we want rule 1 to extend to negative integers: 
In the same way, 3−2 ·32 = 3−1 · 31 = 3−1+1 = 30 = 1 

1, so 3−2 would have to be 1 32 but the only number that can be multiplied by 31 to get 1 is 1 3 
. 

, so 3−1 would have to be 1 3 

. 

• If we want to extend the rules to fractional exponents, 3 

1 2 would have to be (by rule 2) a number whose square is 3: 

( 

3 
1 2 



) 
2 

= 3 
1 2 

·2 = 31 = 3 

There are two choices here, 

√ 

3 and − 

√ 

3, and we make the 
Similarly, 3 

5 8 

is a number 

choice that 3 
1 2 

= 

√ 

3. 
whose we 8th power define it to be is √ 

35, 8 

35. 

so 

Later in the program, we show that this is the same 

• We can extend the meaning of exponents to all integers (in 

as Algebra 1) and all rational 
numbers (in Algebra 2) in this way—by forcing rules 1 and 2 to extend. But what about irrational 
exponents? What “must” 3 
( 

√ 8 

3 

) 

5 

. Even later in the program, we investigate the entire set of solutions 

√ 



2 mean? For this, 
to x8 = 35 in the complex numbers. 

we use extension by continuity. The graph of y = 3x for all rational x looks like this: 
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y = 3x, full of holes 



Even though it looks smooth, this graph is full of holes, one over each irrational number. If we 
fill in the holes we get 3 √ 

2 the is the definition number of that 3x is for approached irrational x. by Put the another 
sequence 

way, 
Again, this is all informal and intuitive, but the ideas 31.4,31.41,31.414,31.4142,31.41421,... 

can be made precise and are made precise in courses 

where the sequence of rational exponents has 

√ 

2 as a limit. 
in post-calculus analysis. 

Equations and Graphs 
Many high school students do not understand the fact that one can test a point to see if it is on the 
graph of an equation by seeing if its coordinates satisfy the equation; equations are, for these 
students, a kind of code from which one can read off information that allows one to produce a 
graph. 

Our approach to this phenomenon is to provide students with opportunities to connect 
equations and graphs without elaborate formalisms, using the idea that the equation of a graph is 
the point-tester for the graph: it tells you whether or not a point is on the graph by checking some 
numerical fact about its coordinates. 

For example, we ask students to find the equation of the horizontal line that passes through 
(5,1). They typically have no trouble drawing the line, and, when we give them several points, 
they usually have no trouble explaining why each is on or off the line: to see if a point is on the 
line, check to see if its y-coordinate is 1. So, the point-tester is y 
= ? 

1, and the equation is y = 1. 
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Another example: What’s the equation of the line whose graph bisects quadrants 1 and 3? The 
check to see if a point is on the line is that its x- and y-coordinates are the same. The equation is 



thus y = x. 

These are simple examples, but they reinforce the meaning of the correspondence between 
equations and their graphs. And the point-tester idea works well for more complex equations and 
their graphs—it’s an idea that runs throughout the program. 

Example: Equations of Lines and Slope 

In Algebra 1, the point-tester idea helps students find equations for lines. The method involves a 
somewhat unorthodox approach to slope. 

Our teaching experience tells us that “the slope of a line” approach places some undue 
cognitive demands on students— students are asked to think about a number (slope) that is an 
invariant of an infinite geometric object (the line). This is difficult for a couple reasons: 

• The invariant is not part of the geometric object itself—it 

Indeed, the slope of a is a 
numerical quantity derived from the geometry of the line. 
line is an example of the derivative that students will study in calculus. 

• And slope is derived via a calculation that seems at first glance to depend on a choice of two 
points on the line. 

Our development starts with the more concrete idea of “slope 

We use the notation 
between 2 points,” a number that can be calculated directly from coordinates. 
m(A, B) for the slope between A and B. 

Our approach to equations for lines synthesizes this perspec- tive on slope with the point-tester 
idea. We make an explicit assumption (that will be proved in the Geometry course): 

Assumption Three points A, B, and C lie on the same line if and only if 
The proof requires results about similar triangles. m(A, B) = m(B,C) 

Suppose you are given two points, say A = (3,−1) and B = (5,3). What is the equation of the 
line that contains A and B?. Students develop the habit of checking several points to see if they 
are on the line, keeping track of their steps. At first, we 

So, the Guess-Check- Generalize theme plays a major role in this method. 8 

 



give them some points to check—say X = (7,6), P = (1,−5), and Q = (9.5,10.5). In each case, 
they find the slope between the point to be tested and, say, B. Then they check whether it is equal 



to m(A, B) (that is, 2). The generic check is that the slope from (x, y) to (5,3) should equal 2, so 
the point-tester is 

y Some care has to be taken with the fact that x can’t x be 5 on the left-hand side 

of this equation. − − 3 5 

= 2 

This equation is then simplified and transformed into a linear equation in x and y. The course 
proceeds to develop fluency in sketching lines from their equations and finding equations for 
given lines, but only after this foundation is solid. 

Our Uses of Technology 
Students in the CME Project Algebra 2 course use technol- ogy in many of the same ways that 
technology is used in other programs: to test out conjectures, to reduce computational drudgery, 
to graph equations and functions, to perform statisti- cal analyses on data, and to provide 
examples of theorems and results. And we also use the calculator as a context—figuring out the 
what’s “behind” the built-in functions. For example, one les- son helps students understand the 
mathematics that underlies the functions on a calculator that compute standard deviation, 
variance, mean, and best fit lines. 

We make another use of technology that is less standard: stu- dents use technology 
to build computational models of mathe- matical objects. 

Example: Modeling Functions 

One of the most important examples of this model-building ac- tivity in the last two courses is 
that students build computa- tional models of mathematical functions. 

Current high-end mathematical calculators (the TI-89 family, for example) and most computer 
mathematics systems contain a capability that will eventually be available on most machines— 
something we call a functional language. What this means is that one can create user-defined 
functions—we call them mod- els—in a language that is quite close to ordinary mathematical 
notation, and then they can use the functions as if they were built-ins. For example, to build a 
model of the function f de- 
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