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The CME Project:
Some Distinguishing Features

The CME Project, developed by EDC's Center for Mathemat-
ica Education. 15 a coherent, four-vear, NSF-funded high school
program designed around how knowledge s organized and gen-
erated within mathematics: the themes of algebra, geometry,
and analyvsis. Many standarcd curnicula look st each of these ar-
e a gets of results and technigues. Many integrated programs
look at them as thresds that mn through varving contexts. The
CME Projeet sees these branches of mathematics not only as
compartments for certain kinds of results. but also as deseriptors
for mefhods and epproaefes—the habits of mind that determine
how knowledge is organized and generated within mathematics
itmell. As such. they deserve to be centerpicces of a corrieulum,

not its by products.

The primary goal of the CME Project 15 to develop robust
mathematical proficiency in students. To achicve this, the CMWE
Projeed strikes s balance between the common wisdom and tra-
dition in this country—that students need to focus on one plece
of mathematics at o time—and what has been learned about
the added value of secing connections among mathematical top-
ica and to fclds ouwtside mathematics, The program builds on
leggons learned from high-performing countrics: develop an idean
thoroughly and then revisit it only to decpen it: organize idess in
a way that 13 fathful to how they are organized in mathemast-
ica: and reduce clutter and extrancous topics. It also emplovs
the best American models that call for strugegling with idess
and problems as preparation for instruction. moving from con-
crete problems to ahatractions and general theories, and sibaat-
ing mathematics in engaging contexts (including mathematics
itaell). The CME Project is a comprehensive curriculum that
meets the dual goals of mathematical rigor and sccessibality for
a bromsd range of students.

The program also cmplovs some unnsual and effective ap-
proaches to mathematical topics—approaches that have been
tested and refined. in some cases for several decades, by teach-
ers and others afhiliated with the program. The purpose of this

note 15 to describe some of these approaches.

Other important parts of
the discipline— proba bility,
statistics, combina-
torics, number theory,
measEremest—are inte-
grated imto these themes.

The CME Project provides
teachers and schooks
with a third alt=rnative
to the choice between
traditional texts drives by
Il level skill develapment
and more progressive
texts that have unfamilar
ofgasizations. The CME
Froject gives teachers
the option of 2 poblen-
based, stedent-centered
program, ciganized armesd
the mathe=matical themes
with which teackers and
parents are familiar.

ou can find 3 more de-
tailed description of the de-
sign principles and philos-
ophy for the CME Project
later in this handout in
the paper Towards a Cor-
ricolum Design Based on
Mathematical Thinking.

The CME Project: Some Distinguishing Features



The CME Project, developed by EDC’s Center for Mathemat- ics Education, is a coherent,
four-year, NSF-funded high school program designed around how knowledge is organized and
gen- erated within mathematics: the themes of algebra, geometry, and analysis. Many standard
curricula look at each of these ar-

Other important parts of
eas as sets of results and techniques. Many integrated programs look at them as threads that run
through varying contexts. The

the discipline—probability, statistics, combina- torics, number theory, CME Project sees these
branches of mathematics not only as compartments for certain kinds of results, but also as
descriptors

measurement—are inte- grated into these themes.

for methods and approaches—the habits of mind that determine how knowledge is organized and
generated within mathematics itself. As such, they deserve to be centerpieces of a curriculum,
not its byproducts.

The primary goal of the CME Project is to develop robust

The CME Project provides teachers and schools with a third alternative mathematical proficiency
in students. To achieve this, the CME Project strikes a balance between the common wisdom and
tra-

to the choice between traditional texts driven by low-level skill development dition in this
country—that students need to focus on one piece of mathematics at a time—and what has been
learned about

and more progressive texts that have unfamiliar organizations. The CME the added value of
seeing connections among mathematical top- ics and to fields outside mathematics. The program
builds on

Project gives teachers the option of a problem- based, student-centered lessons learned from
high-performing countries: develop an idea thoroughly and then revisit it only to deepen it;
organize ideas in

program, organized around the mathematical themes with which teachers and a way that is faithful to how they are
organized in mathemat-
parents are familiar. ics;
and reduce clutter and extraneous topics. It also employs the best American models that call for
struggling with ideas and problems as preparation for instruction, moving from con- crete
problems to abstractions and general theories, and situat- ing mathematics in engaging contexts
(including mathematics

You can find a more de-
itself). The CME Project is a comprehensive curriculum that meets the dual goals of



mathematical rigor and accessibility for

tailed description of the de- sign principles and philos- ophy for the CME Project a broad range of students.

later in this handout in the paper Towards a Cur- The program also employs some unusual and
effective ap- proaches to mathematical topics—approaches that have been

riculum Design Based on Mathematical Thinking.

tested and refined, in some cases for several decades, by teach- ers and others affiliated with the
program. The purpose of this note is to describe some of these approaches.
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Solving Simple Equations

In the Algebra 1 course, students begin to make the connection
between finding solutions to equations and finding inveraes for
functions. Before any of the formalisms about solving linear
equations, they use a method we call bockirmekbing to solve
equations like this

He+2)-T _

5]

4

The courae presents such equations with descriptions like

“When [ took a number, added 2, tripled the result,
subtracted 7 from the answer, and divided the result
by 5. 1 got 4. What number did T start with?”

So. the left-hand side becomes s deseription of an algerifon, a
function defned by a sequence of arithmetic calenlations. Stu-
dents model this algorithm in many wavs: one useful represen-
tation 18 ng s machine nefwork:

Pﬁ . i]
N
e
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A machine mode] for w

Students practice running several inputs throngh the network,
and then we ask them to “pull back” an output to get the
correaponding mput. To do this, they do the “inverse steps in
reverae order,” finding o solution of the equation. In fact, as
an cxtension, we agk them to build & network that solves the
equation Lf}__ =k for any value & of the right-hand side:

Solving Simple Equations

This machine image is
useful as a starting point,
e pecially if studests build
computational modek

of fumctioes on their
cakulators. Later, im
Algebra 2, we move from
the machine metaphor to
the more mobest notion of
function as pairing, so that
students begin to se= that
a function & defined by its
behaviar.



In the Algebra 1 course, students begin to make the connection between finding solutions to
equations and finding inverses for functions. Before any of the formalisms about solving linear
equations, they use a method we call backtracking to solve equations like this

3(x+5

2)—17

=4

The course presents such equations with descriptions like

“When I took a number, added 2, tripled the result, subtracted 7 from the answer, and divided the
result by 5, I got 4. What number did I start with?”

So, the left-hand side becomes a description of an algorithm, a function defined by a sequence of
arithmetic calculations. Stu- dents model this algorithm in many ways; one useful represen-

This machine image is tation is
as a machine network:

useful as a starting point, especially if students build computational models of functions on their calculators. Later, in
Algebra 2, we move from the machine metaphor to the more robust notion of function as pairing, so that students
begin to see that a function is defined by its behavior.

A machine model for
3(x+2)-7 5
Students practice running several inputs through the network, and then we ask them to “pull
back” an output to get the corresponding input. To do this, they do the “inverse steps in reverse

order,” finding a solution of the equation. In fact, as an extension, we ask them to build a
network that solves the equation

3(x+2)-75
= k for any value k of the right-hand side:
2
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\ In amother direction, one
b e that connects to expression
S simplification and equality

of femctions, we ask
students to find a simpler
network that produces the

“Undoing” the algorithm same input-output pEirs as
the ariginal network.

Algebra Word Problems

The dificulties that high school students have with algebra
word problems are legendary, The gquintessentinl word problem
[ “Mary is 10 vears older than her brother was 5 vears ngo ... ")
is the topic of cartoona and jokes. Teachers have devoted a great
deal of effort to exposing the roots of the difhculties people have
with word problems. Two very common perceptions are that
gtudents have difficulty with word problems becanse

¢ thev have s general difficulty with resding

¢ thev are often not familinr with the contexts described in
the problems.

But an analveis by some middle and high school teachers in
Woburn MA showed that there's got to be more to it. They
ohgerved that the following problem

Mary drives from Boston to Washington, s trip of 500
miles. If she travels at an sverage rate of GO MPH on
the way down and 530 MPH on the way back, how
many hours does her trip take?

cansges no dificulty with prealgebra students who understand
the connection between rate, time, and distance. But this prob-
lem

In another direction, one that connects to expression simplification and equality of functions, we ask students to find a
simpler network that produces the same input-output pairs as the original network.



Algebra Word Problems

The difficulties that high school students have with algebra word problems are legendary. The
quintessential word problem (“Mary is 10 years older than her brother was 5 years ago ...”) is the
topic of cartoons and jokes. Teachers have devoted a great deal of effort to exposing the roots of
the difficulties people have with word problems. Two very common perceptions are that students
have difficulty with word problems because

» they have a general difficulty with reading
« they are often not familiar with the contexts described in the problems.

But an analysis by some middle and high school teachers in Woburn MA showed that there’s got
to be more to it. They observed that the following problem

Mary drives from Boston to Washington, a trip of 500 miles. If she travels at an average rate of
60 MPH on the way down and 50 MPH on the way back, how many hours does her trip take?

causes no difficulty with prealgebra students who understand the connection between rate, time,
and distance. But this prob- lem

3
“Undoing” the algorithm



Mary drves from Boston to Washington., and she
travels at an average rate of GO MEPH on the way down
and 30 MFPH on the way back. If the total trip takes

13% hours, how far 15 Boston from Washington?

is baflling to many of the same students a vear later in algebra

clags. This analvais led to an cffective method—that we call Guess-Check-Ganema lize
is dilferent from the
welbksown Geess and
Here's how it works for the second problem above: Chec k strategy for finding
solutions or approximate
The first step s to guess at an answer; suppose Boston s sclutions to numerical
pro blems.

(Fucas-Cheel- Generalize —for solving thease kinds of problems.

S00 miles from Washington. The purpose of the gness 8 nof to

gtumble on a right answer: rather, it's to focus students on the 0 spite of oer prockma-
ateps they take to check the guess. So. if the guess is 500 miles, o0 that the point & sot

- . . 5 to get the right
then Mary takes 29 = bfl hours to drive down and ™ = 10 w::mi:slrﬂ.;::mm

hours to get hmntf.m The total trip is 18% hours. 8o ﬁﬂﬁl i pot A=At Gmt elcant to take
the right answer, but that's O, We ask students to be explicit ianﬂ::'t_fmms ther'll be
ahont what they did to check the guess. 1 they are not sure,
thev take another gness, and another, and another, until they

are able to articulate something hike

“You take the guess, divide it by GO then divide 16 by
50, add vou answers and ace if vou get 18%."

The generie “guess checker™ 18 then This method was inspired
in part by some educational
guess  guess o1 theoriss about how people
G0 L 50 = E “encapsulate”  isolated

actions into coherent

This gives them the equation that models the problem: processes
T r o 1&:l
(TR TV R

and from here, it's “pure” algebra.

Extension

One of the main themes in the program is ectersion. Extension
in the CME Project takes two forms: algpebraic (extending oper-
ations via their defining properties) and anelyfic (extension by

continuity ).

Example: Arithmetic with Signed Numbers

Students have practiced acithmetic with non-negative integers
gince first grade. Our approach 18 to extend the “number faets”

Mary drives from Boston to Washington, and she travels at an average rate of 60 MPH on the



way down and 50 MPH on the way back. If the total trip takes 181 3
hours, how far is Boston from Washington?

is baffling to many of the same students a year later in algebra class. This analysis led to an
effective method—that we call

Guess-Check-Generalize
Guess-Check-Generalize—for solving these kinds of problems. Here’s how it works for the
second problem above:

is different from the well-known Guess and Check strategy for finding

The first step is to guess at an answer; suppose Boston is

solutions or approximate solutions to numerical 500 miles from Washington. The purpose of the
guess is not to

problems.

stumble on a right answer; rather, it’s to focus students on the

In spite of our proclama-
steps they take to check the guess. So, if the guess is 500 miles, then hours Mary to get takes 500
60

= 82 3 hours the right answer, tions that the point is not
to drive down home. but The that’s total OK. trip We is ask 182
3 students hours, and so 500 500 50
is =not 10
to be explicit

to get the right answer by guessing, many students are at first reluctant to take a guess, fearing
they’ll be incorrect. about what they did to check the guess. If they are not sure, they take
another guess, and another, and another, until they are able to articulate something like

“You take the guess, divide it by 60, then divide it by 50, add you answers and see if you get 181
3

2

The generic “guess checker” is then
This method was inspired guess
guess
1
in part by some educational theories about how people 60

50



“encapsulate” isolated actions into coherent This gives them the equation that models the

problem:
processes.
x 60
+
=9
18
x 50
1 3 and from here, it’s “pure” algebra.
Extension

One of the main themes in the program is extension. Extension in the CME Project takes two
forms: algebraic (extending oper- ations via their defining properties) and analytic (extension by
continuity).

Example: Arithmetic with Signed Numbers

Students have practiced arithmetic with non-negative integers since first grade. Our approach is
to extend the “number facts”

4

+
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that many have memorized by extending patterns in the “ta-
bles™ in ways that preserve the properties of the operations.
Here's o piece of the multiplication table:

b4

U2 0| 12| 24| el as| e vz sa| es| 108 120] 132] 144 Notice the reorientation
to maks the table ook

Bl un| za| as| za] 54 e[ v as[ eef ven| ezef 1z more like 3 coordinate

system. This is on parpose.
Mool o] 2 30| 2w = I N {1 N U] YT W I ] O i F:'\:r gx;mph,b_-(g:hpiulg
the lime with equation
T+ K = 12 on this table,

= 9 1E] 2T Ee| a4y sS4 aid] I K1 W u9] 108

MEREE R E R EEEEE vau get & picture of all the
products of istegers that

EREEREEEEEEEEE R sum to 12. Which product
i langest?

R Gl 12 1] 24 A aal 42 4El A4 a0 a6l T2

- L A on 1A 2| 23 A0 55 40 43 A0f 551 &)

& L H LI Ie| 2 24 ZH[ 32X Bl 40| 44 4H

L] L sy a1z 13 1= 21 24 27 3 53 36

The multiplication table, recriented

So. how could one extend the table in ways that make the
patterng in the rows and columns continue? There are several
wava, but not surprisingly. the one that s most natural for

many students 15 exactly the one that ensures that the extended A detailed verification that
the wsmal extension of the
multiplications and addi-

continue the linear patterns to the left, and nee the columng tion tables presences arith-

arithmetic works the way it’s supposed to: use the rows to

metic poperties like asso-
) . ciativity asd commutativity
well (the rows incresse again to the left of 0, for example) and we & oo technical for most

investignte why such choices “break” the rules of arithmetic, In  Stodents at this stage. The
e .. . . development in the pro-
other words, this is not an exercige in “extending the pattern: gram is mare infarmal, but

rather. it is a search for an extension that prescrves rules for 5 @ithful to the prisck
ples of this werification.

tor extend down, We present students with some other wdens, as

caleulating.

T

that many have memorized by extending patterns in the “ta- bles” in ways that preserve the



properties of the operations. Here’s a piece of the multiplication table:

X
12
012243648 60728496 108 120 132 144
Notice the reorientation to make the table look 11
0112233445566778899 110121132
more like a coordinate
10
0102030405060 708090100110 120
system. This is on purpose. For example, by graphing
9
09 182736455463 72819099 108
the line with equation x +y = 12 on this table, 8
081624324048 5664 72 80 88 96
you get a picture of all the products of integers that 7
0714212835424956 637077 84
sum to 12. Which product
6
0612182430364248 54606672
is largest?
5
0510 152025303540 45 50 55 60
4
04812162024 2832364044 48
3
0369121518212427303336
2
024681012141618202224
1
01234567891011 12

X
4
3-2-10
00102030405060708090100110120 -1
-2
-3
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The multiplication table, reoriented

So, how could one extend the table in ways that make the patterns in the rows and columns
continue? There are several ways, but not surprisingly, the one that is most natural for many
students is exactly the one that ensures that the extended

A detailed verification
that arithmetic works the way it’s supposed to: use the rows to continue the linear patterns to the
left, and use the columns

the usual extension of the multiplications and addi- tion tables preserves arith- to extend down.
We present students with some other ideas, as well (the rows increase again to the left of 0, for
example) and we

metic properties like asso- ciativity and commutativity is too technical for most investigate why
such choices “break” the rules of arithmetic. In other words, this is not an exercise in “extending
the pattern;”

students at this stage. The development in the pro- gram is more informal, but rather, it is a search for an extension
that preserves rules for calculating.

it is faithful to the princi- ples of this verification.

5



Example: Integer, Rational, and Real Exponents

Most students come from maddle achool with some experience
with positive integer cxponents: they know that 2% means
2= 2w 2 and, more generally, if 218 8 positive integer,

" means 2 K2 x .- %2
— _ —
n times

In Algebra 1. we use this definition to develop rules for arith-

metic with positive integer exponents:

Loa™. g™ =a"™™

2 {a")" =amm

If we insist that these definitions extend to all integers, we
are forced to make some definitions:

¢ 3% would have to be 1 if we want mle 1 to extend:

g5 .90 — gt _ 48

but the only number that can be multiplied by 3% to get 37
i 1, a0 3" would have to he 1.

¢ Similarly, 37 wounld have to he % if we want rule 1 to extend

to negative integers:

g-b g0 _ g1t g0
but the only number that can be multiplied by 3! to get 1
5 % g0 37" would have to be l,‘

. 1
¢ I we want to extend the rules to fractional exponents, 32
would have to be (by rule 2) o number whose square ia 3

(:i;)2 — 33 3 _ g

There are hml choices here, V3 and —v'3, and we make the
choice that 37 = 3.

¢ We oan extend the meaning of exponents to all integers (in
Algebra 1) and all mtional numbers (in Algebra 2) in this
way—by forcing rules 1 and 2 to extend. But what about
irrational exponents”? What “must” 3% menn? For this,
wie uge extendgion by continvity. The graph of y = 37 for all
rational r looks hike this:

Example: Integer, Rational, and Real Exponents

This kind of extension is
cannected to what we call
the “duck principk.” Ta
show that some expression
is equal to \-"ﬁ. show that
it & positive and that its
square is 10. IF it walks Kike
aduck . ...

In the same way, :'1'2 -:'12 =
1, so :I:"l would have to

be .

Similarly, 35 & 2 sember
whose Bth power & 3°, 50
we define it o be V3T,
Later im the program, we
show that this is the same
as [ #F) . Even later in the
poOgram, we imvestigats
the entire s=t of soletions
to = = 3% in the complex
numbers.



Most students come from middle school with some experience with positive integer exponents;
they know that 23 means 2 % 2 x 2 and, more generally, if n is a positive integer,

2nmeans 2 ™~ X 2 X+ X 2" n
times

In Algebra 1, we use this definition to develop rules for arith- metic with positive integer
exponents:

1.an -am = an+m
2. (an)
m

=anm
If we insist that these definitions extend to all integers, we

This kind of extension is
are forced to make some definitions:

connected to what we call the “duck principle.” To
* 30 would have to be 1 if we want rule 1 to extend:

show that some expression is equal to

3530 =35+0=35
but the only number that can be multiplied by 35 to get 35 is 1, so 30 would have to be 1.

* Similarly, 3—1 would have tobe 1 3
\/

10, show that it is positive and that its square is 10. If it walks like a duck ... .
if we want rule 1 to extend to negative integers:
In the same way, 3-2-:32=3-1-31=3-141=30=1

1, so 3—2 would have to be 1 32 but the only number that can be multiplied by 31 to get 1is 1 3

, 50 3—1 would have tobe 1 3

* [f we want to extend the rules to fractional exponents, 3

1 2 would have to be (by rule 2) a number whose square is 3:

12



12
2=31=3
There are two choices here,

\
3and —
N

3, and we make the
Similarly, 3

58

is a number

choice that 3

12

\
3.

whose we 8th power define it to be is ¥
35,8

35.

SO

Later in the program, we show that this is the same
* We can extend the meaning of exponents to all integers (in
as Algebra 1) and all rational

numbers (in Algebra 2) in this way—by forcing rules 1 and 2 to extend. But what about irrational
exponents? What “must” 3

(
V8

. Even later in the program, we investigate the entire set of solutions



2 mean? For this,
to x8 = 35 in the complex numbers.
we use extension by continuity. The graph of y = 3x for all rational x looks like this:

6
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180

1on0

50

01 1 2 z 4 5
y = 37, [ull of holes

Even though it looks smooth, this graph is full of holes,
ane over each irrational number. If we fill in the holes we
get the definition of 3% for wrationsl . Put another way,

3*% s the number that is approached by the sequence

3].]. 3]'“'. :;I A I-I. :il.lllﬂ_ :;I A I-I'.*I. .

where the sequence of rational cxponents has 2 as o limit.

Equations and Graphs

Many high school students do not understand the fact that one
can test o point to see if it 1w on the graph of an equation
by seecing if its coordinates satisfly the equation: squations are,
for these students, s kind of code from which one can read off

information that allows one to produce s graph.

Our approach to this phenomenon 18 to provide students
with opportunitics to connect equations and graphs without
claborate formalismes, using the idea that the cquation of & graph
i the poini-fesfer for the graph: 1t tells yvou whether or not a
point 15 on the graph by checking some numerical fact about its
coordinstes.

For example, we sask students to hnd the equation of the
horizontal line that passes through (5,1) They tvpieally have
no trouble drawing the line, and. when we give them several
points, they usually have no trouble explaining why each is on
or off the line: to see if & point 15 on the line, check to see if its
y-coordinate is 1. So, the point-teater 18 y 2 1. and the eopustion
iy =1

y = 3x, full of holes

Again, this & all informal
and imtuitive, but the ideas
can be made precise and
are made precise in courses
in post-calcules analysi.



Even though it looks smooth, this graph is full of holes, one over each irrational number. If we
fill in the holes we get 3 V

2 the is the definition number of that 3x is for approached irrational x. by Put the another
sequence

way,
Again, this is all informal and intuitive, but the ideas 31.4,31.41,31.414,31.4142,31.41421,...
can be made precise and are made precise in courses

where the sequence of rational exponents has
\

2 as a limit.

in post-calculus analysis.
Equations and Graphs

Many high school students do not understand the fact that one can test a point to see if it is on the
graph of an equation by seeing if its coordinates satisfy the equation; equations are, for these
students, a kind of code from which one can read off information that allows one to produce a
graph.

Our approach to this phenomenon is to provide students with opportunities to connect
equations and graphs without elaborate formalisms, using the idea that the equation of a graph is

the point-tester for the graph: it tells you whether or not a point is on the graph by checking some
numerical fact about its coordinates.

For example, we ask students to find the equation of the horizontal line that passes through
(5,1). They typically have no trouble drawing the line, and, when we give them several points,
they usually have no trouble explaining why each is on or off the line: to see if a point is on the
line, check to see if its y-coordinate is 1. So, the point-tester is y
=9

1, and the equation isy = 1.
7
1

il
11345



Another example: What's the equation of the line whose
graph bisccts quadrants 1 and 37 The check to sec if a point
ig on the line 18 that 1ts - and yp-coordinates are the same. The

equation 1s thus v = x.

Theae are sumple examples. but they reinforee the meaning
of the correspondence between equations and their graphs. And
the point-tester ides works well for more complex equations andd

their graphs—it's an idea that runs thronghout the prograom.

Example: Equations of Lines and Slope

In Algebra 1. the point-tester ides helps students ind equations
for lines. The method mvolves a somewhat nnorthodox approsch
tov slope.

Our teaching experience tells ua that “the slope of a line”
approach places some undue cognitive demands on students
atndents are ssked to think about o number (slope) that is
an invariant of an infinite geometric object (the line). This is

dithcult for & couple reasons:

¢ The invariant s not part of the geometric object itsell—it
i# o numerical quantity derived from the geometry of the
line.

¢ And slope is derived via s caleulation that seems at hrst
glance to depend on o choiee of two points on the line.

Our development starts with the more conerete iden of “slope
between 2 points.” s number that can be caleulated directly
from coordinates.

Our approsch to equations for lines synthesizes this perspec-
tive on slope with the pomt-tester wea. We make an explicit

asgammption [that will be proved in the Geometry conrse):

Assumption

Theee poinés A, B, ond O ke on the some ine if and only if

miA. B)=m{H.C)

Suppose von are given btwo points, say A = (3.-1) and
B = (5 3). What is the equation of the line that containg A and
87 Students develop the habit of checking several points to ace
il they are on the line, Beeping track of their steps. At first, we

Inde=d, the shpe of a
line & an example of the
derivative that students
will study in cakuls.

We wse the notation
m{A, #) for the slope
between A and H.

The proof reguires resalts
about similar triangles.

Sa, the Guess-Check-
Generalize theme plays a
major role in this methed.

Another example: What’s the equation of the line whose graph bisects quadrants 1 and 3? The
check to see if a point is on the line is that its x- and y-coordinates are the same. The equation is



thus y = x.

These are simple examples, but they reinforce the meaning of the correspondence between
equations and their graphs. And the point-tester idea works well for more complex equations and
their graphs—it’s an idea that runs throughout the program.

Example: Equations of Lines and Slope

In Algebra 1, the point-tester idea helps students find equations for lines. The method involves a
somewhat unorthodox approach to slope.

Our teaching experience tells us that “the slope of a line” approach places some undue
cognitive demands on students— students are asked to think about a number (slope) that is an
invariant of an infinite geometric object (the line). This is difficult for a couple reasons:

* The invariant is not part of the geometric object itself—it
Indeed, the slope of ais a
numerical quantity derived from the geometry of the line.
line is an example of the derivative that students will study in calculus.
* And slope is derived via a calculation that seems at first glance to depend on a choice of two
points on the line.
Our development starts with the more concrete idea of “slope
We use the notation
between 2 points,” a number that can be calculated directly from coordinates.
m(A, B) for the slope between A and B.
Our approach to equations for lines synthesizes this perspec- tive on slope with the point-tester
idea. We make an explicit assumption (that will be proved in the Geometry course):
Assumption Three points A, B, and C lie on the same line if and only if
The proof requires results about similar triangles. m(A, B) = m(B,C)
Suppose you are given two points, say A = (3,—-1) and B = (5,3). What is the equation of the
line that contains A and B?. Students develop the habit of checking several points to see if they
are on the line, keeping track of their steps. At first, we

So, the Guess-Check- Generalize theme plays a major role in this method. 8



give them some points to check —sae X = (T,6). F = (1. 5],
and @ = (9.5.10.5). In each cose, they find the slope hetween
the point to be tested and, say. B, Then they check whether it
is equal to A, B) (that s, 2). The generie check is that the

alope from (r, y) to (5.3) should equal 2, 80 the point-tester s
Some care has to be @ken
y— 3 with the fact that x can't
=2 be § on the left-hand side

of this eguation.

r—27i
This equation 15 then simplificd and transformed into s linear
cauation in r and y The course procesds to develop Hueney in
sketching lines from their equations and finding equations for

given lines, but only after this foundation is solid.

Our Uses of Technology

Students in the CMWE Projecd Algebra 2 course use technol-
ogy in many of the same wavs that technology s naed in
ather programa: to test out conjectures, to reduce computationsl
drudgery, to graph cquations and unctions, to perform statisti-
cal analvees on data, and to provide examples of theorems and
results. And we also use the caleulator as aocontext—hguring out
the what's “behind ™ the built-in functions. For example, one les-
gon helps students understand the mathematics that underlies
the unctions on s calculator that compute standacd deviation,

variance, mean, and best it lines.

We make another use of technology that s less standard: séu-
denda wee lechnodogy to butld computaiionael models of mathe-
meattenl objecta.

Example: Modeling Functions

O of the most important examples of this model-building se-
tivity in the lsst two courses 18 that students build computa-
tional models of mathematical furctions.

Current high-end mathematioal ealenlators (the TI-89 family,
for example ) and most computer mathematics systems contain g
capability that will eventually be avadlable on most machines
something we call & funcfional longuage. What this means is
that one can create nser-defined functions—we call them mod-
ela—in a langnage that 13 quite close to ordinary mathemationl
notation, and then they oan wse the ioctions ae if they were
built-ins. For example. to build a mode]l of the function [ de-

give them some points to check—say X = (7,6), P = (1,-5), and Q = (9.5,10.5). In each case,
they find the slope between the point to be tested and, say, B. Then they check whether it is equal



to m(A, B) (that is, 2). The generic check is that the slope from (x, y) to (5,3) should equal 2, so
the point-tester is

y Some care has to be taken with the fact that x can’t x be 5 on the left-hand side

of this equation. - - 35
=2

This equation is then simplified and transformed into a linear equation in x and y. The course
proceeds to develop fluency in sketching lines from their equations and finding equations for
given lines, but only after this foundation is solid.

Our Uses of Technology

Students in the CME Project Algebra 2 course use technol- ogy in many of the same ways that
technology is used in other programs: to test out conjectures, to reduce computational drudgery,
to graph equations and functions, to perform statisti- cal analyses on data, and to provide
examples of theorems and results. And we also use the calculator as a context—figuring out the
what’s “behind” the built-in functions. For example, one les- son helps students understand the
mathematics that underlies the functions on a calculator that compute standard deviation,
variance, mean, and best fit lines.

We make another use of technology that is less standard: stu- dents use technology
to build computational models of mathe- matical objects.

Example: Modeling Functions

One of the most important examples of this model-building ac- tivity in the last two courses is
that students build computa- tional models of mathematical functions.

Current high-end mathematical calculators (the TI-89 family, for example) and most computer
mathematics systems contain a capability that will eventually be available on most machines—
something we call a functional language. What this means is that one can create user-defined
functions—we call them mod- els—in a language that is quite close to ordinary mathematical
notation, and then they can use the functions as if they were built-ins. For example, to build a
model of the function f de-
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