

Industrial Engineering Journal

ISSN: 0970-2555

Volume : 52, Issue 4, No. 2, April : 2023

LOW COST IOT BASED SMART AGRICULTURE SYSTEM

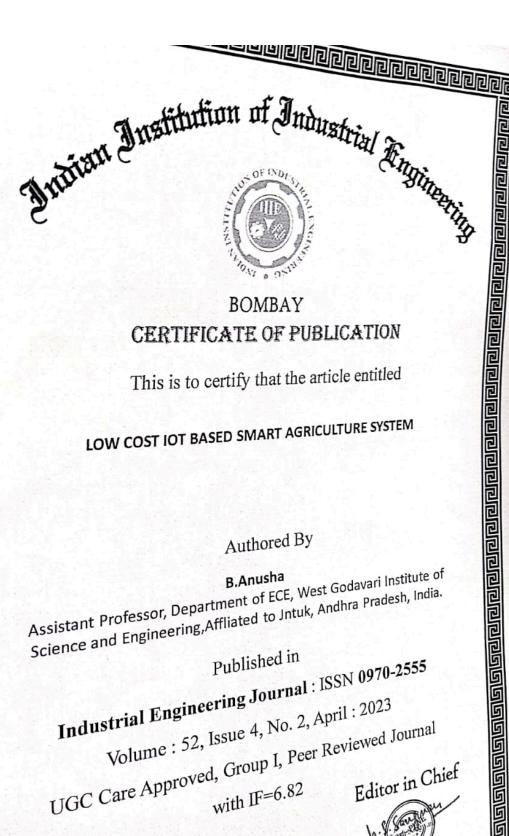
Dr.M.Aravind kumar Professor, Department of ECE, West Godavari Institute of Science and Engineering, Affliated to jntuk, Andhra Pradesh, India. drmaravindkumar@gmail.com L.Sankar, Associate Professor, Department of ECE, West Godavari Institute of Science and Engineering, Affliated to jntuk, Andhra Pradesh, India. sankar.lavuri2@gmail.com B.Anusha, Assistant Professor, Department of ECE, West Godavari Institute of Science and Engineering, Affliated to jntuk, Andhra Pradesh, India. anusha.basamsetti@gmail.com K.SudhaRani, Assistant Professor, Department of ECE, West Godavari Institute of Science and Engineering, Affliated to jntuk, Andhra Pradesh, India. sudharanikanuboina@gmail.com V.Prasanthi Student of ECE Department19PD1A0413, West Godavari Institute of Science and Engineering, Affliated to jntuk, Andhra Pradesh, India. vprasanthi 1019@gmail.com K.Mahesh, 1 Student of ECE Department, West Godavari Institute of Science and Engineering, Affliated to jntuk, Andhra 19PD1A0404 Maheshkk 1085@gmail.com

Abstract

In this project, we are going to build a Smart Farming System using IoT. The objective of this project is to offer assistance to farmers in getting Live Data (Temperature, Humidity, Soil Moisture, Soil Temperature) for efficient environment monitoring which will enable them to increase their overall yield and quality of isture sensor, Water Pump, and 12V led strip. When the IoT-based agriculture monitoring system starts, it checks the Soil moisture, temperature, humidity, and soil temperature. It then sends this data to the IoT cloud for live monitoring. If the soil moisture goes below a certain level, it automatically starts the water pump. We previously build Automatic Plant Irrigation System which sends alerts on mobile but doesn't monitor other parameters. Apart from this, Rain alarm and soil moisture detector circuit can also be helpful in building Smart Agriculture Monitoring System.

Keywords: Internet of things, Soil nutrients, Colorimetric principle Sensor network, Fuzzy system.

1. INTRODUCTION


Agriculture is the unquestionably the largest livelihood provider in India. With rising population, there is a need for increased agricultural production. Over the past 15 years, farmers started using computers and software systems to organize their financial data and keep track of their transactions with third parties and also monitor their crops more effectively [1]. In the Internet era, where information plays a key role in people's lives, agriculture is rapidly becoming a very data intensive industry where farmers need to collect and evaluate a huge amount of information from a diverse number of devices (eg., sensors, faming machinery etc.) in order to become more efficient in production and communicating appropriate information [2].

The term "Internet of Things" refers to the connection of objects, equipment, vehicles, and other electronic devices to a network for the purpose of data exchange (IoT). The Internet of Things (IoT) is increasingly being utilised to connect objects and collect data. As a result, the Internet of Things' use in agriculture is crucial. The idea behind the project is to create a smart agriculture system that is connected to the internet of things. This system's microcontroller is a Raspberry Pi. The temperature and humidity in the surrounding region, as well as the moisture level of the soil, are monitored using the NPK and soil moisture sensor. The data will be available on both a smartphone and a computer. As a result, Internet of Things (IoT) and Raspberry Pi-based Smart Agriculture Systems have a significant impact on how farmers work. It will have a good impact on agricultural productivity as well.

UGC CARE Group-1,

West Godavari Institute of Science & Engineering (W.Si.) Avapadu, Prakasaraopalam W. G. Dt. (A. P.)

52

Science and Engineering, Affliated to Jntuk, Andhra Pradesh, India.

Published in

Industrial Engineering Journal: ISSN 0970-2555

Volume: 52, Issue 4, No. 2, April: 2023

UGC Care Approved, Group I, Peer Reviewed Journal Editor in Chief

