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Abstract 

Through their role as pollinators, bees continue to be major contributors to the survival and 

productivity of both native plant communities and the agricultural industry. However, in spite of 

their ecological and economic importance, estimates of global bee populations have 

demonstrated rapid declines in species richness and density over the past century. Although these 

estimates provide information on general population trends, many of them lack specificity and 

offer little insight into dynamics occurring at the species-level. Additionally, the process of 

determining species-level identifications for bees relies heavily upon a shrinking number of 

expert taxonomists who are capable of recognizing subtle morphological differences between 

species.  For these reasons, monitoring programs and large-scale conservation for insect 

pollinators has been slow, costly, and relatively ineffective. This study proposes the creation of a 

publicly available database of wing-images for the most common bee species found across New 

Jersey, US, and the creation of an application which will use these images to deduce accurate 

species-level identifications of insect pollinators. With the implementation of deep learning 

frameworks, an application for automatic identification of bee pollinators can be made available 

for use by researchers, students, and local communities. By generating a publicly available 

database of forewing images, future users will be able to expand the training set of our model to 

include new species, and ultimately increase the repertoire of species for which it can produce 

predictions. Through the integration of recent advances in machine learning technology and 

citizen science approaches to data collection, this project has the potential to both streamline the 

pollinator identification process and create opportunities for community outreach and global 

participation in efforts to conserve remaining populations of bees.   

 



Introduction 

Through their role as pollinators, bees continue to be essential drivers of survival and 

productivity for both native plant communities and the agricultural industry worldwide (Woodard 

et al. 2020). Insect pollination (carried out primarily by bees) alone is required for the growth of 

approximately 90% of wild plants (Burd & Kopec 2017) and nearly 75% of crops used directly 

for human consumption (Potts et al. 2010). Native pollinators (i.e. bumblebees and solitary wild 

bees) provide essential reproductive services for wild as well as cultivated plants in virtually all 

terrestrial ecosystems (Ayral et al. 2020). Even among other biotic pollinating agents, bees are 

the most effective because of their high flower reliability and flower constancy (Roubik 1995; 

Garibaldi et al. 2013; as cited in Matias et al. 2016). This means that bees actively seek out 

specific flowers and are able to identify their preferred species even in highly diverse settings.  

Many flowering plants have even evolved concurrently with their respective pollinators, 

resulting in highly specialized relationships between a single plant species and (in many cases) 

an individual bee (Shimizu et al. 2014).  

Previous studies have proven that the preservation of a diverse community of wild bee species is 

necessary for maintaining high levels of ecosystem function within large areas of habitat 

(Winfree et al. 2018). High pollinator diversity ensures that in the inevitable aftermath of species 

turnover between habitats, vulnerable ecosystems possess an ample number of remaining species 

which can fill vacant niches. 

However, in light of the mounting evidence behind their ecological significance, 

estimates show that global bee populations have experienced rapid declines in both species 

richness and density over the past century (Biesmeijer et al. 2006). These population trends have 

largely been attributed to forces such as habitat loss, disease, and pesticide use (Lebuhn & Luna 



2021). However, many of these estimates lack specificity and offer little to no insight into 

population shifts occurring at the species-level. The large majority of estimates taken on bee 

population trends group this highly diverse family of insects into broad geographical regions, 

degree of sociality, or state of captivity (captive colonies v. wild populations) (Koh 2015). This 

leaves little room to draw conclusions on the state of particular species, and thus, determine the 

potential causes of their observed decline. Consequently, initiatives aimed at monitoring bee 

populations and assessing biodiversity have been slow and often confounded by the practical 

difficulty associated with determining accurate taxonomic identifications of individuals (Portman 

et. al 2020). 

 

I.​ Halictidae 
 
Some of the most abundant insect pollinators for a variety of wild plants and crops in North 

America belong to the family Halictidae, commonly referred to as sweat bees 

(Landaverde-Gonzáles 2017).  Alone this family consists of 4,500 species and their role as 

pollinators is of great importance, especially considering that the most dominant crop-pollinating 

species are also the most widespread species in agricultural landscapes, and that more than half 

of North American and Hawaiian bee species are in decline (Kopec 2017). Sweat bees are 

generalist species, meaning that their populations can survive in a wide range of environmental 

conditions and take advantage of an even wider range of resources. As such, they play a large 

role in pollinating plant communities in a variety of environments ranging from tropical 

agricultural landscapes to densely populated urban centers (Mason & Arathi 2019; 

Landaverde-Gonzáles 2017). Despite how widespread and abundant halictid bees are, species of 

this highly diverse family of insects are notoriously difficult to differentiate from one another, 



even among experienced taxonomists (Mason & Arathi 2019). This has had the effect of 

drastically limiting the amount of reliable data we possess on species-specific halictid bee 

population dynamics. This lack of information could have severe consequences in localities 

where populations of sweat bees, which may be the dominant contributing pollinator to the entire 

plant community, are experiencing rapid declines (Rodrigo Goméz et al. 2016). Thus, sweat bees 

represent an appropriate family of study species from which to begin the development of our 

pollinator identification tool. 

​ Currently, accurate species-level identification of a specimen is dependent upon the time 

and knowledge provided by a small group of expert taxonomists (Portman et. al 2021). Using 

subtle morphological differences such as those observed in head length or thorax and abdomen 

structure, these taxonomists are capable of differentiating between species. Though effective, 

these methods involve an expensive and time-consuming process of specimen collection, 

preparation, and examination, as well as demand highly specialized knowledge on several bee 

species (a knowledge which most taxonomists possess for only a small number of species).  This 

means that more often than not, large-scale monitoring programs will require input from multiple 

individuals. Additionally, collection and preparation methods for insect pollinators are often 

invasive and lethal to the specimen (Prendergast 2020). This greatly increases the possibility of 

restriction and condemnation of monitoring efforts, especially when studying threatened or 

sensitive species. Thus, there is a great need for alternative methods to produce accurate 

species-level identification of pollinators.  

​ Recent literature has revealed the potential for automated approaches to bypass the 

aforementioned obstacles to producing accurate species-level identifications (Spiesman et al. 

2021). Many of these approaches are designed to equip non-experts with the necessary tools to 



identify several species with notably less investment of both time and financial capital (Milam et 

al. 2020). In doing so, they also present alternative data collection methods that are considerably 

less harmful to the study system. New DNA barcoding technologies, for instance, have allowed 

for nearly any research group to reliably distinguish between even the most cryptic species 

through the use of genetic barcoding of the cytochrome c oxidase subunit I (COI) (Yang et al. 

2018). COI is a gene that is present in most eukaryotes and possesses a slow enough mutation 

rate so that the gene is highly conserved within species, but rapid enough to be distinguishable 

between species, thus making it an ideal gene for DNA barcoding.  As a result of these 

advancements, even the least experienced taxonomists are able to bypass the arduous process of 

differentiating between minute morphological traits and produce species-level identifications 

with considerable accuracy. However, these methods still require access to a functioning 

genomics lab with DNA extraction and polymerase chain reaction (PCR) and sequencing 

technology. These processes can typically be expensive, time consuming, and difficult to conduct 

on live specimens. While this still represents an obstacle to creating an accessible system for 

identifying pollinators, recent efforts to collect and compile DNA barcodes on behalf of most 

extant species have hinted at the potential for automated computer systems to further streamline 

the process of identification (Milam et al. 2020). Recent advancements in machine vision and 

natural variation in wing venation between insect species have revealed a new opportunity to 

further improve existing methods for species-level classification (Buschbacher et al. 2019).  

This project aims to develop the necessary tools for image-based recognition and 

identification of pollinators by species, and ultimately use these tools to promote increased 

specificity and accuracy in monitoring programs designed to aid in their conservation.  

 



II.​ Bee Classification by Wing Venation 
 
Wing venation has long been used as an entomological tool for distinguishing between insects, 

including bees, at virtually all taxonomic levels (Michener 2007, as cited in Hall 2011). Bees 

tend to vary substantially in their wing venation patterns. Some morphological features, such as 

the number of submarginal cells, even vary across genera (Karunaratne 2008). Even a subset of 

the wing venation patterns, such as those outlining the inner cells, has been proven sufficient to 

produce accurate species-level identifications (Steinhage et. al 2006). A multitude of 

morphometric approaches such as: landmarking coordinates, wing cell geometry, and distance 

ratios, all can be applied directly to wing venation patterns to extract taxonomically distinct 

characteristics down to the species-level. Although these characteristics are largely 

indistinguishable at a glance, computer vision possesses the unique ability to quantify subtle 

morphological features and rapidly parse through the results to produce accurate identifications. 

Recent studies have also shown that the above morphometric approaches possess a similar 

capacity to distinguish between bee species as some genomic methodologies (Oleksa and 

Tofilski 2014). Considering that access to the facilities and genotyping technologies necessary 

for molecular identification remain limited and relatively costly, bee identification by wing 

venation has become a viable alternative to the use of modern genomic approaches, especially 

where expert taxonomists are not readily available.  

Currently, wing measurements are almost exclusively derived from digital images. Thus, 

following the development of the initial machine learning pipeline, species identification by way 

of wing venation is only dependent upon using a camera system and the resulting images. 

Camera systems ranging from those belonging to smartphones to digital cameras mounted on a 

microscope (such as the one used for this study), have proven capable of capturing images with 



sufficient detail to satisfy the algorithm’s minimum requirements to produce accurate 

identifications (Stefan et al. 2024, Arbuckle et al. 2001).  

 

 
Figure 1: Diagram of halictid forewing (example photo taken of Lasioglossum atwoodi). The 
wing veins create a pattern of cells that can be identified by their position relative to the others. 
All cells are labeled by their position and whether they are marginal, submarginal, medial, radial, 
or cubital.  
 
III.​ Machine Learning Techniques 

 

Identification systems using machine learning (ML) techniques such as convolutional neural 

networks have proven to be particularly effective at identifying plants and animals captured on 

camera trap footage (Wäldchen 2018; Norouzzadeh et al. 2018). Convolutional neural networks 

(CNN) are algorithms which take input images, assign quantitative values to various aspects of 



that image (i.e., features), and then use those values to differentiate those images from one 

another. Previous studies have proven that these techniques can even surpass human capabilities 

in terms of classification accuracy (Buschbacher et al. 2019).  

 

We will use the characteristics contained in images of sweat bee forewings to train our 

classification model because they have been proven to be sufficient when identifying individual 

species, whereas training on full body images has seen highly variable success rates and often 

have difficulty producing accurate identifications below genus-level (Stefan et al. 2024; 

Buschbacher et al. 2019). There are a number of existing frameworks for ML encoded in python 

which have been designed for the purpose of solving classification problems such as this (python 

v3.12.3). There is a growing body of research highlighting the potential of multinomial 

classification frameworks such as support vector machines and random forest classifiers to 

process high-dimensional image data and solve complex identification problems in biology 

(Yang 2004; Pal 2003). 

 

Through the use of these frameworks and ML techniques, a comprehensive database of bee 

species can be created in an effort to develop an accessible and resource efficient approach to 

accurately monitoring - and ultimately conserving - dwindling communities of halictid 

pollinators.  

 

IV.​ Objectives 
 

Our study aims to first generate a dataset of wing images representing wild bee species native to 

New Jersey and the wider northeastern United States. This dataset should have sufficient 



representation of each species so as to capture intraspecific variation among individuals. 

Secondly, we plan to identify a set of morphological features which are derived from the wing 

venation patterns of photographed specimens, which can be used to reliably distinguish between 

species. Lastly, our study aims to use these features to develop a classification model with the 

following qualities: 

●​ Accurate (prediction accuracy above what can be expected of random chance) 

●​ Reliable (i.e. precise in its identifications)  

●​ Makes predictions based off of a single wing image 

●​ Requires little to no user knowledge of bee morphology or computer programming 

●​ Requires little to no user input (beyond submitting a wing image) 

●​ Is accessible to those outside of academic researchers and melittologists   

 
 
Materials and Methods  

I.​ Photographing Specimens 

Data collection for this study began in May 2023 and continued through August 2023. The 

dataset used in this study consists of 755 wing images, representing 16 different species of bees 

from across 4 genera found throughout New Jersey and the larger mid-atlantic region. We 

photographed 50 individuals per species (excluding Lasioglossum paradmirandum, L. cinctipes, 

for which we had only 30 and 29 respectively, as well as L. ephialtum, Halictus confusus, H. 

rubicundus, and Augochlora pura,  for which we had 49 individuals each). This number of 

replicates is necessary in order to accurately capture the amount of  individual variation within 

each of the species. Previous literature suggests that anywhere between 20 and 30 wing images 



per species is sufficient to train an accurate identification model (Buschbacher et al. 2019). All 

individuals were sourced either from the collections at the Kocher Lab at Princeton University or 

the Brock Bee Lab at Brock University. Specimens supplied by these labs have been collected 

from a variety of habitats ranging from densely wooded forest to extensively developed 

agricultural fields and subsequently pinned, genotyped, barcoded, and labeled with species 

identifications by expert taxonomists. 

 
 

Family Subfamily Tribe Genus Species Count 

Halictidae Halictinae Augochlorini Augochlorella aurata 50 

Halictidae Halictinae Augochlorini Augochlora pura 49 

Halictidae Halictinae Halictini Agapostemon virescens 50 

Halictidae Halictinae Halictini Halictus ligatus 50 

Halictidae Halictinae Halictini Halictus rubicundus 49 

Halictidae Halictinae Halictini Halictus confusus 49 

Halictidae Halictinae Halictini Lasioglossum  imitatum 50 

Halictidae Halictinae Halictini Lasioglossum  coreacium 50 

Halictidae Halictinae Halictini Lasioglossum  nymphaearum 50 

Halictidae Halictinae Halictini Lasioglossum  versatum 50  

Halictidae Halictinae Halictini Lasioglossum  paradmirandum 30 

Halictidae Halictinae Halictini Lasioglossum cinctipes 29 

Halictidae Halictinae Halictini Lasioglossum (Dialictus) ephialtum 49 

Halictidae Halictinae Halictini Lasioglossum (Dialictus) admirandum 50 

Halictidae Halictinae Halictini Lasioglossum (Dialictus) atwoodi 50 

Halictidae Halictinae Halictini Lasioglossum (Dialictus) hitchensi 50 

 
Table 1: List of Species Included in Our Dataset of Wing Images. 



 
 
We used a Nikon SMZ1270 digital microscope to photograph one of two forewings belonging to 

each specimen. No preference was given to either the right or left wing due to the lack 

observable difference between their respective morphologies. Although the background 

remained constant, images were taken in different lighting conditions, zoom, and resolution, so 

as to maximize visibility of the venation pattern of each distinct wing. We used sub-stage 

lighting in order to eliminate reflection of light off the wings. This allowed for faint wing 

venation patterns to be clearly visible within each image.​ ​ ​ ​ ​  

We converted all images to grayscale and made increases to image contrast and sharpness when 

necessary to better distinguish veins. All necessary adjustments were made directly through the 

Nikon microscope's user interface and required no post-hoc processing.  

 
 
II.​ Image Processing and Annotation 

Using imglab software, we landmarked the wing images using both bounding box and individual 

XY landmarking methods. Although the initial dataset was annotated manually, the bee species 

identification pipeline uses ML-morph, a supervised learning-based phenotyping framework 

which employs object detection and shape prediction models to automatically place landmarks 

on never-before-seen images (Porto and Voje 2020). By outlining the parameter of the wing into 

what’s referred to as a bounding box, we indicate what content from the image is of interest for 

the object detector model. Then, by placing an XY coordinate point on each vein joint, making a 

total of 16 coordinate points per wing image, we dictated what specific components of the object 

the shape prediction model will recognize and ultimately landmark. An .xml file composed of 



these coordinates was downloaded for each wing image to be used when training the object 

classification model for the species identification pipeline. 

 

 
Figure 2: Lasioglossum atwoodi forewing with labeled vein joints from Imglab. We placed 16 
coordinate points on each image to represent the positions of vein joints. 
 
 
III.​ Feature Extraction 

In order for any classification model to produce accurate identifications, it's necessary that the 

model be based on a high quality set of quantifiable features which are derived from the images. 

Ideal characteristics for a high quality feature include: the ability to be measured easily from the 

source data (in this case, XY coordinate points),  can have its measurements replicated across all 

https://solothought.com/imglab/#


images in the dataset, and there is a reliable distinction between the taxonomic units of interest 

(species) based on that feature. 

Since image preprocessing and annotation of the vein joints have been completed, 

extracting features from the resulting coordinate points can be accomplished through a number 

of methods. Using wing venation patterns as the source for our data points means that our dataset 

is representative of a collection of wing cells (polygons) and their respective vein joints 

(vertices). Consequently, we considered the following methods to quantify their geometries into 

features: 

●​ Area of interior cells 

●​ Perimeter of interior cells 

●​ Cross-sectional length of interior cells  

 

These measurements alone could be sufficient for the classification model. However, this 

assumes that the images were all taken at standard conditions with identical zoom and orientation 

(therefore making the pixels in each image equivalent in terms of distance measurements). 

Because these conditions were not met for this study, it was necessary that we take the ratio of 

the above morphological measurements to one another, and use those values as the features from 

which our species identifications are derived. 

​ We used the following formula to calculate the distances between all pairwise 

combinations of each labeled vein joint:  

  𝑑 =  (𝑥
2

− 𝑥
1
) + (𝑦

2
− 𝑦

1
) 



We followed this by calculating the ratio of all of these distances to one another, and appending 

those values to our original XY feature set. With our distances and distance ratios calculated, we 

have a total of 7,260 features.  

 
    A                                            B                                            C 

 
 
 
 

 
 
Figure 3: (Lasioglossum atwoodi) Wing Image Annotation and Feature Extraction Procedure. 
Fig.3A shows an image captured by the SMZ1270 microscope. Fig.3B shows that same image 
with landmarked vein joints (placed in sequence from 1 to 16). Fig.3C shows a subset of 
morphological measurements that we calculated from the landmarks. 

 
 
IV.​ Feature Selection 

Before building our model, we needed to determine which features out of those we’ve extracted 

are useful for making species classifications. The first step in this process requires that we 

determine how correlated, if at all, each of our features are to one another. Ideally, we desire our 

features to be highly correlated to the target classes (i.e. species). This would imply that those 

features can reliably dictate which species of bee a wing image must belong to. However, if 

those features are highly correlated with one another, this implies that they have comparable 

ability to discriminate between species. This makes it pointless to use any more than one of those 

features to train the classifier, and may even be harmful to the model’s overall performance. For 

this reason, we created a correlation matrix to visualize the extent to which each of our features 

were correlated with one another (see Figure 3). Based on the results of our matrix, our features 

were largely uncorrelated. 



 

 
Figure 4: Plot of Pairwise Correlations Between All Features. This distribution is approximately 
normal, therefore ~96% of features have low correlations. 
 
 
Afterwards, we ran a principal components analysis (PCA) in order to determine which and to 

what extent features most effectively distinguish between species. A PCA is a dimensionality 

reduction tool which effectively groups individual data points into feature-based categories. In an 

effort to reduce computation time, we ran our analysis with eight components derived from  the 

first 250 features in our  list of previously extracted distance ratios. As a result, the PCA plots 

only represent six of the 16 total species from this study. 

 
 



 
Figure 5: PCA (n components = 8) based on 250 features. The title of each plot describes the 
principal component along the x-axis + the principal component along the y-axis. 

 
 

Although PCAs are a powerful tool for categorizing complex data, they assume that there is a 

linear relationship between the features upon which the analysis was run (i.e. the data points can 

be separated along a two-dimensional space). This is a byproduct of the fact that PCAs are based 

on the Pearson's correlation coefficients, and therefore assumes that there is a linear relationship 

between variables. Due to the non-linear nature of our extracted features (which we know from 

the low correlation rates reported in figure 4), we fitted our pca to the model of a 



three-dimensional t-SNE (T-distributed stochastic neighbor embedding) plot to better visualize 

the differentiation between species. 

 
Figure 6: TSNE Plot of Species.  

 
 
When developing a classification model, it's often assumed that by increasing the number of 

features indefinitely, one can increase the overall accuracy of the model. However, previous 

studies have shown that in practice, increasing the number of features beyond a certain threshold 

can cause an inadvertent reduction in identification accuracy instead (Hall 2011; Hua et al. 

2005). For this reason we first trained the classification model on the initial set of extracted 

features (pixel distances and distance ratios), and on the components used in our PCA second. 

Ultimately, we compared the maximum validation scores returned by 1the model trained using 

the raw features and 2the model using components from a PCA.  



 

 
 

V.​ Classification Scheme 

 
a.​ Support Vector Machines 

 
Figure 7: Diagram of how Support Vector Machines determine class distinctions. 

  
For the creation and training of our classification model, we initially used the support vector 

machines (SVM) built into the scikit-learn package in python (scikit-learn 1.4.2). Support vector 

machines are a set of supervised learning algorithms which use a series of mathematical 

functions to determine where along an n-dimensional plane a collection of individual data points 

can be segregated into a predetermined number of classes. It accomplishes this by plotting the 

data points along a multi-dimensional plane in which each axis corresponds to a feature-based 

component that maximizes the distance between the most closely related points between each 

class (referred to as the margin). Within that margin is a line (or plane if using a 

three-dimensional space), referred to as the hyperplane or decision boundary, which denotes the 



boundary that differentiates between two distinct classes. A data point will receive a different 

class prediction dependent on which side of that boundary it falls. 

 
i.​ Training I 

To begin training the SVM classification model you need two variables, one composed of the 

previously extracted features, and another composed of the correct species identifications, 

referred to as the response variable. Like all supervised learning methods, SVMs require that the 

above variables each be subdivided into a training and test dataset. For the purposes of this study, 

we divided the feature and response variables into training and test sets representing 80% and 

20% of each dataset respectively, with each dataset also receiving an equal balance of each 

species. This means that the classification model will use the value from the training feature 

variable and corresponding identifications from the training response variable to make informed 

predictions about the species identifications of the remaining test features.  

 

ii.​ Training II 

We repeated the above procedure but instead of training and testing the model using the raw 

feature values, we used components from a PCA. We repeatedly ran the SVM pipeline based on 

PCAs iterated from 1 to 120 components in order to determine the minimum number of 

components necessary to maximize the prediction accuracy of the classification model.  

 
 



 
Figure 8: Test scores achieved by the SVM classification model as a function of PCA 

components.  
 
 

b.​ Random Forest Classifier (RFC) 

RFCs are widely accepted classification models, especially amongst computational biologists, 

for their accuracy and robustness. RFCs make predictions through the formation of ‘decision 

trees’—each of which is generated by an algorithm, forming a “forest” of classifiers which all 

vote on which class should be assigned to a given observation (i.e which species a wing image 

belongs to) (Petkovic 2018). A diagram of the RFC decision-making process is shown below in 

Figure 9.  



 

Figure 9: Diagram showing how the random forest classifier makes predictions. 

 
VI.​ Validation 

When training a classification model based on a set of predetermined features, it’s possible to 

over-fit the model to the training data. This severely limits the model’s generalizability and may 

render it ineffective when determining identifications for never-before-seen images. This issue is 

especially pervasive amongst models where a relatively large number of features is used to 

differentiate between a small number of classes. The classification model proposed in this study 

will ideally become a framework for a system which can deduce accurate species-level 

identifications for bees found across the United States, if not globally. However, our model is 

currently trained on a dataset that represents only 3.2% of the approximate number of halictid 



bees native to North America, and only 0.4% of all bee species native to the United States 

(Woodard et al. 2020, Moisett and Buchmann 2011). Considering that our model was trained 

using features from only a fraction of the total potential classes (i.e., species), there was a chance 

that it may have been overfitted to our data.  

One method used to avoid overfitting is known as k-fold cross validation. This procedure 

works by systematically dividing the dataset into groups such that each data point is included in 

the testing set a fixed number of times. After each division, the contents of the training and 

testing sets change. ‘K’ refers to the number of repetitions to be performed by the cross 

validation test. Ultimately, the test will return the model’s average score across all the iterations. 

If there is a large disparity between the cross validation score and the initial training score of the 

model, it’s assumed that the model must be overfitted to the training set. However, if the two 

scores are similar, it’s assumed that the model is not overfitted and is therefore generalizable. 

 

 
Figure 10: Plot of Training Scores and K-fold Cross Validation Scores as a function of K. 

 



VII.​ Optimization 

After checking whether or not the model was overfitted to our data, we ran additional analyses to 

further maximize the accuracy of its predictions. One such analysis is known as a grid search. In 

this procedure, a classification model is tested using various combinations of different 

hyperparameters defined within some predetermined range or grid. The term ‘hyperparameters’ 

refers to the variables or settings of a classification model which are set prior to training. 

Examples of these settings include: kernel, max depth, criterion, etc. Finding the optimal 

combination of these hyperparameters has the potential to greatly increase the prediction 

accuracy of the model. This often makes test scores reported prior to performing an exhaustive 

grid search misleading but valuable when making comparisons across different parameters. 

 
a.​ SVM Hyperparameters 

i.​ “C” 

For our SVM classifier, we defined a grid which contained a range of values for the following 

hyperparameters: C , gamma, and kernel. C, referred to as the regularization parameter, controls 

the tradeoff between maximizing the size of the margin and minimizing training errors. A low C 

value maximizes the margin, potentially allowing for some misclassifications (i.e, a soft margin), 

and typically prevents overfitting the data, whereas high C values prioritize maximizing 

classification accuracy despite running the risk of overfitting the data. In our grid search we 

parsed through the following values: 0.1, 1, 10, 100, and 1000.   

 



ii.​ Gamma 

The parameter gamma represents the relative amount of influence each data point will have on 

the shape of the classifier’s decision boundary, depending upon how close that point is to where 

the decision boundary is positioned along the feature space. High gamma values ensure that the 

shape of the decision boundary is almost entirely dependent on the few data points closests to the 

decision boundary. Conversely, low gamma values will give greater consideration to data points 

that are located further away from the decision boundary. We parsed through the following 

gamma values: 1, 0.1, 0.01, 0.001, and 0.0001. 

 

iii.​ kernel 

A kernel represents a series of mathematical functions that transform training data in such a way 

that allows for instances (i.e, wing images) to be separated linearly within a high-dimensional 

feature space. There are various types of kernels, each suited for different types of datasets. The 

kernels defined in our grid-search are as follows: linear, polynomial (poly), and radial basis 

function (RBF). As the name suggests, linear kernels assume that the training data is already 

linearly separable and thus, does not transform the data in any way. Linear kernels are renown 

for their computation speed and simplicity, but are ineffective when faced with complex, 

non-linear datasets. Polynomial kernels are more versatile than linear kernels and function with 

non-linear datasets. These kernels also function well with dense datasets, giving them an 

advantage in cases where additional features may be necessary to increase model prediction 

accuracy. Lastly, RBF kernels are similar to polynomial kernels in many ways, and both are 

commonly used for applications in computer vision and object recognition. Although RBF 



kernels are often the default parameter for SVM models, performing a grid search is common 

practice to ensure that optimal parameters are chosen for a given model. 

 
The final set of parameters we defined for our SVM model are as follows: 
 

●​ kernel = RBF 

●​ C = 1000 

●​ gamma = 0.0001 

 
svm = SVC(kernel = 'rbf', C = 1000, gamma = 0.0001, probability = True) 

 
 

b.​ RFC Hyperparameters 

i.​ N estimators 

“N_estimators” specifies the number of decision-making trees included in the forest of the model 

(shown in Figure 9). The default value for this parameter is usually 10. Generally, the higher the 

number of trees encoded in the classifier, the more effectively the model learns the data. 

However, a large number of trees can considerably slow the training process. Therefore, a grid 

search will determine the number of trees necessary to maximize the prediction accuracy of the 

model without causing a large increase in training time. The range of  n_estimator values that we 

considered in our grid search are as follows: 200, 300, 400, 500, 600, 700, 800, 900, 1000. 

 

ii.​ Bootstrap 

Bootstrapping is a statistical resampling technique in which instances are randomly sampled 

from the original training set with replacement in order to produce multiple separate training sets. 

The creation of these subsets are necessary because the training process for a random forest 



classifier requires that each decision tree be trained on a unique dataset which has been derived 

from the original. Thus, the bootstrap parameter determines whether or not the RFC will sample 

the initial dataset with replacement during the training phase for each decision tree. 

Consequently, the parameter is satisfied with one of two logical values: True or False. 

 

iii.​ Criterion  

At each node in a decision tree (shown in Figure 9), the sample data is split according to the 

range of values they represent for a particular feature. For instance, samples that follow the right 

branch of the node may have values between 0-200 for a given morphological feature, whereas 

samples that follow the left branch have values greater than 200. The criterion parameter 

determines the feature variables and the threshold values used to determine that split. Included in 

our grid search are the criterion: gini (gini impurity), and entropy. The gini criterion assigns a 

number referred to as a ‘gini impurity value” to each node on a decision tree that assesses the 

ability of the threshold assigned at that node to effectively split the samples into two sets. Gini 

impurity values range from 0 to 0.5, where a 0 or “pure” values indicate that the sample does not 

need to be split any further, and a 0.5, the most “impure” value, indicates that the sample must 

continue to be divided based on additional criteria. The entropy criterion measures a nearly 

identical performance metric. Entropy values range from 0 to 1 with 0 being the most pure and 1 

being the most impure. Although entropy values tend to be more accurate than gini impurity, its 

values require more time to compute. As a result, a grid search is the appropriate analysis to 

determine the optimal tradeoff between accuracy and computational efficiency. 

 



iv.​ Max Features 

“Max_features” is the parameter which determines the number of extracted features the model 

will use when determining how to best split the sample dataset at each node in a decision tree. 

For our grid search we considered the following arguments: “sqrt”, which sets the maximum 

number of features as equal to the square root of our total feature set, and “log2”, which sets the 

maximum as log2 of the total feature set. We chose to explore these two options because they’re 

already encoded into the set arguments for the parameter, and they both allow us to reduce the 

relative number of features we extracted for this study without jeopardizing the model’s 

performance.  

 

v.​ Max Depth 

Each decision tree in a RFC possesses a “depth” which determines the number of splits they 

must perform per observation (i.e., wing image). Generally, the more splits a tree has, the 

information it captures about the observation. However, increasing the max depth of the decision 

trees indefinitely runs the risk of overfitting the data. For our grid search we considered the 

following range of max depth values: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, none. Setting the 

max depth as “none” means that each decision tree will continue to split until each node reaches 

the minimum number of samples (i.e., each node is considered “pure”; see section on criterion 

for further explanation on node purity).  

The final set of parameters we defined for our RFC model are as follows: 

●​ N_estimators = 800 

●​ Bootstrap = True 

●​ Criterion = ‘entropy’ 



●​ Max_features = ‘sqrt’ 

●​ Max_depth = None 

 
rfc = RandomForestClassifier(bootstrap = True, criterion = 'entropy', 

max_depth = None, max_features = 'sqrt', min_samples_leaf = 2, 

min_samples_split = 5, n_estimators = 800) 

 

 
I.​ How to Interpret Results 

 
a.​ Confusion Matrix 

Visualization plays an important role in our ability to understand and compare the capacities of 

classification models to address a given problem. There are a number of different visualization 

methods, all of which convey separate aspects of the decision making process which results in 

the model’s identifications. For multinomial classifiers, like those employed in this study, 

confusion matrices are a standard visualization tool for reporting model performance (Alsallakh 

2014). In a confusion matrix, a coordinate grid is formed with rows and columns that represent 

either the predicted class labels or the true class labels for each observation. Ideally, all results 

displayed on the matrix will appear directly along the diagonal of the plot. This indicates that the 

classifier correctly predicted the class of each test image 100% of the time. However, when 

values appear off the diagonal, this indicates the number of mis-classifications or instances 

where the model was ‘confused’. Since confusion matrices display mis-classifications, they have 

the potential to inform viewers about what classes the model is having a difficult time 

differentiating between. This is valuable information when re-evaluating the meaningfulness of 

the features used to train the classifier. 

 



b.​ Performance Metrics 

The overall performance of a classification model is usually summarized as the weighted average 

of the classifier prediction accuracy across all classes, a metric often referred to as the ‘test 

score’. By adjusting the weight of each prediction accuracy with respect to class size, test scores 

provide a robust, albeit terse, representation of a classifier's capabilities.   

 

c.​ Precision, Recall, and F1-Score 

There are several metrics that, when reported in addition to the test score, provide a more 

comprehensive representation of a classification model’s performance. These include but are not 

limited to metrics such as precision, recall, and f1-score. Precision refers to the proportion of 

true-positive cases which the model correctly predicted to be positive (e.g. the ratio of Halictus 

ligatus cases correctly predicted to be H. ligatus to the total number of cases predicted to be H. 

ligatus). Recall is the proportion of correctly identified true positives out of all true positives + 

false negatives for a given class. This metric is often used as a measure of how well a model can 

accurately identify relevant data (i.e. model sensitivity). Depending on the nature of the research 

question, it may be necessary to prioritize either greater recall or precision when evaluating the 

performance of a classification model. However, when developing a multi-species identifier such 

as this, it's essential that the model be able to reliably recognize a species as well as differentiate 

it from others. If not, the model would be an ineffectual tool for monitoring a family of insects as 

diverse and widespread as halictid bees. For this reason, we require a performance metric which 

serves as an indicator of both the model’s precision and recall simultaneously. This metric is 

known as the f1-score and is calculated by finding the harmonic mean of the precision and recall 



values. Therefore, a satisfactory f1-score is reflective of precision and recall values of similar 

quality.  

 

VIII.​ Limitations 

Throughout this study, we discovered a number of factors which may have limited our model’s 

ability to produce the most accurate identifications. Discussed below is a list of such limitations 

and the ways in which they may have impacted our results.  

 

a.​ Data Collection 

The initial dataset of wing images that we generated to train our classification model is 

composed of images taken of full-bodied pinned specimens. This presented the most sustainable 

and least invasive opportunity to collect wing images because we didn’t need to dismember the 

insects, allowing them to remain intact for future studies. This also meant that we were able to 

crowdsource specimens from multiple institutions without damaging their collections. However, 

this method may have negatively impacted our model’s performance. Using full-body specimens 

requires that the bee, and its limbs, be continuously re-oriented to better display their forewings.  

However, bee forewings are not naturally positioned flat along the insects’ body. As a result, we 

were not able to focus on every wing vein or vein joint under our digital microscope, especially 

those near the outer parameter of the wing. This directly limits the ability of our automated 

annotation software, ML-morph,  to predict the position of those vein joints with high precision. 

This is due to the lack of clarity at those vein joints in our training images (Porto and Voje 2020).   

 



Additionally, using full-bodied specimens meant that if the forewings of an insect were too 

folded or damaged to be photographed (especially at the positions of vein joints), we were forced 

to remove that individual from our dataset, ultimately reducing the size of our training set. 

 

These problems could be solved by photographing forewings that had been detached, flattened, 

and secured to a medium prior to the beginning of the study. However, this would require the 

mutilation of several specimens, which would severely limit the number of species that could be 

included in the training set. Training using photographs of detached wings would also be 

antithetical to the ultimate goal of our model, which is to make accurate identifications of live 

specimens. Additionally, most institutions do not have collections of various species of wild bees 

with 50 or more specimens each with cataloged wings. The number of viable species becomes 

even smaller when you consider that many rare species of wild bees do not have extensive 

collections of specimens, and those that do likely cannot be damaged.  

 

b.​ Species Representation and Feature Extraction 

The number of species represented in this study is also relatively low compared to the number of 

wild sweat bee species native to the United States (~500 species) (Woodard et al. 2020, Moisett 

and Buchmann 2011). Although we trained our model so that it’s generalizable, in the sense that 

it is not overfitted to our training data, a lack of species representation is still relevant when 

considering the practicability of our model and the quality of our chosen features. Our current 

model cannot make predictions on any species not included in our training set. This means that 

without adding additional images, our model can only predict the species of a fraction of 

Halictidae native to the US. Although we cannot overlook the importance of gaining more 



granular data on the status of sweat bee pollinators, this is a clear example of the limited usability 

of our current model. However, these limitations can be surpassed in the future with the addition 

of wing images from new species to our dataset. Only a single wing image with a verified 

species identity is necessary to familiarize the model to a new species. In light of that, our goal is 

to have our model’s repertoire of identifiable species gradually grow as users update the training 

set of wing images with at least a single image representing a new species. 

In addition to its impact on our model’s practicability, a lack of species representation can have 

implications on the quality of features used to make predictions. Classification models are 

entirely dependent on their ability to distinguish between species along a feature space. This 

means that the generalizability of our model could be threatened by overfitting our classifier to 

our current dataset, or by poorly choosing features. We eliminated the possibility of overfitting 

through the use of k-fold cross validation, so only the quality of our features remains a question. 

Ideally, the features we chose to inform our classification model will segregate species with little 

to no overlap between them. A subset of our features were capable of effectively segregating 

species (see Fig. 6, Fig. 11). However, it’s possible that when faced with a set of species that is 

much larger than what it was initially trained on, the features we chose, and ultimately our 

model, may not perform as well. 



Results 

I.​ Biologically Significant Features 

 
Figure 11:  PCA plots showing the principal components which best segregate specimens by 
species and their corresponding morphological features (shown on a Lasioglossum atwoodi 
forewing). Figure 11A  shows principal components (PC) 1 and 2, Figure 11B shows PC1 and 3, 
and Figure 11C shows PC1 and 8. 
 



 
ANOVA F-value: 425.539 
ANOVA p-value: 1.879  10-108 ×
 
Figure 12: Principal Component 1 Vectors Scores Across Five Species. This figure shows that 
there are significant differences between halictid species based on the features of wing 
morphology represented by PC 1. 

 
 

After running our initial PCAs, we visually selected the components that were most successful at 

segregating the individual wing images by species. The morphological features (distance and 

distance ratios) which have the highest loadings on the principal components (PC) in the analysis 

are shown to the right of each plot. 

PC1 was present in all three plots. PC1 and PC2, which accounted for 58.24% and  

33.84% of the variance observed in our dataset (shown in Figure 11A), respectively, were most 



successful at distinguishing Agapostemon virescens from the remainder of the species captured 

in the analysis. Although these components could not successfully segregate species aside from 

A. virescens, the results from this analysis may indicate that A. virescens possesses some adaptive 

feature of wing morphology that distinguishes it from the remaining species. This discovery 

could become the basis for future studies which explore the potential adaptive qualities and 

underlying mechanisms behind A. virescens wing morphology.  

PC1 and PC3 (3.11%) (shown in Figure 11B) were most successful at clustering the 

members of each species into visibly distinct regions in our feature space. Similar to figure 9B, 

PC1 and PC8 (0.47%) (shown in Figure 11C) were successful at loosely segregating each species 

into distinct regions. However, it failed to cluster the individuals of each species compactly, 

which increased the amount of overlap between them. 

 

The presence of PC1 in all three of our analyses indicates that the set of features which constitute 

this principal component may be a powerful morphological marker for distinguishing species of 

bees from one another. A similar conclusion can be drawn for PC3 considering that when plotted 

against PC1, the two components were able to segregate all represented species with minimal 

overlap. We extracted the features that correspond to each principal component, and found that 

the morphological feature represented by PC1 is the ratio of the distance between the upper left 

joint of the 1st medial cell (joint 8) and the terminal vein joint of the 2nd medial cell (joint 14) to 

the distance between the upper left joint of the 1st medial cell (joint 8) and bottom right vein 

joint of the 1st submarginal cell (joint 15). The wing feature that is represented by PC3 is the ratio 

of the distance between the upper most vein joint of the stigma (joint 6) and its midpoint (joint 



5), to the distance between the midpoint of the stigma (joint 5) and the bottom left joint of the 

2nd submarginal cell (joint 9). 

 

The feature that corresponds to PC8 is the ratio of the distance between the upper most vein joint 

of the stigma (joint 6) and the upper left joint of the 1st medial cell (joint 8), to the distance 

between the upper most vein joint of the stigma (joint 6) and left most vein joint of the 3rd 

submarginal cell (joint 12). Although it wasn’t as successful as its counterparts, the features that 

constitute PC8 may still represent key interspecies differences in bee wing morphology. 

 
 

II.​ Classification Accuracy 
 

The final test scores we reported for this study were achieved using the Random Forest Classifier 

(RFC) model instead of the Support Vector Machine (SVM). After performing a grid search and 

cross validations for both RFC and SVM, we compared their respective prediction accuracies. 

The final test score returned by the RFC model was 0.83 (shown in table 2), whereas the SVM 

model returned a value of 0.76 (when trained on raw features) and 0.78 (when trained on 

principal components) (see sections on training I and training II). Therefore, the RFC model 

shows greater accuracy and precision than the SVM model when predicting species identities. 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

Table 2: RFC Model performance metrics for each species. 
 
 

The results from training an RFC model to identify species from our collected set of wing images 

were encouraging. On average, the RFC model returned an 83%  prediction accuracy. The model 

also returned an f1-score of above 90% for nine out of the sixteen species included in this study. 

However, three species returned relatively f1-scores (<70%): Lasioglossum atwoodi, L. 

species precision recall f1-score support 

Augochlorella aurata 1.00 1.00 1.00 10 

Augochlora pura 0.91 1.00 0.95 10 

Agapostemon virescens 1.00 1.00 1.00 10 

Halictus confusus 1.00 1.00 1.00 10 

Halictus ligatus 1.00 1.00 1.00 10 

Halictus rubincunclus 1.00 1.00 1.00 10 

Lasioglossum admirandum  0.56 1.00 0.71 10 

Lasioglossum atwoodi 0.40 0.40 0.40 10 

Lasioglossum cinctipes 1.00 0.80 0.89 5 

Lasioglossum coriaceum 0.91 1.00 0.95 10 

Lasioglossum elphialtum 0.67 0.60 0.63 10 

Lasioglossum hitchensi 0.55 0.60 0.57 10 

Lasioglossum imitatum 1.00 1.00 1.00 10 

Lasioglossum nyphaearum 1.00 0.90 0.95 10 

Lasioglossum paradmirandum 0.00 0.00 0.00 6 

Lasioglossum versatum 0.75 0.60 0.67 10 

 

Weighted average 0.81 0.83 0.81 151 

Accuracy 0.83 



elphialtum, and L. hitchensi. The individual performance metrics for each species are reported 

above in Table 2.  

 

III.​ Misclassifications 

Figure 13: Confusion Matrix of Mis-classifications made by the classification Model. The 
matrix shows that our model is capable of predicting the identities of up to 10 different species 
with 100% accuracy (i.e., no misclassifications). 

 
 
 
 



IV.​ Final Application Design 
 
The final design for our bee identification app combines the trained RFC model and ML-morph 

pipeline in a software which allows the user to submit (or capture) images of bee wings and be 

returned with a species identification. ​  

 
Figure 14: How to use our Bee Identification pipeline. Figure 14A: When first running our Bee 
Identification model, you will be prompted to either capture a live image of a bee forewing or 
upload a .png file of a forewing that was taken previously. Figure 14B: After uploading or 
capturing an image, the automated annotation software (ml-morph v.1.0.0) will place preliminary 
landmarks along the wing’s vein joints. The xy coordinates of each point,, referred to as “nodes”, 
are reported to the right of the image. At this stage, you’re able to adjust the positions of each 
node to better align with the veins joints on the wing. Figure 14C: After correcting the positions 
of the nodes,  press “enter” to feed that data to the bee classifier. Figure 14D: After submitting 
your image and landmarks to the classifier, the model will return a species prediction in a new 
window. In this example, the model correctly predicted the forewing as belonging to 
Agapostemon virescens.     
 
 



Results Summarized 

Wing venation patterns provide sufficient information to differentiate between several species of 

wild sweat bees. The first principal component in our analysis accounts for a disproportionately 

large amount of the variance which exists in our dataset (58.28%). This indicates that the 

morphological features which constitute that component are an essential contributor to our 

classification model’s ability to distinguish between species.  

 

Overall, the performance of our classification model is promising despite its imperfections. 

Using a random forest classifier, we were able to achieve a prediction accuracy of over eighty 

percent when trained on only 16 different species. The model was also able to identify ten 

species with one-hundred percent accuracy, including all members of the Halictus, Augochlora, 

Augochlorella, and Agapostemon genera. However, all of the lowest scoring classes (i.e. species) 

belonged to the Lasioglossum genus, including Lasioglossum paradmirandum which received 

only a single correct classification by our model. It’s possible that the model’s inability to 

correctly classify this species could be rectified by increasing the size of its training set. In this 

study, L. paradmirandum possessed the minimum number of training images required to 

successfully train a classification model (30 images as opposed to our recommended 50). 

However, L. cinctipes possessed a training set of comparable size (29 images) and the model 

performed much better than on its counterpart. Therefore, it's likely that while the size of the 

training set may be a factor in the model performance, there are additional factors which have 

contributed to such a large disparity in classification accuracy. Additionally, the majority of 

mis-classified images of L. paradmirandum were classified as L. admirandum. This pattern is 

reflective of how morphologically similar individuals from these two species are when compared 



to the remainder of species represented in this study. Even expert taxonomists find it difficult to 

distinguish between the L. paradmirandum and admirandum, which ultimately solidified their 

placement in a group of species known for being generally indistinguishable from one another, 

Lasioglossum viridatum (Rhoades et al. 2011). 

 

Discussion 

Insect pollinators play a pivotal role in our effort to maintain the health and productivity of 

natural ecosystems and agricultural landscapes. As of 2005, insect pollination, of which bees are 

the primary contributors, provided nearly 10% of the total economic value of agricultural 

production used directly for human consumption (Khalifa et al. 2021; Gallai et al. 2009). 

However, the value of insect pollinators goes well beyond that of their provisioning services. 

Nearly 80% of wild plants are dependent upon pollination by bees, making them indispensable 

as benefactors to plant diversity in virtually all terrestrial ecosystems (Kopec & Burd 2017; Potts 

et al. 2010). This links the status of bee communities to the biodiversity of native plant 

communities, and therefore links them to ecosystem stability and potential for carbon storage 

(Ayral et al. 2020, Woodard et al. 2020). For these reasons, insect pollinators are of high priority 

on an extensive list of taxa that require immediate protections. Despite this, global estimates of 

insect pollinator communities have shown rapid declines in both aggregate abundance and 

species richness (Turley et al. 2022; Cameron et al. 2011, Biesmeijer et al. 2006). Previous 

studies show that several species of wild bees are significantly less abundant or absent from 

many more localities than would be predicted from natural history collections (Cameron et al. 

2011).  



In light of their decreasing numbers, conservation efforts have been slow and relatively 

ineffective at providing the necessary protections to insect pollinators (Colla 2022). The majority 

of management strategies prioritize the non-native european honey bee, Apis mellifera, and 

neglect the highly diverse communities of wild bees. A predominant factor behind the relative 

ineffectiveness of wild bee conservation is the lack of specificity and detail in estimates of bee 

populations, especially regarding species-level population dynamics. Initiatives aimed at 

monitoring bee populations and assessing biodiversity (i.e., producing the necessary data from 

which to base conservation strategy) have been sluggish and confounded by the practical 

difficulty of manually identifying individual specimens (Portman et al. 2020). Current methods 

of identifying pollinator species revolve around the expert opinion of a small number of 

taxonomists capable of differentiating between bee species by minute morphological distinctions 

or through molecular (DNA) barcoding which requires access to a genomics lab and an existing 

database of species-level identifications. By developing a machine learning tool that can provide 

rapid taxonomic identifications for bees, we begin to dismantle these barriers to expansive 

pollinator monitoring. 

​ In our study, we found that the venation patterns which outline the forewings of wild bees 

represent a significant morphological feature capable of differentiating between species. 

Although previous literature has examined the potential of wing images to inform honey bee 

identifications, few studies have evidenced the potential for wing venation to distinguish native 

wild bee species (Oleksa and Tofilski 2014; Oleska et al. 2023; Arbuckle et al. 2001). This 

finding illuminates the potential for wing image-based identifications to bridge a widening 

information gap between what’s known about the conversation status of the non-native and 



intensely managed honey bee and the community of wild bees which constitute the majority of 

insect pollinators.    

​ Additionally, we were successful in using bee wings and their corresponding venation 

patterns to train a classification model which can accurately identify wild bees down to the 

species-level. With an overall accuracy of above 80%, our model is capable of reliably 

distinguishing between what is currently a set of 16 different species of wild sweat bees. Our use 

of wing venation patterns allows us to gain much higher resolution on species identities than 

would typically be possible with approaches that use full body images.  Full-body capture 

typically requires the deployment of camera traps to record video footage of pollinators at a 

variety of flower visitation sites (Stefan et al. 2024). However, there is a trade-off between the 

ease of placing cameras to monitor pollinator populations, and the degree of  taxonomic detail 

which can be retrieved from their footage. Although camera traps may be able to collect large 

scale data on pollinator communities with minimal time investment from researchers, their 

inability to classify species to the lowest taxonomic level make them ineffective when answering 

questions about species-specific dynamics. This implies that the best strategy for conserving 

insect pollinators may involve a combination of methods including both wing venation-based 

classification (our model), and full-body imaging methodologies. 

The current pipeline for our model requires little to no specialized knowledge of 

programming nor bee morphology in order to use. A built-in automated image annotation 

software both streamlines the identification process and removes barriers to those who may have 

limited knowledge on insect wing morphology. Thus, both melittologists and those in unrelated 

fields or professions will be able to rapidly amass precise and accurate, species-level data on 

local pollinator communities. Using our current model, we will gain greater insight into the 



conservation status, population dynamics, and dispersal of US native sweat bees. With this data, 

effective conservation strategies can be implemented with the goal of protecting and restoring 

populations of these essential insect pollinators. Without this data, crop lands and wild plant 

communities across the US face the threat of losing a number of pollinator species upon which 

they have become largely dependent. By hastening the process by which wild bees are identified, 

and liberating opportunities for citizen science-based approaches to bee monitoring, this software 

will have a profound positive impact on the future of insect pollinator conservation.  

 

 

Future Work 

I.​ Improvements 
 

Although the software we’ve produced is far from perfect, some of its best qualities lie in its 

widespread applications and its ability to be improved upon by the user. Currently the dataset we 

generated for the purpose of training the classification model is reflective of only 16 species. 

Although this number is negligible in comparison to the number of  species native to New Jersey, 

the dataset can easily be expanded upon through the addition of new wing images. As the name 

suggests, machine learning algorithms possess the ability to constantly improve their 

functionality in response to the introduction of new information (i.e. new observations or wing 

images from currently unrepresented species). As users continue to add wing images to the 

training set, the classification model will both become familiarized with new species (so long as 

at least one image has a verified identity belonging to that species), and become more refined in 

its predictions of familiar species. However, there will be challenges to adjusting the current 

model to accommodate a training set large enough to apply to all native wild bees in the United 



States, and eventually the world. It will likely become necessary to extract additional features 

from our wing images to ensure our model’s ability to distinguish between an increasing number 

of species (some of which may possess morphological similarities which are not currently 

discernible by the model). Similarly, it may become necessary to replace the current classifier 

used in our model (random forest classifier) with one that is better suited for such a large range 

of species.  

​ Lastly, it’s possible that the dataset of wing images will reach a number of species where 

bees can no longer be identified based solely upon wing venation. Should our model be tasked 

with identifying a majority of known bee species, this may become the reality. In this case, it will 

be necessary to allow the user to input additional data such as: region/locality, habitat type, and 

time of year when the specimen was observed. This information will allow the model to 

eliminate potential species which may have similar wing morphologies as the specimen, but 

occupy different spatio-temporal niches.  This would further streamline the identification process 

and address concerns regarding the model’s generalizability. Identical procedures have already 

proven to be effective in identification tools such iNaturalist, a nonprofit social network of 

biologists and citizen scientists built around a software which identifies and maps observations 

of various species across the globe (https://www.inaturalist.org/). 

  
II.​ Applications 

There is a growing body of literature which argues for the potential of machine learning based 

object recognition and smartphones to play a pivotal role in the field of conservation monitoring 

(Nart & Costa 2022; Stefan et al. 2024). Smartphones are well renowned as tools for large-scale 

data collection due to their ubiquity and ability to collect data on various habitat variables 

through integrated sensors for sound, location, ambient light, atmospheric pressure, and 

https://www.inaturalist.org/


temperature (Stefan et al. 2024). This makes them an ideal tool for citizen science based 

approaches in biology. Thus, one of the immediate next steps in our study is to incorporate our 

bee classification model into a mobile application that can be readily downloaded onto a 

smartphone. This will greatly increase the accessibility of our model beyond that of 

highly-informed researchers and taxonomists, and will create a platform to collect pollinator 

census data from various localities. Our goal is to create an application that aligns with our initial 

objective of developing an identification tool that is both robust and accessible to those without 

experience in bee monitoring or computer programming.  

​ In addition to becoming a mobile application, our model has the potential to contribute 

greatly to the field of education and undergraduate research. As a tool, we designed our model to 

be used by anyone who is interested in pollinator monitoring, which includes students and other 

young scientists. We plan to incorporate our model, and its future iterations, into the research 

projects and field courses of undergraduate students. Using this tool, students will be capable of 

gathering data on pollinator biodiversity across a variety of landscapes and land-use regimes. 

This would add to what is currently a scarce collection of literature on the impact of 

environmental stressors and land-use types on the populations of specific insect pollinators. 

Additionally, students would gain the opportunity to use a novel technology to pursue research 

questions in a currently lacking field of study. 
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ANOVA F-value: 196.228 
ANOVA p-value: 6.076  10-245 ×
 

Figure 15: Principal Component 1 Vectors Scores Across All Species.  
 
 



 
Figure 16: 3D Visualization of TSNE Plot of Halictid Species 
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