a. Expand $(3+x)^4$ fully.

(2)

b. Hence find the exact value of 1003⁴

(2)

2.

a. Show that (x-3) is a factor of $f(x)\equiv 2x^3-5x^2-7x+12$

(1)

b. Factorise f(x)

(2)

c. Find the exact solutions of

i.
$$f(x) = 0$$

(1)

ii.
$$f(x+2) = 0$$

(1)

3.

$$A = (-2, 6), B = (-1, -1)$$
and $C = (5, 5)$

a. Find the gradient of line AB

(1)

b. Find the midpoint M of A and B

(1)

c. Find the equation of the perpendicular bisector of AB in the form of y=mx+c

(2)

d. Find the equation of the perpendicular bisector of BC

(2)

e. Find the intersection of the perpendicular bisector of AB and BC

(2)

Given points A, B and C passing through the circle P,

f. Hence find the equation of the circle in the form of

$$(x-a)^2 + (y-b)^2 = r^2$$

where a, b and r constants to be found.

(3)

a. Shade the region R for the inequalities below

$$y\leqslant 2x+1$$

$$x\leqslant 2$$

$$y\geqslant -1$$

(3)

b. Find the area of region R.

(1)

5.

$$\mathrm{f}(x)=1-\frac{x}{2}$$

$$g(x) = 5x - 2 - 2x^2$$

a. Sketch on the same axes for y = f(x) and y = g(x)

(5)

b. Hence solve the inequality for $f(x) \le g(x)$

(1)

6.

" $3^n + 2$ is a prime number for all positive integers n"

Disprove this statement.

(2)

7.

$$\frac{9^{x-2}}{3} = \frac{81^y}{27^x}$$

Find y in terms of x

(3)

$$\mathrm{f}(x) = \left(2 - \frac{x}{k}\right)^8$$

a. Find the coefficient of x^3 in terms of k

$$g(x) = (2+3x)\Big(2-\frac{x}{k}\Big)^{8}$$
 (2)

Given k = 1

b. Find the the value of the coefficient of x^2 of g(x)

(4)

9.

The graph of y = f(x) consists of 2 line segments between A(-2,4) and B(1,-2) and between B and C(4,0)

a. Find the length of AB, AC and BC

(3)

b. Find $\angle BAC$ correct to 1 decimal place

(3)

c. Find the exact value of the area of $\triangle ABC$

(3)

d. Hence find the shortest distance between from point B to line AC

(1)

10.

Find the range of values of k such that the line y = x + k cuts the circle $(x + 2)^2 + y^2 = 8$ at two distinct points.

(4)

The graph of $y=\mathrm{f}(x)$ is shown in fig 3. It cuts the y axis at A(0,8) and has a minimum point at B(3,5)

a. Sketch on separate axes the graphs of

i.
$$y = f(2x)$$

ii.
$$y = 3 + f(-x)$$

giving the coordinates of the points to which A and B are transformed.

(6)

The graph of y = a + f(x + b) has a minimum point at the origin.

b. Find the values of *a* and *b*

(2)

12.

Given α is an obtuse angle, find α in degrees correct to 1 decimal place

(4)