OPNFV DPACC Architecture

Contents

1 Introduction
2 Framework

2.1 Partitioned View

2.1.1 Acceleration Layer for t (VM

2.1.11 SAL: software acceleration Layer

2.1.1.2 North-bound interf: from SAL to APP
2.1.1.3 Functional Components of SAL

2114 th- nd interf: tween t and host
21.2 Acceleration Layer for Host (Hypervisor

2.1.2.1 AL: softwar leration Layer

2.1.2.2 North-bound interfaces for SAL@host to guest
2.1.2. Functional Components of SAL

2.1.2.4 South-bound interfaces between host and HW
2.1.2.5 Host AML

2.2 Usage Analysis

2.2.1 : VNF Acceleration t

2.2.2 Usage: VNF Acceleration Examples

2. Aggregated View

3 Related Upstream Work Plans
4 References

5 History
6 Editors
7 Contributors

Figure 1 Acceleration L r for t (VM

Figure 2 Acceleration Layer for Host (Hypervisor)
Figur Host AML: VIM-NEVI leration man ment architectur

Figure 4 VNF Acceleration types
Figure 5 VNF Acceleration (e.qQ. t

Figure 6 DPACC Architecture: NFV High Level View

1 Introduction

The project is to specify a general framework for VNF Data Plane Acceleration (DPA or
DPACC), including a common suite of abstract APIs at various OPNFV interfaces.

The purpose of specifying such a framework is to enable VNF portability and resource
management across various underlying integrated SOCs and standard high volume servers
(SHV), with/without hardware accelerators.

It may desirable to design such DPA API framework to easily fit underneath existing
prevalent APIs (e.g. sockets), as a design choice, for legacy designs.

The framework should not dictate what APIs an application must use, rather recognizing
the API abstraction is likely a layered approach and developers can decide which layer to
access directly.

2 Framework

2.1 Partitioned View

211 Acceleration Layer for Guest (VM’s)

Virtual Machine or Guest

Buffer and memory
mgnt, rings/queues,
ingress/egress
scheduling, tasks,
pipeline, ...

g-drivers

for (paravirtualized)
SW/HW-funes

Software Acceleration Layer (SAL)

S

** 1f s-APIl is AC specific APls and cannot provide portability across
platforms, then the g-API is mandatory to ensure portability

Figure 1 Acceleration Layer for Guest (VM’s)

Figure 1 depicts the acceleration layer for VNF applications running in the guest. In
particular, SAL is identified as the key component in this layering architecture.

2111 SAL: software acceleration Layer

» SAL: short for Software Acceleration Layer, provides a target abstraction for
application software, which is composed of the following components and interfaces:

21.1.2 North-bound interfaces from SAL to APP

* g-API (required): short for Generic APl, meant to be a standard application interface
and is required for application portability.

* legacy-API (optional): short for Legacy API, meant to be kept intact to help existing
applications to remain functioning if they are not modified to be making explicit usage
of g-API, but keep using APIs like sockets, libcrypto, ...

2113 Functional Components of SAL

* AC (required): short for Acceleration Core, meant to be the software library for
acceleration implementation, e.g. DPDK and ODP, which in turn is composed of the
following components and interfaces:

— s-API: short for APIs for utilizing an AC (APIs from the AC);

— basic functions: buffer and memory management, rings/queues,
ingress/egress scheduling, tasks, pipelines, and so on;

— g-drivers: short for General driver for each device type, which is implemented
in software or the frontend to the hardware (may be different for different
acceleration functions)

AC is a required component for SAL implementation.

2114 South-bound interfaces between guest and
host

» sio: short for software 1/O interface, e.g. VirtlO to the underlying SW/HW, which
enables binary compatibility with paravirtualized drivers and is optional for hio-only
requirements.

* hio: short for Hardware /O interface (e.g. SR-IOV, SoC-specific interfaces, etc.),
which is referring to some type of pass-through design with support for virtualization
and is optional for sio-only deployments.

Note: Pass-through access cannot achieve binary compatibility. It is offered to VNFs as an option
to ensure optimal performance.Since binary compatibility is a “Should” requirement, there
may be cases where this tradeoff is acceptable.

21.2 Acceleration Layer for Host (Hypervisor)

https://figure1.com/

Software Acceleration Layer (SAL)

VMO VM 1 VM 2 VM 3 VM 4

e

‘ sio-backend (optional vHost-user) \

s-API

Buffer and memory
mgnt, rings/queues,
ingress/egress

scheduling, tasks, _
pipeline, ... e e v

g-drivers

SW-crypto or drivers

hio

—

J2AD7 juawaboupyy uoILDU2|220Y

— -‘)

Figure 2 Acceleration Layer for Host (Hypervisor)

Figure 2 depicts the acceleration layer for applications running in the host. Once again,
SAL is identified as the key component in this layering architecture, which is very similar to
the guest SAL.

Note:

21.21 SAL: software acceleration Layer

SAL: short for Software Acceleration Layer, provides an abstraction between SW and

HW, which is composed of the following components and interfaces:

21.2.2 North-bound interfaces for SAL@host to

guest

sio-backend (optional): backend of paravirtualized drivers, e.g. vHost-user (User
space based VirtlO interface), which is optional interface between VMs and the host.

The sio-backend could be a set of paravirtualized drivers plus it can contain the
implementation of the VirtlO backend called vHost-user.

21.2.3 Functional Components of SAL

SRL: short for Software Routing Layer, is referring to the entity to perform forwarding
or switching of packets to external or internal system, which is needed in some cases
to give support of VM to VM communication without having to leave the system, as in
the case of an external router or switch. Possible SRL applications could be Open
vSwitch or a vRouter design. SRL is an optional layer for the host.

AC: short for Acceleration Core, meant to be the software library for acceleration
implementation, e.g. DPDK and ODP, which in turn is composed of the following
components and interfaces:

— s-API: short for APIs for utilizing an AC (APIs from the AC);

— basic functions: buffer and memory management, rings/queues,
ingress/egress scheduling, tasks, pipelines, and so on;

— g-drivers: short for General driver for each device type, which is implemented
in software or the frontend to the hardware (may be different for different
acceleration functions)

AC is a required component for SAL implementation.

AML: short for Acceleration Management Layer, to be defined for orchestration and
management later in Sec 2.1.2.5 and spans more than the SAL. It is expected that
AML is to interface to the orchestration layer to allow the orchestration and
management layer to help manage the VNF applications as well as local acceleration
SW/HW resources. The AML is present in the host SAL only.

21.2.4 South-bound interfaces between host and
HW

hio: short for Hardware I/O interface, which is referring to the Non-virtualized
interface, accessed only by host SAL in the case of a SAL in the host. The guest may
also contain a hio if the guest requires direct access to the hardware.

21.2.5 Host AML

guest VMo ‘ VM1 ‘ ‘ VM 2 ‘ ‘ VM 3 ‘ ‘ VM 4 ‘
sio-backend (optional) ' | | DPACC Management
N (VIM-NFVI)
0
- o : R
8 = ° BE P >
3 2 z BN Compute
host g 3 3 “33' Management
§ I r 3 Function
< =] *
g =]
=
: :
g-drivers .g "_ni Acceleration
e £ 3 Management
=C 0 or drivers c
fomw_cmfo Function
hio SAL Hypervisor
Control node
device Accelerator CPU/Mem/Disk...
* Compute agent collaborates
with Acceleration agent for
Compute node VM lifecycle managements.

Figure 3 Host AML: VIM-NFVI acceleration management architecture[2]

As depicted in Figure 3, there are two dedicated components for DPACC acceleration
management, including the acceleration management function as part of VIM and the
acceleration agent as part of host AML on NFVi platform.

The acceleration management function, which corresponds to the global management
as specified in [2], is the centralised orchestrator of acceleration resources. It receives
requests from the compute/network/storage management functions of VIM, arranges those
requests and communicates with the acceleration agents to fulfil the requests.

The acceleration agent, which corresponds to the core of local management as
specified in [2], manages communications with locally/remotely attached accelerators. It
collaborates with the Acceleration Core (i.e. the g-driver defined above) and/or the
hypervisor to collect information of and/or conduct operations on the accelerators. It also
collaborates with other local agents of VIM management functions (e.g. compute agent) in
response of acceleration orchestration as part of NS/VNF lifecycle management events.

2.2 Usage Analysis

https://docs.google.com/document/d/1_fOinIQNcPwNODZPzGK5vRMPJQLwL7iLds4NFnjXSms/edit#bookmark=kix.bdd798stfa2q
https://docs.google.com/document/d/1_fOinIQNcPwNODZPzGK5vRMPJQLwL7iLds4NFnjXSms/edit#bookmark=kix.bdd798stfa2q

2.21

guest

host

device

VNF could deploy in many different configurations.

Usage: VNF Acceleration types

A B
- Legacy
Application Application
Standard
SAL APIs
C'l' """ i e ———
i “rypio | | i cryptolib i
; sio+ ‘ hio ‘ | sio+ |

sio-backend +

‘ sio-backend + ‘

Accelerator

vHos_T:user' vHost-user
0 SRL g SRL |

______ SAL __SAL
== =
‘- hio ‘ ‘ hio ‘
T e R T o !
i HW 18k HW |
| Switch/Crypto | . Switch/Crypto |

Accelerator

Figure 4 VNF Acceleration types
Figure 4 depicts two typical usage options for crypto accelerated VNFs employing
DPACC architecture. Both options are attempting to show a number of options or layers a

Example A on the left is meant for legacy application using crypto library via VirtlO to
accelerate crypto operations in the host. Crypto support is contained on the guest SAL,
potentially using external hardware accelerator. In this example, explicit acceleration layer
for VM to VM communication is missing, but can be supported by Host-SAL or Guest-SAL
via external vSwitch accelerator. vHost-user shown here (normally in the SAL) for sio+
access and host/sio+ layers are optional in some configurations.

Example B on the right is meant for legacy applications making use of legacy APIs to
cryptolib or even being agnostic to the traffic encryption handled in the host/accelerator. The
guest has only the standard sio support, but is accelerated by the acceleration layer in the

host. In this example, an explicit layer for SRL (vSwitch/vRouter) is added in the host for VM
to VM communication. The SRL in the host layer must support the SIO in the guest to be
able to switch packets from VM to VM. In this case, SRL contains the vHost-user interface
instead of SAL. HW-Crypto or HW vSwitch at the device layer are being utilized for
acceleration. Host SAL is optional in some configurations.

Note that both Example A and Example B above are attempting to show a number of
options or layers a VNF could deploy in many different configurations.

If the guest does not require host support the host layer are optional. The host layer
allows the guest to have better acceleration support without having to have a SAL
layer in the guest.

For cases where host SAL is being used, an explicit layer for SRL (vSwitch/vRouter)
can be added in the host for VM to VM communication. The SRL in the host layer
must support the SIO in the guest to be able to switch packets from VM to VM. In this
case, SRL contains the vHost-user interface instead of SAL.

In some cases, HW-Crypto or HW vSwitch at the device layer are being utilized for
acceleration via HIO in the host. While in other cases, the acceleration functionalities
are either missing or can be realized by SW-Crypto accelerators within guest or host
SAL.

The guest can have crypto support in software (either guest SAL as in Example A or
host SAL as in Example B) or be using a external crypto hardware via the hio
interface.

The sio is optional in the cases where the guest does not require direct access to the
host for any reason (e.g. using HW-Crypto or HW vSwitch at the device layer via
guest hio and bypass the host userspace entirely), but as the sio layer is normally
present it can be used for management access to the guest.

2.2.2

Usage: VNF Acceleration Examples

A-1 B-1 B-2 A-2
Legacy Legacy
Application Application Application Application
Standard (erypto -
+ andar agnostic
§ APTs J) AL
(53} — Standard
Crypto cryptolib APLs Crypto
sio* hio sio** sio** sio hio
SRL SRL
SAL
-1‘; SAL SAL
L SW Crypto Crypto Crypto
hio hio hio
.?;” vSwitch HW Crypto vSwitch
S
3 Accelerator Accelerator Accelerator Accelerator

Figure 5 VNF Acceleration (e.g. crypto)

Figure 5 further depicts four typical usage options for crypto accelerated VNFs
employing DPACC architecture.

Example A-1 on the left includes a VM with a SAL for direct access to external device
and VM to VM support only supplied by kernel based vSwitch or external device. The sio is
optional for host access for management, and non-hio packets may have poor performance
in some cases.

Example B-1 in the middle includes a legacy application using crypto lib via VirtlO to
accelerate crypto operations in the host, where VM to VM is still missing, but can be
supported by SAL to external switch accelerator. The design could also be enhanced by
adding a kernel based vSwitch for VM to VM ftraffic.

Example B-2 in the middle includes a legacy application being agnostic to the encrypted
traffic being handled in the host software or in external accelerator, which means it sends
and receives packet in clear text format as the host layer or the device is encrypting or
decrypting the packets unbeknownst to the guest application. An SRL (vSwitch/vRouter) is
added for VM to VM communication.

Example A-2 on the right includes accelerated application using SAL in guest to access
crypto accelerator directly, as well as flexible vSwitch or vRouter support in SW or HW. SAL
allows for some/all crypto operations to be done in the guest or passed to the host for
processing.

23 Aggregated View

' & .
4 ™
Application
ﬁ
+~ s ~
3 SAL
2 Voo T T 3
= i Crypto |
— J
1 cio i hio
\L——-—’ —_— v
;"': ------------------------------------- %,
I sio-backend + vHost-user] i
1 _m 4
: SRL -
i »
| p— |
il SAL |
g [Crypt] ’
c i r'YP o i
i
i .
L‘ hio |
9 | HW vSwitch/Crypto |
3
o Accelerator

Figure 6 DPACC Architecture: NFV High Level View
Figure 6 focus on one as a basic high level view. This view is attempting to how the
DPACC layer and configuration can be designed by the developer to give his application the
best accelerated performance.

» SAL is the software to hardware abstraction layer, which makes possible additional
services which can be controlled by the orchestration layer. SAL can be deployed to
either guest or host. SAL is required in all DPACC usages identified in this document.

* sio-backend + vHost-user is normally in the SAL or SRL layer, but shown here to
illustrate vHost in the host.

* A SAL in the guest allows for the best performance selection as it enables

— direct access to hardware acceleration via SR-IOV, SOC-specific interface or
other pass-through mechanism, and/or
— software acceleration in the guest.

* SRL or HW vSwitch adds VM to VM routing or switching of packets.

* A SAL in the host gives scalability for non-accelerated VMs and/or native
applications, which would provide the best performance and flexibility for a VNF
application.

3 Related Upstream Work Plans

OPNFV targets at integrate various open-source components from upstream projects to
deliver an open-source NFVi platform. To fulfill the functional requirements as specified in [1]
for various interfaces as defined in the above described DPACC architecture, the following
enhancements to existing upstream projects are expected:

First of all, sio interface, (e.g. VirtlO as specified by OASIS) [3], needs to be enhanced to
provide better control and adding more device types, including

* adding various device features (e.g. Crypto) support to VirtlO as an acceleration
feature;

* to support legacy VirtlO API for backward compatibility;

» to support exporting VNF metadata needs for acceleration and orchestration; and

* enhancing performance as a requirement for the solution

Secondly, Software Acceleration Layer [4] needs to be enhanced to

* help locate/find hardware/software acceleration mechanisms for the VNFs;

» support a number of software and/or hardware accelerators; and

* help enhance support for orchestration layer along with the VIM for plumbing the data
flows.

Thirdly, VIM implementations (e.g. Openstack) [2] needs to be enhanced for acceleration

orchestration and management (e.g., OpenStack Nomad [5]), including:
» Acceleration resource lifecycle management; and
* Acceleration requirement description and orchestration.

4 References

[11 DPACC High Level Requirements:

https://docs.google.com/document/d/1YexfnLRZ99Znj-5PNOnrJ5CVMhbzZ7mlJogW6ny
IGg0/edit

[2] Gap Analysis of OpenStack for DPACC:
https://docs.google.com/document/d/1_fOiNIQNcPwWNODZPzGK5vRMPJQLWL7iLds4NF

niXSms/

[3] Gap Analysis of VirtlO for DPACC
TBA

[4] Gap Analysis of DPDK/ODP for DPACC

10

https://docs.google.com/document/d/1YexfnLRZ9gZnj-5PNOnrJ5CVMhbzZ7mIJogW6nyIGq0/edit
https://docs.google.com/document/d/1YexfnLRZ9gZnj-5PNOnrJ5CVMhbzZ7mIJogW6nyIGq0/edit
https://docs.google.com/document/d/1YexfnLRZ9gZnj-5PNOnrJ5CVMhbzZ7mIJogW6nyIGq0/edit
https://docs.google.com/document/d/1_fOinIQNcPwNODZPzGK5vRMPJQLwL7iLds4NFnjXSms/
https://docs.google.com/document/d/1_fOinIQNcPwNODZPzGK5vRMPJQLwL7iLds4NFnjXSms/

[5] OpenStack Nomad Project: https://wiki.openstack.org/wiki’/Nomad

5 History

2015/12/21 Initial draft from wiki page version dated May 2015.
2016/1/22 Added Section 2.1.2.5 for host AML.

2016/2/10 Added Nomad as a reference in Section 3.

2016/3/12 Updated Section 2.2 to clarify the usage types and usage

examples.

6 Editors

Keith Wiles
Bob Monkman
Lingli Deng
Zhipeng Huang

7 Contributors

Peng Yuan
Ola Liljedahl
Michele Paolino

11

https://wiki.openstack.org/wiki/Nomad
https://docs.google.com/document/d/1YexfnLRZ9gZnj-5PNOnrJ5CVMhbzZ7mIJogW6nyIGq0/edit

	OPNFV DPACC Architecture
	1 Introduction
	2 Framework
	2.1 ​Partitioned View
	2.1.1 ​Acceleration Layer for Guest (VM’s)
	2.1.1.1 SAL: software acceleration Layer
	2.1.1.2 North-bound interfaces from SAL to APP
	2.1.1.3 Functional Components of SAL
	2.1.1.4 South-bound interfaces between guest and host
	2.1.2 ​Acceleration Layer for Host (Hypervisor)
	2.1.2.1 SAL: software acceleration Layer
	2.1.2.2 North-bound interfaces for SAL@host to guest
	2.1.2.3 Functional Components of SAL
	2.1.2.4 South-bound interfaces between host and HW
	2.1.2.5 ​Host AML
	2.2 ​Usage Analysis
	2.2.1 Usage: VNF Acceleration types
	2.2.2 ​Usage: VNF Acceleration Examples
	2.3 ​Aggregated View

	3 Related Upstream Work Plans
	4 References
	5 History
	6 Editors
	7 Contributors

