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Summary
This post explores the cost-effectiveness of AI safety field-building programs aimed at ML professionals,
specifically the Trojan Detection Challenge (a prize), NeurIPS ML Safety Social, and NeurIPS ML Safety
Workshop.

We estimate the benefit of these programs in ‘Quality-Adjusted Research Years’, using cost-effectiveness
models built for the Center for AI Safety (introduction post here, full code here).

We intend for these models to support — not determine — strategic decisions. We do not believe,
for instance, that programs which a model rates as lower cost-effectiveness are necessarily not
worthwhile as part of a portfolio of programs.

The models’ tentative results, summarized below, suggest that field-building programs for professionals
compare favorably to ‘baseline’ programs — directly funding a talented research scientist or PhD student
working on trojans research for 1 year or 5 years respectively. Further, the cost-effectiveness of these
programs can be significantly improved with straightforward modifications — such as focusing a
hypothetical prize on a more ‘relevant’ research avenue, or running a hypothetical workshop with a much
smaller budget.

Program Cost (USD) Benefit (counterfactual
expected QARYs)

Cost-effectiveness
(QARYs per $1M)

Trojan Detection Challenge 65,000 26 390

NeurIPS ML Safety Social 5200 150 29,000

NeurIPS ML Safety Workshop 110,000 360 3300

https://www.safe.ai/
https://forum.effectivealtruism.org/posts/Ykqh8ku7NHN9CGkdC/modeling-the-impact-of-ai-safety-field-building-programs
https://github.com/centerforaisafety/AIS-cost-effectiveness/tree/main


Hypothetical: Power Aversion Prize 50,000 490 9900

Hypothetical: Cheaper Workshop 35,000 250 7000

Baseline: Scientist Trojans 500,000 84 170

Baseline: PhD Trojans 250,000 8.7 35

For readers who are after high-level takeaways, including which factors are driving these results, skip
ahead to the cost-effectiveness in context section. For those keen on understanding the model and results
in more detail, read on as we:

1. Give important disclaimers. (Read more)
2. Direct you to background information about this project. (Read more)
3. Walk through the model. (Read more)
4. Contrast these programs with one another, and with funding researchers directly. (Read more)
5. Consider the scalability and robustness properties of the model. (Read more)

Disclaimer
This analysis is a starting point for discussion, not a final verdict. The most critical reasons for this are
that:

- These models are reductionist. Even if we have avoided other pitfalls associated with cost-effectiveness
analyses, the models might ignore factors that turn out to be crucial in practice, including (but not limited
to) interactions between programs, threshold effects, and diffuse effects.
- The models’ assumptions are first-pass guesses, not truths set in stone. Most assumptions are imputed
second-hand following a short moment of thought, before being adjusted ad-hoc for internal consistency
and differences of beliefs between Center for AI Safety (CAIS) staff and external practitioners. In some
cases, parameters have been redefined since initial practitioner input.

Instead, the analyses in this post represent an initial effort in explicitly laying out assumptions, in order to
take a more systematic approach towards AI safety field-building.

Background
1. For an introduction to our approach to modeling – including motivations for using models, the benefits
and limitations of our key metric, guidance for adopting or adapting the models for your own work,
comparisons between programs for students and professionals, and more – refer to the introduction post.
2. The models’ default parameters are based on practitioner surveys and the expertise of CAIS staff.
Detailed information on the values and definitions of these parameters, and comments on parameters with
delicate definitions or contestable views, can be found in the parameter documentation sheet.

https://forum.effectivealtruism.org/posts/Ykqh8ku7NHN9CGkdC/modeling-the-impact-of-ai-safety-field-building-programs
https://docs.google.com/spreadsheets/d/1uK4opqsCmC5nW6G3D1X67KZnQdMGGL1YbpVmQN5OKF8/edit#gid=581108234


3. The full code for this project is in this repository. The `examples` folder includes documentation that
demonstrates the repository’s use.
4. We have also published an evaluation of field-building programs for students, which you can find here.

The model

Programs
This analysis includes the following programs:

1. The Trojan Detection Challenge (or ‘TDC’): A prize at a top ML conference.
2. The NeurIPS ML Safety Social (or ‘NeurIPS Social’): A social at a top ML conference.
3. The NeurIPS ML Safety Workshop (or ‘NeurIPS Workshop’): A workshop at a top ML conference.

In the cost-effectiveness in context section, we will compare these programs to various alternatives,
including a hypothetical prize and workshop, as well as directly funding a talented research scientist or
PhD student working on trojans research for 1 year or 5 years respectively.

Throughout, we will evaluate the programs as if they had not been conducted yet, hence we are uncertain
about parameters that are ex-post realized (e.g. costs, number of participants). At the same time,
parameter values often reflect our current best understanding from recent program implementations.

Definitions
Our key metric is the Quality-Adjusted Research Year (QARY)1. We define a QARY as:

1. A year of research labor (40 hours * 50 weeks),
2. Conducted by a research scientist (other researcher types will be inflated or deflated),
3. Of average ability relative to the ML research community (other cohorts will be inflated or deflated),
4. Working on a research avenue as relevant as adversarial robustness (alternative research avenues will
be inflated or deflated),
5. Working at their peak productivity (earlier-in-career research will be discounted),
6. Conducting all of their research in the present (later-in-time research will be time discounted),
7. Who stays in the AI profession (later-in-time research will be discounted by the probability that the
researcher switches).

In order to operationalize the QARY, we need some way of defining relative weights for different
researcher types, researcher abilities, and the relevance of different research avenues.

1 See our introduction post for a discussion of the benefits and limitations of this framework.

https://github.com/centerforaisafety/AIS-cost-effectiveness/tree/main
https://github.com/centerforaisafety/AIS-cost-effectiveness/blob/main/src/scripts/examples/README.md
https://forum.effectivealtruism.org/posts/zYSAFtjasxsfm3nmh/cost-effectiveness-of-student-programs-for-ai-safety
https://trojandetection.ai/
https://www.mlsafety.org/social
https://neurips2022.mlsafety.org/
https://forum.effectivealtruism.org/posts/Ykqh8ku7NHN9CGkdC/modeling-the-impact-of-ai-safety-field-building-programs


Define the ‘scientist-equivalence’ of a researcher type as the rate at which we would trade off an hour of
labor from this researcher type with an hour of otherwise-similar labor from a research scientist.

Similarly, the ‘ability’ level of a researcher is the rate at which we would trade off an hour of labor from a
researcher of this ability level with an hour of otherwise-similar labor from a researcher of ability level 1.

Finally, the ‘relevance’ of a research avenue is the rate at which we would trade off an hour of labor from
a researcher pursuing this avenue with an hour of otherwise-similar labor from a researcher pursuing
adversarial robustness research.

The expected number of QARYs per participant is given by the integral of the product of these
functions over a career:

QARYs-per-participant = (integral from 0 to 60 of: research-labor x scientist-equivalence x ability x
relevance x productivity x time-discount x probability-stay-in-AI dt)

or, since scientist-equivalence and ability are constant in time,

QARYs-per-participant = scientist-equivalence x ability x (integral from 0 to 60 of: research-labor x
research-avenue-relevance x relative-productivity x time-discount x probability-stay-in-AI dt).

The benefit of the program is given by the difference between expected QARYs with and without the
program. Cost-effectiveness is calculated by dividing this benefit by the expected cost in millions of US
dollars.

Building the model piece-by-piece
Let's gradually build up the model, starting with the simplest possible scenario.

The simple example program
The simple example program has a budget of $100k, sufficient to support 100 ML researchers.

Each participant produces the same QARYs over the course of their career. In particular, if the program is
implemented, each participant:

1. Works on research from the beginning of the program until retirement (60 years hence),
2. Is valued equally to a current research scientist (1x scientist-equivalence),
3. Is of average ability relative to the ML research community,
4. Is 1% likely to work on adversarial robustness research, and 99% likely to work on a research avenue
that CAIS considers to have limited relevance to AI safety (0x adversarial robustness research),
5. Always maintains their peak productivity,
6. Does not have their work time-discounted, and
7. Remains within the AI profession throughout their career.



In the absence of the program, each of the identical participants:

4. Works on a research avenue that CAIS considers to have limited relevance to AI safety,

with all other factors remaining constant.

Integrating over time, each participant produces, with and without the program taking place respectively,

1 x 1 x (integral from 0 to 60 of: 1 x 0.01 x 1 x 1 x 1 dt) = 0.6

1 x 1 x (integral from 0 to 60 of: 1 x 0 x 1 x 1 x 1 dt) = 0

QARYs over their career respectively. Multiplying by the number of participants, the program generates

100 * (0.6 - 0) = 60

QARYs, at a cost-effectiveness (in QARYs per $1m) of

60 / ($100k / $1m) = 600.

Cost and number of participants
Now, let's consider the expected costs for each program:

Program TDC NeurIPS Social NeurIPS Workshop

Target Budget $65,000 $5200 $110,000

Fixed Cost $12,000 $2700 $6200

Variable Cost Event $2400 $520

Variable Cost Award $50,000 $100,000

Variable Cost $53,000 $2600 $104,000

Fixed costs refer to expenses that remain constant regardless of the number of participants (e.g. time spent
designing a prize challenge).

Variable costs, which are costs proportional to the number of participants (e.g. time spent judging
workshop entries), make up the rest of the budget (at least, in expectation2[^2]). Some small fraction of

2 In particular, costs are calculated as follows:



this remainder goes to variable labor costs. For the TDC and NeurIPS Social, variable cost is otherwise
allotted to prize awards or event costs, respectively. For the NeurIPS Workshop, the variable cost is
otherwise split between prize awards and event costs.

Given these budgets, each program can support some number of participants.

Professional field-building programs have two possible types of participants: ‘attendees,’ those who
participate in events3[^3], and ‘contenders,’ those who enter prize competitions. Prizes are submitted to by
research teams of contenders, socials are visited by attendees, workshops are submitted to by research
teams of contenders and visited by attendees4[^4].

The following plot illustrates our uncertainty over the number of participants of each type that will be
involved in the program (given our default budget).

4 For workshops, attendees are defined as people attending the workshop and not submitting research to it.
This is to avoid double-counting the contributions of contenders who also attend the workshop.

3 The model ignores several nuances when counting attendees. What constitutes enough engagement with
an event in order to be considered an attendee? Is it enough to enter the physical or virtual event space for
any period of time, or must participants reach some time threshold? In practice, we made very rough
estimates of the number of people who stayed at the NeurIPS Social for >5 minutes or engaged with the
NeurIPS Workshop for >=1 complete presentation.

1. Specify a (certain) target budget.
2. Subtract mean (uncertain) fixed costs from the target budget to get (certain) target variable
costs.
3. Back out the target hours spent on the program using average wages.
4. Back out gamma distribution parameters such that actual hours have mean equal to the target
(and standard deviation pre-specified).
5. Aggregate to actual labor costs, then to actual variable costs, then to actual budget.
This approach allows us to estimate both ex-ante or ex-post impact within a unified framework.



The number of attendees a program with an event component can support depends on the budget allocated
to the event, the maximum number of attendees that an event can support per $1,000 of budget, and some
deeper parameters controlling how the number of attendees scales with budget (see the scalability section
for more details).

The number of contenders a program with a prize component can support is found by solving for the fixed
point of

expected-award = award-cost / number-of-participants

where number of participants is a function of the expected award.

Maintaining earlier assumptions about QARYs per participant, the cost-effectiveness of these programs is
as follows:

Program Build-up stage Cost
(USD)

Benefit (counterfactual
expected QARYs)

Cost-effectiveness
(QARYs per $1M)

Simple example program Simple example program 100,000 60 600

NeurIPS Social Cost and Participants 5200 180 34,000

NeurIPS Workshop Cost and Participants 110,000 340 3100

Trojan Detection Challenge Cost and Participants 65,000 120 1800



Pipeline probabilities and scientist-equivalence
Both attendees and entering teams of contenders are composed of research scientists, research professors,
research engineers, and PhD students.

For purposes of impact evaluation, we might not value the impact of different roles equally. Here,
scientists, professors, engineers, and PhD students are assigned ‘scientist-equivalence’ of 1, 10, 0.1, and
0.1 respectively.

Note that, in expectation, PhD students will have a different level of ‘scientist-equivalence’ after than
during their PhD. This is because they face one remaining hurdle in the ‘pipeline’ to becoming
professional researchers: the job market. At the end of their PhD program, PhD students have some
probability of becoming a scientist, professor, or engineer. So, although during their PhD we value PhD
students at 0.1 scientist-equivalents, we expect them to be valued at

P(scientist | PhD) * SE(scientist) + P(professor | PhD) * SE(professor) + P(engineer | PhD) *
SE(engineer) ~= 0.67

scientist-equivalents beyond graduation.

The number of contenders and attendees for each program and researcher type is specified as follows:

Let's see how these factors affect cost-effectiveness. In the table below, bolded rows incorporate pipeline
probabilities and scientist-equivalence.

Program Build-up stage Cost (USD) Benefit
(counterfac

Cost-effectiveness
(QARYs per $1M)



tual
expected
QARYs)

Simple example program Simple example
program

100,000 60 600

NeurIPS Social Cost and Participants 5200 180 34,000

NeurIPS Social Pipeline and
Equivalence

5200 400 77,000

NeurIPS Workshop Cost and Participants 110,000 340 3100

NeurIPS Workshop Pipeline and
Equivalence

110,000 710 6500

Trojan Detection Challenge Cost and Participants 65,000 120 1800

Trojan Detection
Challenge

Cost and
Participants

65,000 45 690

Factoring in pipeline probabilities and scientist-equivalence favors programs with larger shares of
professor participants and smaller shares of participants who are engineers or PhD students. This
advantages the NeurIPS Social and NeurIPS Workshop relative to the Trojan Detection Challenge, which
has a much higher share of participants who are engineers.

Ability and research avenue relevance
Participants may vary in ability. However, in the current implementation for professional programs, all
participants are always set to have ability level 1 (average relative to the ML research community).

This agnostic stance is (somewhat) in contrast to the stance taken in our post covering student programs.
We think it is reasonable to expect the ability of marginal participants to be constant for programs that are
not selective (such as the programs considered in this post, and unlike some student programs).

Separate from their ability, participants might work on varying research avenues that we value differently.

For a sense of how we operationalize these differences, consider research avenue relevance among
participants of the TDC5[^5]. During the time participants spent working on the TDC, all contenders were

5 For each program, we estimate relevance levels by asking practitioners for their beliefs about the
distribution of research avenues pursued by participants, and how the program might have influenced this
distribution, before adjusting for internal consistency. This is not a robust method for estimating such an
important parameter. Future assessments should employ a more systematic approach — assessing the pre-
and post-program research records of participants compared with some control population.

https://forum.effectivealtruism.org/posts/zYSAFtjasxsfm3nmh/cost-effectiveness-of-student-programs-for-ai-safety


working on trojans research, which we consider to be 10x more relevant than adversarial robustness
research. We believe that, before the program, scientists, professors, and Ph.D. students are 50% likely to
be working on trojans research relevant to the TDC, and 50% likely to be working on research avenues
that we judge to be 10x less relevant than adversarial robustness. Then, on average, participants produce
research with relevance 5.05. After the program, 2% of research done by scientists, professors, and PhD
students is shifted towards trojans work relevant to the TDC, leading to research relevance of 5.15. (You
could think of this difference as coming from all participants switching research avenues by some very
small amount, or some very small number of participants switching research avenues entirely, or some
combination of these possibilities.)

The research avenue relevance of each participant in each program over time is specified as follows:

The shaded area indicates research avenue relevance for the average participant with (solid line) and
without (dashed line) the program.

Notice the vertical changes for contenders in the TDC and NeurIPS Workshop. Zooming into the 2 weeks
following the start of the program, we see that these changes consist of a very short period in which
participants are working directly towards the program, before a many-year period in which they adopt a
very slightly different research portfolio.

Relevance starts high for the TDC because contenders are compelled to work on relevant Trojans research
in order to enter. After this period, we expect the research avenues pursued by scientists, professors, and
PhD students to shift very slightly closer towards research avenues of interest to CAIS. Off-chart,
engineers do not shift their research following the program.



In the case of the NeurIPS Workshop, we do not expect contenders to work on research avenues that are
significantly more relevant than they might have otherwise during the time they spend directly working
towards the workshop. But we do expect a similar effect on the relevance of their research beyond the
workshop. In particular, CAIS gave awards to researchers who wrote an existential risk analysis in the
appendix of their paper. We think it is plausible that this scheme — in combination with the more typical
ways in which future research might be influenced by engaging with a workshop — caused a small
expected shift in contenders’ future research avenue relevance.

For attendees of both the NeurIPS Workshop and NeurIPS Social, we expect a very slight shift in research
avenues, in the direction of those avenues most relevant to CAIS.

Taking the product between time spent on research and research avenue relevance, we obtain QARYs per
scientist-equivalent participant as a function of time.

The (difficult-to-see) shaded area in the bottom row equals QARYs per scientist-equivalent participant for
each program. Combining this with the number of scientist-equivalent participants, we get an estimate for
the QARYs produced by the program.

After incorporating differences in ability and research avenue relevance, the cost-effectiveness of different
programs is given by:

Program Build-up stage Cost (USD) Benefit
(counterfactual

expected
QARYs)

Cost-effective
ness (QARYs
per $1M)

Simple example program Simple example
program

100,000 60 600



NeurIPS Social Cost and Participants 5200 180 34,000

NeurIPS Social Pipeline and
Equivalence

5200 400 77,000

NeurIPS Social Ability and
Relevance

5200 2100 394,000

NeurIPS Workshop Cost and Participants 110,000 340 3100

NeurIPS Workshop Pipeline and
Equivalence

110,000 710 6500

NeurIPS Workshop Ability and
Relevance

110,000 5200 47,000

Trojan Detection Challenge Cost and Participants 65,000 120 1800

Trojan Detection Challenge Pipeline and
Equivalence

65,000 45 690

Trojan Detection Challenge Ability and
Relevance

65,000 360 5500

The relative change in cost-effectiveness from incorporating (ability and) research avenue relevance is
fairly similar across programs. This is not surprising: the long-term counterfactual effect is believed to be
similar, around 0.05-0.1x the relevance of adversarial robustness. The NeurIPS Social gets a slightly
smaller boost from having a slightly smaller counterfactual effect, whilst the TDC gets a slightly larger
boost due to the large change in research avenue relevance during the program.

Productivity, staying in AI research, and time discounting
Researchers' productivity can vary throughout their careers. Additionally, some may choose to leave the
field of AI research, and, from the perspective of today, the value of research might change over time. We
will now make adjustments for these factors.

Productivity relative to peak, probability of staying in the AI field, and time discounting are specified as
the following functions over time6:

6 In the model, all functions over time are specified over a 60-year period from the program’s start. We
have truncated the x-axis in our plots for ease of reading. This could only mislead for the probability of
staying in AI subplots, where the other side of the sigmoid function is not visible.



These functions are nearly identical across programs. Differences across researcher types are due to age
differences.

Multiplying these functions with the hours and research avenue relevance functions, we get the updated
function for QARYs per scientist-equivalent over time:



The updated cost-effectiveness of each program is as follows:

Program Build-up stage Cost (USD) Benefit (counterfactual
expected QARYs)

Cost-effectiveness
(QARYs per $1M)

Simple example
program

Simple example
program

100,000 60 600

NeurIPS Social Cost and Participants 5200 180 34,000

NeurIPS Social Pipeline and
Equivalence

5200 400 77,000



NeurIPS Social Ability and Relevance 5200 2100 394,000

NeurIPS Social Productivity, Staying
in AI, and Time
Discounting

5200 150 29,000

NeurIPS Workshop Cost and Participants 110,000 340 3100

NeurIPS Workshop Pipeline and
Equivalence

110,000 710 6500

NeurIPS Workshop Ability and Relevance 110,000 5200 47,000

NeurIPS Workshop Productivity, Staying
in AI, and Time
Discounting

110,000 360 3300

Trojan Detection
Challenge

Cost and Participants 65,000 120 1800

Trojan Detection
Challenge

Pipeline and
Equivalence

65,000 45 690

Trojan Detection
Challenge

Ability and Relevance 65,000 360 5500

Trojan Detection
Challenge

Productivity, Staying
in AI, and Time
Discounting

65,000 26 390

The adjustments for productivity, remaining in AI research, and time discounting have a dramatic effect
on estimated (absolute) cost-effectiveness. The most important reason for this is that discounting future
research reduces its present value considerably.

However, these adjustments have the smallest impact on the ratios of estimated cost-effectiveness
between programs (relative cost-effectiveness) of any we have considered. The TDC, NeurIPS Social, and
NeurIPS Workshop all see an approximately 14x decline in cost-effectiveness.

Cost-effectiveness in context
The following table compares the cost-effectiveness of the programs considered above, hypothetical
implementations of similar programs, and ‘baseline’ programs — directly funding a talented research
scientist or PhD student working on trojans research for 1 year or 5 years respectively.

Program Cost (USD) Benefit (counterfactual
expected QARYs)

Cost-effectiveness
(QARYs per $1M)



Trojan Detection Challenge 65,000 26 390

NeurIPS ML Safety Social 5200 150 29,000

NeurIPS ML Safety Workshop 110,000 360 3,300

Hypothetical: Power Aversion Prize 50,000 490 9,900

Hypothetical: Cheaper Workshop 35,000 250 7,000

Baseline: Scientist Trojans 500,000 84 170

Baseline: PhD Trojans 250,000 8.7 35

The “power aversion prize” mirrors the TDC, except with $15k less award funding and a more relevant
topic. The change in topic has two effects: work during the prize is 100x more relevant than analogous
work on adversarial robustness, and 2% of contenders shift to a 100x research avenue following their
work on the prize. (The research avenue relevance of trojans was 10x adversarial robustness, with the
same proportion of research shifting.) The “cheaper workshop” is identical to the NeurIPS ML Safety
Workshop, except with $75k less award funding.

"Scientist Trojans" and "PhD Trojans" are hypothetical programs, wherein a research scientist or a PhD
student is funded for 1 or 5 years, respectively. This funding causes the scientist or PhD student to work
on trojans research (a 10x research avenue) rather than a research avenue that CAIS considers to have
limited relevance to AI safety (0x). Unlike participants considered previously in this post, the scientist or
PhD student has ability 10x the ML research community average. The benefits of these programs cease
after the funding period.

The cost-effectiveness of the NeurIPS ML Safety Social is estimated to be nearly 10x greater than that of
the NeurIPS ML Safety Workshop, which in turn is nearly 10x more cost-effective than the Trojan
Detection Challenge. We do not conclude from this that workshop and prize programs are not worthwhile
as part of our portfolio of programs. Intuitively, socials scale much less well than workshops and prizes.
Further, the estimates for a hypothetical cheaper workshop and power aversion prize imply that
straightforward changes to workshop and prize programs might result in much greater cost-effectiveness.

All of the professional field-building programs are estimated to be more cost-effective than the baseline
programs. What factors contribute to this gap between professional and baseline programs?

Cost per participant is the most important factor — coming in at approximately $300, $15, and $200 for
the TDC, NeurIPS Social, and NeurIPS Workshop respectively, compared with $500,000 and $250,000
for the baseline programs.

Smaller factors favoring the professional programs we considered include the benefits of professional
programs being spread out over many more years and, in the case of the NeurIPS Social and NeurIPS



Workshop, the greater level of scientist-equivalence per participant (due to the high proportion of
participants who are professors).

Of course, there are powerful offsetting factors. The baseline programs’ treatment effect on research
avenue relevance is assumed to be around 100x as large as the largest effect among the TDC, NeurIPS
Social, and NeurIPS Workshop, and ability is assumed to be 10x greater.

Finally, while it did not feature prominently in this post, note that research avenue relevance could have
had a very large effect on cost-effectiveness differences between the TDC, NeurIPS Social, and NeurIPS
Workshop (see the robustness to research avenue relevance section). This suggests the importance of
tracking research avenue differences before and after the program, and of accountability mechanisms as a
lever for affecting these differences. It also underscores the importance of focusing prizes on the most
important research avenues — shifting the hypothetical prize towards a 100x rather than 10x research
avenue leads to 10x greater benefits.

Scalability and robustness

Scalability
So far, we've considered a single budget for each program. We might instead be interested in running
these programs at a higher or lower cost, with correspondingly different benefits.

In the model, benefit is linked to cost by having higher variable costs lead to a larger number of
participants7[^7]. Three deep parameters control these ‘scaling’ functions: a curvature parameter, and
slope and intercept parameters to transform something like utility to the number of entries or attendees.
These parameters are (very informally) calibrated to match survey answers about the number of
participants given the default budget, and to match intuition in other cases. Clearly, this is a tricky
exercise; you should treat these functions (and therefore estimates of benefit beyond the default case) with
healthy skepticism.

Given the scaling parameters we use, the expected number of participants as a function of budget looks as
follows:

7 There are two nuances here to note. Firstly, although in this post the number of participants has
decreasing returns to variable costs, this could change under different scaling parameters. Secondly, cost
could also affect benefit if the average ability among participants depends on their number. However, in
this post, we assumed that ability is constant, regardless of the number of participants.



The scaling functions lead to the following expected benefit and cost-effectiveness estimates as a function
of budget:

This plot complicates our earlier results using only default budgets.

For instance, although the NeurIPS Social was estimated to be the most cost-effective program at default
budgets, it does not scale as well as the NeurIPS Workshop. (Nor would it scale as well as the
hypothetical power aversion prize.) The implication is that, if our goal is to maximize cost-effectiveness



with access to a sizable budget and only these programs, we would probably want to pursue multiple
programs simultaneously8.

Robustness

Research discount rate
We saw earlier that the research discount rate – the degree to which a research year starting next year is
less valuable than one starting now – had an especially large effect on (absolute) cost-effectiveness
estimates.

For purposes of this post, research one year from now is considered to be 20% less valuable than research
today. The justification for this figure begins with the observation that, in ML, research subfields often
begin their growth in an exponential fashion. This means that research topics are often dramatically more
neglected in earlier stages (i.e. good research is much more counterfactually impactful), and that those
who are early can have an outsized impact in influencing the direction of the field — imagine a field of 3
researchers vs. one of 300 researchers. If, for instance, mechanistic interpretability arose as a research
agenda one year earlier than it did, it seems reasonable to imagine that the field would have 20% more
researchers than it currently does. In fact, we think that these forces are powerful enough to make a
discount rate of 30% seem plausible. (Shorter timelines would also be a force in this direction.)

This view does not reflect a consensus. Others might argue that the most impactful safety work requires
access to more advanced models and conceptual frameworks, which will only be available in the
future9[^9].

9 The extent to which current research will apply to more advanced models is a useful topic of discussion.
Given that it seems increasingly likely that AGI will be built using deep learning systems, and in
particular LLMs, we believe that studying existing systems can provide useful microcosms for AI safety.
For instance, LLMs already exhibit forms of deception and power-seeking. Moreover, it seems likely that
current work on AI honesty, transparency, proxy gaming, evaluating dangerous capabilities, and so on
will apply to a significant extent to future systems based on LLMs. Finally, note that research on
benchmarks and evals is robust to changes in architecture or even to the paradigm of future AI systems.
As such, building benchmarks and evals are even more likely to apply to future AI systems.

Of course, it is true that more advanced models and conceptual frameworks do increase the relevance of
AI safety research. For instance, we anticipate that once the LLM-agent paradigm gets established,
research into AI power-seeking and deception will become even more relevant. Notwithstanding, we
believe that, all things considered, AI safety research is currently tractable enough, and that the subfields
are growing exponentially such that a 20% or even 30% discount rate is justified.

8 Of course, scaling specific program implementations is not the only way to scale. We might be interested
in, for instance, running multiple implementations of each program within a research avenue and across
conferences, or across research avenues within a single conference. This is an important strategic
consideration, but we will not further expand on it in this post.

https://www.metaculus.com/questions/4055/will-the-first-agi-be-based-on-deep-learning/
https://www.alignmentforum.org/posts/AtfQFj8umeyBBkkxa/a-bird-s-eye-view-of-the-ml-field-pragmatic-ai-safety-2#Microcosms
https://ai.facebook.com/blog/cicero-ai-negotiates-persuades-and-cooperates-with-people/
https://arxiv.org/abs/2304.03279
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.10760


The plot above shows how cost-effectiveness changes with the research discount rate. 0.2 is our default;
negative values represent a preference for research conducted in the future.

For the programs considered in this post, research time discounting strongly affects conclusions about
absolute impact, but does not affect conclusions about relative impact.

It is hardly surprising that the research discount rate does not affect the relative impact of professional
field-building programs: these are all programs that aim to affect research starting immediately. Relative
cost-effectiveness might be less robust when comparing professional programs with student programs —
where the trade-off between the malleability of research interests and timing of research is starker — for
different values of the research discount rate. (The research discount rate section of our introduction post
explores this comparison.)

Research avenue relevance
Consider this illustrative scenario. All participants begin the programs considered above pursuing
research avenues that CAIS considers to have limited relevance to AI safety (0x adversarial robustness).
For programs with an award component, contenders pursue research avenues that are 10x as relevant as
adversarial robustness during their direct involvement in the program. For all programs, once the program
ends, participants shift from research avenues with 0x relevance to research avenues with 10x relevance
with some probability. (This could also be viewed as a proportion of research being redirected towards
more relevant avenues.)

https://forum.effectivealtruism.org/posts/Ykqh8ku7NHN9CGkdC/modeling-the-impact-of-ai-safety-field-building-programs


The above plot shows how program benefit and cost-effectiveness vary in response to changes in the
probability that different types of participants alter their research avenues (with other participant types
remaining unchanged).

Notice that differences in research avenue relevance matter a lot for program outcomes. Two alternative,
plausible views on research avenue relevance could imply more than 3 orders of magnitude difference in
final impact. (To see this from the chart, note that, for the purposes of the model, a 100% chance of
moving from 0 to 10 is equivalent to a 1% chance of moving from 0 to 1000 — and that research avenue
relevance is unsettled and might be thought to vary by orders of magnitude.)

Although the models’ results will strongly depend on contentious research avenue relevance parameters,
we are heartened that these models clarify the effect of alternative views on benefit and cost-effectiveness.



Less contentious background parameters

The above plot visualizes the robustness of our benefit and cost-effectiveness results to various scenarios.
These scenarios simulate sizeable shocks to default beliefs or empirical parameters:

1. “Difference in scientist equivalence” inflates or deflates the scientist-equivalence gap between research
scientists and other research professionals by a factor of 10^0.5.
2. “Labor costs” inflates or deflates hours spent working on the program by 10^0.25, and wages by
10^0.125.
3. “Researchers per entry” inflates or deflates the number of researchers of each type submitting to the
TDC or NeurIPS Workshop by a factor of 10^0.25.
4. “Senior contender composition” inflates the number of research scientists and professors submitting to
the TDC or NeurIPS Workshop — and deflates the number of research engineers and PhD students — by
a factor of 10^0.25. (Or vice versa.)
5. “Hours on each entry” inflates or deflates the number of hours spent by researchers of each type on on
submissions to the TDC or NeurIPS Workshop by a factor of 10^0.25.
6. “Senior attendee composition” inflates the average fraction of research scientists and professors
attending the NeurIPS Social or NeurIPS Workshop — and deflates the average fraction of research
engineers and PhD students — by a factor of 10^0.25. (Or vice versa.)

Results for the TDC and NeurIPS Workshop are somewhat stable (on log scale). Results for the NeurIPS
Social are less stable. For a fixed budget of $5,250 — with only $2,600 allocated to variable costs in the
default specification — increases in labor costs in particular can prevent the program from having enough
budget remaining to support any participants.



Invitation to propose explicit models
This work represents a first step toward explicitly modeling the cost-effectiveness of AI safety programs,
taking inspiration from cost-effectiveness models from other causes. To hold each other to a more
objective and higher standard, we strongly suggest that people with different views or suggested AI safety
interventions propose quantitative models going forward.
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