
PROBLEM 1 – Goldilocks is
Scrambled!
In the story Goldilocks and the Three Bears, each bear had a bowl of porridge to eat while
sitting at their favourite chair. What the story didn’t tell us is that Goldilocks moved the bowls
around on the table, so the bowls were not at the right seats anymore. The bowls can be sorted
by weight with the lightest bowl being the Baby Bear’s bowl, the medium bowl being the Mama
Bear’s bowl and the heaviest bowl being the Papa Bear’s bowl.

Write a program that reads in 10 different sequences of three weights (a triad) and prints out the
weight of Mama Bear’s bowl from each triad. The first number of each input sequence is the
number of triads to expect (so in the sample below, there are 2 triads to read in from the first
sequence of numbers, and 5 triads from the second). You may assume all weights are positive
integers less than 100 and that no triads will include the same number twice.

DATA11.txt (DATA12.txt for the second try) will contain 10 cases. You can assume that all input
data will be valid. Your program must output the correct weight from each triad. So, you should
have a total of 10 lines after running your program on the data. ​ ​ ​ ​ ​

Sample Input
​ ​ ​
2
10​
5​
8
9
2
4
5
28
12
31
9
10
19
39
20
11
45
33
21
0
19
18

Sample Output
​ ​ ​ ​ ​
8 4
28 10 20 45 18

​ ​ ​ ​ ​

PROBLEM 2 – Calendar
Write a program to print out a calendar for a particular month given the day on which the first of
the month occurs together with the number of days in the month. This question is a lot about
formatting, so your formatting must be PERFECT to receive full marks.

Your program should read pairs of integers. First is the integer representing the day of the week
on which the month begins (1 for Sunday, 2 for Monday, ..., 7 for Saturday), and second is an
integer which is the number of days in the month (only between 28 and 31 inclusive). Your
program should print the appropriate calendar for the month.

DATA21.txt (DATA22.txt for the second try) will contain 20 lines. The data will be in pairs – the
first number is the day of the week and the second is number of days. You can assume that all
input data will be valid. Your program must output the correct monthly calendar for each
situation, producing a separate calendar for each pair of numbers. So, you should have a total
of 10 calendars after running your program on the data. Note that your output should be in the
font “Courier New”. If necessary, the output can be copied/pasted into a text editor and changed
to Courier New for judging.

Sample Input

3
30
7
28

Correct Sample Output

Sun Mon Tue Wed Thr Fri Sat
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30​ ​

Sun Mon Tue Wed Thr Fri Sat
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28​
​
Incorrect Sample Output – these would NOT receive marks because of formatting issues:

Input 7 28

Sun Mon Tue Wed Thr Fri Sat
 1
 2 3 4 5 6 7 8
 9 10 11 12 13 14 15
 16 17 18 19 20 21 22
 23 24 25 26 27 28​

Input 3 30

Sun Mon Tue Wed Thr Fri Sat
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30​ ​

PROBLEM 3 – A Little Word Play

Mr. Swaine has an activity in his class where students make WordArt, where a piece of art is
made using words that means something to them. Now he’s combining programming with this
idea, and he wants you to make a program that will format a piece of art!

The idea is quite straightforward … the user just picks a visible character of their choice, along
with a word. The program takes the input and creates a square where the word is always
printed diagonally in both directions (top left to bottom right, and bottom left to top right), and if
the length of the word is odd, the word is also printed straight up/down in the middle of the
square and straight left/right in the middle of the square. The rest of the square is filled with the
chosen character.

DATA31.txt (DATA32.txt for the second try) will contain 20 lines. The data will be in pairs – first
the character to fill the square with, second the word to work with. Your program must output
the correct word art for each situation, producing a separate piece of art for each case. So, you
should have a total of 10 pieces of art after running your program on the data. You can assume
that all words will have a length above zero but below 20 with no spaces.

Sample Input

-
BASEBALL
.
HIGHLANDS

Sample Output

B------L
-A----L-
--S--A--
---EB---
---EB---
--S--A--
-A----L-
B------L

H...H...S
.I..I..D.
..G.G.N..
...HHA...
HIGHLANDS
...HAA...
..G.N.N..
.I..D..D.
H...S...S

PROBLEM 4 – Trucker Rules
A truck driver is planning to drive along the Trans-Canada highway from Vancouver to St.
John's, a distance of 7000km, stopping each night at a motel. The driver has been provided with
a list of locations of eligible motels, with the respective distance of each motel, measured in km,
from the starting point in Vancouver. Some of the motel locations are:

0,990,1010,1970,2030,2940,3060,3930,4060,4970,5030,5990,6010,7000

… but more motel locations may be added just before the trip begins.

Determine if it is possible to complete the journey if:
1. the trucking company insists that the driver travels a minimum distance of A. km per day,
2. the law sets a maximum distance of B km per day, and
3. each night, the driver must stay at an eligible motel (from the above list or the additional
locations described below).

The driver is interested in different options when making the trip, and you are to write the
program to calculate how many different options there are.

For example, if no new motel locations are added, A = 1 and B = 500, then it is impossible to
make the trip, i.e., the number of options is 0. If A = 970 and B = 1030 then there is one way to
make the trip, but if A= 970 and B = 1040 then there are four ways to make the trip. There are
two ways to make the trip if A= 970, B = 1030, and we add one stop at 4960.

Input Specification
There are 10 different situations in the file DATA41.txt (DATA42.txt for the second attempt). The
first two lines are the minimum distance A and the maximum distance B (0 <= B <= 7000). Both
A and B are integers. The third line of the input is an integer N between 0 and 20, followed by N
lines, each giving the location m of an additional eligible motel (0 < m < 7000). You should note
that no two motels are located at the same distance from Vancouver.

Output Specification
Output one integer - the number of different ways the driver can choose the motels to make the
trip, under the given constraints.

Sample Input
1
500
0
970
1030
0
970
1040
0
970
1030
1
4960

Sample Output
0
1
4
2

PROBLEM 5 – Irregular Expressions
You might have heard of Regular Expressions, but this question is about Irregular
Expressions, a concept we just invented. An irregular expression is a pattern string that can
be used to match target strings.

Here’s an example pattern that can be used to “accept” or “reject” target strings:

adbsk[kkjsvf]bbb

There are two rules for matching a target string to a pattern like the one above:

1.​ Any lower-case letter that is not inside square brackets in the pattern must match to
the same letter in the target string, in the correct position.

2.​ If a set of lower-case letters appears in square brackets in the pattern, the target
string must contain, at that point in the string, exactly half of these letters (rounded
up) in any order.

There are lots of target strings that match the above pattern (60 to be precise). Here are a
few of them. The parts that match the bracketed portion are highlighted:

adbskkkjbbb, adbskjkkbbb, adbskskfbbb, adbskfjkbbb

Of course, there are also an infinite number of targets that do not match. Here are a few of
them:

adbskkkjsbbb, adbskjkbbb, adbsjsvbbb, adbsksfjbb, fhfghj tomato pesto

An irregular expression can be any length, can use any plain lower-case letter, and can
contain zero or more non-nested square bracket sections.

DATA51.txt (DATA52.txt for the second try) will contain 10 lines. Each line will consist of an
irregular expression pattern string followed by 5 target strings to match, all separated by
spaces. Your program must output either “true” or “false” for each target string depending on
whether it matches the pattern. The words “true” and “false” must be lower case and
separated by a single space. You should produce a separate line of text for each line in the
input. The maximum length for each pattern and each target string is 256 characters. Note
that the test data below has only 5 lines, but the real data file will have 10.

Sample Input

adbsk[kkjsvf]bbb adbskkkjbbb adbskkkjsbbb adbskskfbbb adbsjsvbbb fhfghj
fkqm[qzqyledbqq]c fkqmdqqqlc fkqmqlbyq fkqmqedqc fkqmblqqzc fkqmlqbdzc
dj[mocn]dd djnmdd djocdd djmodd djmodd djcndd
wsvahfskbs[uucysmlfrcnhu]mjgphbd this problem is ridiculous dude
a[aauzujbtipmca]bsk aiamzuausk acuaaujabsk aaaauucbsk aazpubtubsk aiaujcambsk

Sample Output

true false true false false true false
false true true true true true true
true false false false false false
false true false true true

PROBLEM 6 – What Lies Ahead

You are trapped in a room with a puzzle grid painted on the floor. You are in a start square, just
below the puzzle grid, facing up. Your task is to get to a target square (or suffer a terrible fate).
Your first move must be to step into the main puzzle grid if you can. Once in, you may not step
outside the grid unless it is onto a target square. Once you step onto a target square, you are
finished and can make no further moves.

Each square in the puzzle grid has a symbol painted on it representing a possible move (up,
down, left, right, clockwise, or counterclockwise). You can only move one grid square at a time,
and you can only turn 90 degrees at a time. Your next move must always be one of the moves
you can see painted on the floor ahead of you (this does not include the one you are standing
on). You cannot change the direction you are facing unless you can see a move ahead that allows
you to turn clockwise or counterclockwise. Because of the restrictions on the direction you can
face, you will often end up stepping sideways or backwards when completing this puzzle.

In the sequence of moves shown above, the user starts at the bottom, facing up. Her target is the
square above the maze at the top. For her first move, the choices are UP or LEFT (just the moves
she sees in front of her). She can’t go left, so she chooses UP. Then her choices are UP or LEFT
again and she chooses LEFT. Now her choices have changed: CLOCKWISE,
COUNTERCLOCKWISE, or DOWN. She can’t move down and if she turns counterclockwise, she
will have no moves in front of her. So, she chooses CLOCKWISE. For her next move, she can
now choose from UP or CLOCKWISE.

DATA61.txt (DATA62.txt for the second try) will contain 10 test cases. Each test case consists of 6
lines of 6 characters, representing a 4x4 puzzle grid as well as all possible start and target
squares around the outside of the grid. The moves are U, D, L, R, C, and B for UP, DOWN, LEFT,
RIGHT, CLOCKWISE, and COUNTERCLOCKWISE respectively. The start square is marked S
and can be anywhere on the bottom row. There will be five possible target squares, marked T,
which can appear anywhere around the outside of the puzzle grid. Squares which are out of
bounds are marked with the “.” character (ASCII code 46).

Write a program to determine which of the target squares can be reached from the given start
square. You should output a single line of 5 characters, with each character representing a target
square (in order from top left, scanning each row from left to right, moving downwards). If a target
square is reachable, output T for that square. If not, output F.

Note that in the sample input below, there are 2 test cases, but the real data files will contain 10.
The squares which are part of the puzzle grid are shaded below for ease of reading, but this
shading will not appear in the file.

Sample Input

..TT..
TCURC.
.DLRD.
.BUBB.
.CUCCT
.TS...
.T.T..
TRCDU.
.UCLDT
.RCBL.
TDUCU.
.S....

Sample Output

TTFFT
FTFFF

	PROBLEM 1 – Goldilocks is Scrambled!
	PROBLEM 2 – Calendar
	PROBLEM 3 – A Little Word Play
	PROBLEM 4 – Trucker Rules
	PROBLEM 5 – Irregular Expressions
	PROBLEM 6 – What Lies Ahead

