
Parallax Propeller 2 Assembly Instruction Set

Here you find the instruction set for the new P2 (2015) chip Please feel free to edit this document and if something requires more explanation or examples
then just link that to another section of the document. The emphasis is mainly on the instruction set and memory map while Chip's document provides the
overview and many other details. Please refer to his document for more information about the Propeller 2 chip itself.
<click here for published version>

CONTENTS
LINKS
LABELS
EXPRESSIONS
ADDRESSING
P2 MEMORY MAP

EXEC MAP
COG REGISTERS
LUT
HUB
HUB ROM

P2 INTERNAL STACK
Conditional execution codes table

INSTRUCTION BIT-FIELD SYMBOLS
P2 INSTRUCTIONS LIST

SHIFTS ROTATES
ARITHMETIC
LOGICAL
INSTRUCTION MODIFIERS
COG NIBBLE/BYTE/WORD Operations
BRANCHING
CALL REGISTERil99i
CALL LONG

https://docs.google.com/document/d/10qQn_-B7avY2ce0N1MDDdzOF1lACPNWUJkjHFyzITiY/edit?usp=sharing
https://goo.gl/mH5892

LUT MEMORY
Example: Create stacks in LUT memory.

HUB MEMORY
SMART PINS
COG and HUB CONTROL
CORDICbb
EVENTS, WAITS and INTERRUPTS

NOTES
SETTING EDGE EVENTS

ALIASES
POINTER ADDRESSING MODES

Examples:
HUB MEMORY READING AND WRITING
STREAMER
ALTDS

ALTDS Examples
copy 16 cog regs from .src to .dest

PUSHZC ??? - Old P2_hot instruction ???
RDFAST
P2 INTERNAL STACK
MAILBOXES AND DEBUG INTERRUPT VECTORS
Migrating From Propeller 1

Instruction Changes
Removed Instructions/Registers/Effects
Experimenting with different document layouts

LINKS

Link to Chip's P2 document
Link to PBJ's opcode testing (pubdocs version)
Mindrobot's P2 memory-map architecture spreadsheet

https://docs.google.com/document/d/10qQn_-B7avY2ce0N1MDDdzOF1lACPNWUJkjHFyzITiY/edit
https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/edit?usp=sharing
https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/pub
https://docs.google.com/spreadsheets/d/1wQ6gwGFXRr22bM7S5PZaukQL9LrnEU5oqh3p8ZntNO8/pubhtml

Discussion about LUT to HUB flow is here

LABELS

●​ Labels are either globally-scoped or locally-scoped.
●​ A globally-scoped label must begin with an underscore or letter (a-z, A-Z). All other characters must be an underscore, letter (a-z,

A-Z) or number (0-9).
●​ A locally-scoped label must begin with a period, followed by an underscore or letter (a-z, A-Z). All other characters must be an

underscore, letter (a-z, A-Z) or number (0-9).
●​ Each local scope begins immediately after each global label and ends immediately before the next global label.
●​ All labels must be unique within the scope they belong to.

Label values are determined as follows:

●​ Labels defined in an ORGH section resolve to a hub address or offset (in bytes), regardless of whether the label is referenced in
an ORGH or ORG section.

●​ Labels defined in an ORG section resolve to a cog address or offset (in longs), regardless of whether the label is referenced in
an ORGH or ORG section.

●​ When the effective hub address or offset is needed for a label that is defined in an ORG section, the label may be preceded by a
"@" to force resolution to a hub address or offset.

●​ Though it is possible to apply the "@" to labels defined in ORGH sections, it has no effect.

EXPRESSIONS

●​ Expressions can contain numbers, labels, and nested expressions. The simplest expression is either a single number or label.
●​ An expression that begins with # or ## is known as an "immediate" value.
●​ For branching instructions, immediate values can be either "absolute" or "relative", depending on context.
●​ For non-branching instructions, immediate values are always "absolute".
●​ "Absolute immediate" interpretation can be forced by using "#\" or "##\".
●​ There is no operator for forcing a "relative immediate" interpretation.
●​ # indicates a 9-bit (short-form) or 20-bit (long-form) immediate value:

○​ For short-form branch instructions, this is a 9-bit relative immediate.
○​ For long-form branch instructions that change execution mode (cog <-> hub), this is a 20-bit absolute immediate.
○​ For long-form branch instructions that do not change execution mode, this is a 20-bit relative immediate.
○​ For all other instructions, this is a 9-bit absolute immediate.

https://forums.parallax.com/discussion/comment/1345743/#Comment_1345743

○​ In circumstances where an absolute immediate must be forced, the expression is prefaced with "#\".
●​ ## indicates a 32-bit immediate value

○​ An implicit AUGx will precede the instruction containing the expression.
○​ The lower 9 bits will be encoded in the instruction and the upper 23 bits will be encoded in the AUGx.
○​ For short-form branch instructions, this is a 20-bit relative immediate. The upper 12 bits are ignored.
○​ For non-branch instructions, this is a 32-bit absolute immediate.
○​ This is meaningless for long-form branche instructions. PNUT throws an error.

●​ For BYTE/WORD/LONG, the expression is encoded as raw data. If the expression begins with # or ##, PNUT throws an error.
●​ For all other expressions that do not begin with # or ##, the expression is encoded as a register address and must be between

$000 and $1FF.

ADDRESSINGP2 MEMORY MAP

<mindrobots cheat sheet>
Reading memory from $0000 to $03FF with RDxxxx will read from hub memory whereas a jump/call to these locations will execute from cog or lut.

EXEC MAP

ADDR NAME DESCRIPTION

$00_0000..$00_01EF COG EXEC Code executes from cog register space (self-modifying code permitted)

$00_0200..$00_03FF LUT EXEC Code executes from lut register space

$00_0400..$0F_FFFF HUB EXEC Code executes from hub space (hub uses byte addressing)
Code is not required to be long aligned
Uses instruction streamer

COG REGISTERS
(9-bit addressable)

01F0: 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0980 0000.0000

01F8: 0000.131C 0000.0010 0000.0000 4000.0000 0000.0000 4000.0000 FFFF.FFFE FC00.0000

ADDR READ WRITE NAME/USE DESCRIPTION

https://docs.google.com/spreadsheets/d/1wQ6gwGFXRr22bM7S5PZaukQL9LrnEU5oqh3p8ZntNO8/pubhtml

000-1EF RAM RAM user general-purpose 32-bit registers (and cog exec code space)

1F0 RAM RAM IJMP3 interrupt call address for INT3

1F1 RAM RAM IRET3 interrupt return address for INT3

1F2 RAM RAM IJMP2 interrupt call address for INT2

1F3 RAM RAM IRET2 interrupt return address for INT2

1F4 RAM RAM IJMP1 interrupt call address for INT1

1F5 RAM RAM IRET1 interrupt return address for INT1

1F6 RAM RAM ADRA receives CALLD-immediate return or LOC address

1F7 RAM RAM ADRB receives CALLD-immediate return or LOC address

1F8 PTRA PTRA PTRA dedicated register for hub access pointer with auto inc/dec, cog ram is not accessible

1F9 PTRB PTRB PTRB dedicated register for hub access pointer with auto inc/dec, cog ram is not accessible

1FA RAM DIRA (+RAM) DIRA output enables for P0..P31

1FB RAM DIRB (+RAM) DIRB output enables for P32..P63

1FC RAM OUTA (+RAM) OUTA output states for P0..P31

1FD RAM OUTB (+RAM) OUTB output states for P32..P63

1FE INA RAM INA input states for P0..P31 (also debug shadow int call address)

1FF INB RAM INB input states for P32..P63 (also debug shadow int ret address)

LUT

ADDR R/W NAME DESCRIPTION

200-3FF RAM user/cog-exec

HUB
Updated 151010

ADDR R/W NAME DESCRIPTION

$00_0000..$07_FFFF RAM user/hub-exec (hubexec does not function for hub $00000..$00FFF as it is mapped to COG & LUT)

$0F_FF80..$0F_FFBF mailboxes 16 special longs that create r/w events

$0F_FFC0..$0F_FFFF Cog 0..15 (initial) debug interrupt vectors (PNut does not download to this)

HUB ROM

ADDR R/W NAME DESCRIPTION

$00_0000..$00_3FFF n/a ROM boot only - not accessible

INTERNAL STACK

P2 STACKssw

There is an eight level 22-bit Internal Stack in all COGs. This is accessible using the following instructions:​

PUSH D/# push D/# on internal stack

POP D {WC,WZ} pop D from internal stack

CALL D {WC,WZ} save return address on internal stack

CALL #abs/@rel save return address on internal stack

http://forums.parallax.com/discussion/comment/1348215/#Comment_1348215

RET {WC,WZ} jump via internal stack

​

==

Conditional execution codes table

CODE PASM directive ALT Description Logic

1111 always default

1100 if_c if_b if below C

0011 if_nc if_ae if above or equal NC

1010 if_z if_e if equal Z

0101 if_nz if_ne if not equal NZ

1000 if_c_and_z C&Z

0100 if_c_and_nz C&NZ

0010 if_nc_and_z NC&Z

0001 if_nc_and_nz if_a if above NC&NZ

1110 if_c_or_z if_be if below or equal C|Z

1101 if_c_or_nz C|NZ

1011 if_nc_or_z NC|Z

0111 if_nc_or_nz NC|NZ

1001 if_c_eq_z C=Z

0110 if_c_ne_z C<>Z

0000 never forces NOP

INSTRUCTION BIT-FIELD SYMBOLS

Field Description

S Source address

D Destination address

I Immediate source

L Immediate destination

R Relative address

C Effects Carry status

Z Effects Zero status

 Fixed instruction field

CCCC Conditional execution code - default is "always"

P2 INSTRUCTIONS LIST

SHIFTS ROTATES

ROR​ ​ D , ​ S/#​ {wc,wz}​ Rotate Right​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Rotate D right by S linking from bit 0 to bit 31. If wc is specified the C will be set if the lsb of the result = 1 ?

ROL​ ​ D , ​ S/#​ {wc,wz}​ Rotate Left
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Rotate D left by S linking from bit 31 to bit 0. If wc is specified the C will be set if the msb of the result = 1

SHR​ ​ D , ​ S/#​ {wc,wz}​ Shift Right​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Shift D right by S with zero written to bit 31. If wc is specified the C will be set if the lsb of the result = 1

SHL​ ​ D , ​ S/#​ {wc,wz}​ Shift Left​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Shift D left by S with zero written to bit 0. If wc is specified the C will be set if the msb of the result = 1

RCR​ ​ D , ​ S/#​ {wc,wz}​ Rotate Carry Right​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

x

RCL​ ​ D , ​ S/#​ {wc,wz}​ Rotate Carry Left​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

x

SAR​ ​ D , ​ S/#​ {wc,wz}​ Shift Arithmetic Right​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Shift Arithmetic right and preserve sign

SAL​ ​ D , ​ S/#​ {wc,wz}​ Shift Arithmetic Left​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 0 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Shift Arithmetic left and preserves lsb

ARITHMETIC

ADD​ ​ D , ​ S/#​ {wc,wz}​ Add S to D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Add S to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

ADDX​ ​ D , ​ S/#​ {wc,wz}​ Add S and carry to D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Add S with carry to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

ADDS​ ​ D , ​ S/#​ {wc,wz}​ Add signed S to D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Add S to D signed. If the wc is specified then the carry flag is set if there is an overflow

ADDSX​ D , ​ S/#​ {wc,wz}​ Add signed S with carry to D​

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Add S with carry to D signed. If the wc is specified then the carry flag is set if there is an overflow

SUB​ ​ D , ​ S/#​ {wc,wz}​ Subtract S from D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

Subtract S from D unsigned. If the wc is specified then the carry flag is set if there is an overflow

SUBX​ ​ D , ​ S/#​ {wc,wz}​ Subtract S with carry from D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Subtract S with carry from D unsigned. If the wc is specified then the carry flag is set if there is an overflow

SUBS​ ​ D , ​ S/#​ {wc,wz}​ Subtract signed S from D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Subtract S from D signed. If the wc is specified then the carry flag is set if there is an overflow

SUBSX​ D , ​ S/#​ {wc,wz}​ Subtract signed S with carry from D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 0 1 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Subtract S with carry from D signed. If the wc is specified then the carry flag is set if there is an overflow

CMP​ ​ D , ​ S/#​ {wc,wz}​ Compare S to D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Comapre S to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

CMPX​​ D , ​ S/#​ {wc,wz}​ Compare S with carry to D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Compare S with carry to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

CMPSX​ D , ​ S/#​ {wc,wz}​ Compare signed S with carry to D​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Compare S with carry to D signed. If the wc is specified then the carry flag is set if there is an overflow

CMPR​​ D , ​ S/#​ {wc,wz}​ Compare Reverse (D to S)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

Compare D to S (reversed) unsigned. If the wc is specified then the carry flag is set if there is an overflow

CMPM​​ D , ​ S/#​ {wc,wz}​ Compare (MSB) S to D
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Compare S to D unsigned. If the wc is specified then the carry flag is set with the MSB of the (unwritten) result

SUBR​ ​ D , ​ S/#​ {wc,wz}​ Subtract Reverse (D from S)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Subtract D from S unsigned with result in D. If the wc is specified then the carry flag is set if these is an overflow

CMPSUB​ D , ​ S/#​ {wc,wz}​ Compare S to D and Subtract if S<=D
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 0 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Compare S to D unsigned and subtract S from D if it is lesser or equal. If the wc is specified then the carry flag is set if these is an overflow?

MIN​ ​ D , ​ S/#​ {wc,wz}​ Minimum limit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Limit value of D to a minimum of S

MAX​ ​ D , ​ S/#​ {wc,wz}​ Maximum limit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Limit value of D to a maximum of S

MINS​ ​ D , ​ S/#​ {wc,wz}​ Minimum Signed limit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Limit signed value of D to a minimum of S

MAXS​​ D , ​ S/#​ {wc,wz}​ Maximum Signed limit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Limit signed value of D to a maximum of S

0
MñjSUMC​ ​ D , ​ S/#​ {wc,wz}​ Sum Carry signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

Sum signed value of D with the signed value of S which is negated if C=1

SUMNC​ D , ​ S/#​ {wc,wz}​ Sum Not Carry signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Sum signed value of D with the signed value of S which is negated if C=0

SUMZ​ ​ D , ​ S/#​ {wc,wz}​ Sum Zero signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Sum signed value of D with the signed value of S which is negated if Z=1

SUMNZ​ D , ​ S/#​ {wc,wz}​ Sum Not Zero signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 0 1 1 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Sum signed value of D with the signed value of S which is negated if Z=0

MUL​ ​ D , ​ S/#​ {wc,wz}​ Multiply 16x16
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Multiply 16-bit S with 16-bit D with a 32-bit result in D

MULS​ ​ D , ​ S/#​ {wc,wz}​ Multiply Signed 16x16
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Multiply signed 16-bit S with 16-bit D with a 32-bit signed result in D

ABS​ ​ D , ​ S/#​ {wc,wz}​ Absolute value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Absolute value of S into D, that is negate the value of S if it is negative to make it positive.

NEG​ ​ D , ​ S/#​ {wc,wz}​ Negate value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Negate value of S into D.

NEGC​​ D , ​ S/#​ {wc,wz}​ Negate value if Carry set
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

Get value S into D and negate if C=1.

NEGNC​ D , ​ S/#​ {wc,wz}​ Negate value if Not Carry
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Get value S into D and negate if C=0.

NEGZ​ ​ D , ​ S/#​ {wc,wz}​ Negate value if Zero set
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Get value S into D and negate if Z=1.

NEGNZ​ D , ​ S/#​ {wc,wz}​ Negate value if Not Zero

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Get value S into D and negate if Z=0.

LOGICAL

ISOB​ ​ D , ​ S/#​ {wc,wz}​ Isolate Bit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Isolate bit D[S/#] into C.

NOTB​ ​ D , ​ S/#​ {wc,wz}​ Not Bit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Invert bit D[S/#] and set C to bit before it was inverted

CLRB​ ​ D , ​ S/#​ {wc,wz}​ Clear bit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Clear bit D[S/#] and set C to bit before it was clear

SETB​ ​ D , ​ S/#​ {wc,wz}​ Set bit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Clear bit D[S/#] and set C to bit before it was set

SETBC​ D , ​ S/#​ {wc,wz}​ Set bit to C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

Set bit D[S/#] to C and set C to bit before it was modified

SETBNC​ D , ​ S/#​ {wc,wz}​ Set bit to Not C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Set bit D[S/#] to Not C and set C to bit before it was modified

SETBZ​ D , ​ S/#​ {wc,wz}​ Set bit to Z
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Set bit D[S/#] to Z and set C to bit before it was modified

SETBNZ​ D , ​ S/#​ {wc,wz}​ Set bit to Not Z
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 0 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Set bit D[S/#] to Not Z and set C to bit before it was modified

ANDN​​ D , ​ S/#​ {wc,wz}​ AND Not
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

AND the Not of S to D

AND​ ​ D , ​ S/#​ {wc,wz}​ AND
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

AND S to D

OR​ ​ D , ​ S/#​ {wc,wz}​ OR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

OR S to D

XOR​ ​ D , ​ S/#​ {wc,wz}​ XOR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

XOR S to D

MUXC​​ D , ​ S/#​ {wc,wz}​ MUX C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

Set the bits in D according to C using the mask in S

MUXNC​ D , ​ S/#​ {wc,wz}​ MUX Not C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Set the bits in D according to Not C using the mask in S

MUXZ​ ​ D , ​ S/#​ {wc,wz}​ MUX Z
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Set the bits in D according to Z using the mask in S

MUXNZ​ D , ​ S/#​ {wc,wz}​ MUX Not Z
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 0 1 1 1 1 C Z I D D D D D D D D D S S S S S S S S S

Set the bits in D according to Not Z using the mask in S

NOT​ ​ D , ​ S/#​ {wc,wz}​ NOT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Invert the bits in S to D

TESTN​ D , ​ S/#​ {wc,wz}​ Test Not bits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Test the bits in D using the inverted mask in S and set Z and C accordingly

TEST​ ​ D , ​ S/#​ {wc,wz}​ Test bits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Test the bits in D using the mask in S and set Z and C accordingly

ANYB​ ​ D , ​ S/#​ {wc,wz}​ Any Bit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

OR S and D without modification and set C=any bit set, Z=result = 0

TESTB​ D , ​ S/#​ {wc,wz}​ Test Bit
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Test bit D[S/#] and set C/Z to state ???

INSTRUCTION MODIFIERS

ALTI​ D , ​ S/#​ ​ ​ Alter D/S in the next instruction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 0 0 0 0 I D D D D D D D D D S S S S S S S S S

Uses a D register for D/S field substitutions in the next instruction, while S/# modifies the D register's D and S fields and controls D/S substitution.
This is the old ALTDS without the wc,wz options.

ALTR​ D , ​ S/#​ ​ ​ Alter R in the next instruction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 0 0 0 1 I D D D D D D D D D S S S S S S S S S

Use the sum of D and S/# for the result register in the next instruction

ALTD​ D , ​ S/#​ ​ ​ Alter D in the next instruction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 0 0 1 0 I D D D D D D D D D S S S S S S S S S

Use the sum of D and S/# for the D register in the next instruction

ALTS​ D , ​ S/#​ ​ ​ Alter S in the next instruction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 0 0 1 1 I D D D D D D D D D S S S S S S S S S

Use the sum of D and S/# for the S register in the next instruction

RGBSQZ​ D , ​ S/#​ ​ ​ RGB Squeeze
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 0 1 0 I D D D D D D D D D S S S S S S S S S

Squeeze RGB

RGBEXP​ D , ​ S/#​ ​ ​ RGB Expand
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 0 1 1 I D D D D D D D D D S S S S S S S S S

Expand RGB

ADDPIX​ D , ​ S/#​ ​ ​ ADD Pixels
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 1 1 0 0 I D D D D D D D D D S S S S S S S S S

Add pixlels

MULPIX​ D , ​ S/#​ ​ ​ Multiply Pixels
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 1 1 0 1 I D D D D D D D D D S S S S S S S S S

Multiply pixlels

BLNPIX​ D , ​ S/#​ ​ ​ Blank Pixels
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 1 1 1 0 I D D D D D D D D D S S S S S S S S S

Blank pixlels?

MIXPIX​ D , ​ S/#​ ​ ​ Mix Pixels
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 1 1 1 1 I D D D D D D D D D S S S S S S S S S

Mix pixlels

REV​ ​ D , ​ S/#​ ​ ​ Reverse bits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 1 0 0 I D D D D D D D D D S S S S S S S S S

Reverse the bits in S and write to D (changed from P1)

SETI​ ​ D , ​ S/#​ ​ ​ Set Instruction field
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 1 0 1 I D D D D D D D D D S S S S S S S S S

Set Instruction field (b27..b19)? of Destination with Source

SETD​ ​ D , ​ S/#​ ​ ​ Set Destination field
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 1 1 0 I D D D D D D D D D S S S S S S S S S

Set destination field of D with S

SETS​ ​ D , ​ S/#​ ​ ​ Set Source field
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 1 1 1 I D D D D D D D D D S S S S S S S S S

Set source field of D with S

REP​ ​ D/# , ​ S/#​ ​ ​ Repeat instruction block
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 1 1 0 1 L I D D D D D D D D D S S S S S S S S S

Repeat following dest instructions by source count where 0 = infinite

AUGS​​ #S(23)​​ ​ ​ Augment source of next instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 1 1 0 n

Augment the next instruction by extending its source field to a full 32-bits (9+23) <test>
Augment the next instruction's S or D field with additional 23-bits taken from b31..b9 of the assembler supplied parameter (b8..b0 are disregarded in PNut)

https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/edit#bookmark=id.srtifs5xdtyg

AUGD​​ #D(23)​​ ​ ​ Augment destination of next instruction
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 1 1 1 n

Augment the next instruction by extending its destination field to a full 32-bits (9+23) <test>

SETCZ​ D/#​ ​ {wc,wz}​ Set C and Z flags
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z L D D D D D D D D D 0 0 0 1 1 0 0 0 0

Set the carry and zero flags to b1 and b0 of D. If WC is applied then C = b1 of D and Z = b0 of D

TOPONE​ D , ​ S/#​ {wc,wz}​ Top one
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Index of most significant bit that is set to 1, C is set to (S/# = 0)

BOTONE​ D , ​ S/#​ {wc,wz}​ Bottom one
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 1 1 C Z I D D D D D D D D D S S S S S S S S S

Index of least significant bit that is set to 1, C is set to (S/# = 0)

INCMOD​ D , ​ S/#​ {wc,wz}​ Increment Modulo
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 1 0 0 C Z I D D D D D D D D D S S S S S S S S S

D = (D==S ? 0 : D+1) Increment to S/# then wrap to zero. (inclusive)

DECMOD​ D , ​ S/#​ {wc,wz}​ Decrement Modulo
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

D = (D==S ? 0 : D-1) Decrement to zero then wrap to S/#.

DECOD​ D , ​ S/#​ {wc,wz}​ Decode alias MASK
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 1 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/edit#bookmark=id.srtifs5xdtyg

Decode index in S[4..0] into a mask in D. All other bits are set to 0.

MOV​ ​ D , ​ S/#​ {wc,wz}​ Move
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Move from cog source to cog destination

NOT​ ​ D , ​ S/#​ {wc,wz}​ Not
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 0 1 1 0 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Bitwise negation, Z = (result = 0), C = result[31]

LOC​ ​ reg , ​ #abs/@rel​ ​ Locate
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 1 0 1 W W R n

Locate the 20-bit address in hub and load into a pointer register. W: ? R: ? ADRA / ADRB

COG NIBBLE/BYTE/WORD Operations

SETNIB​ D , ​ S/#,​ #n​ ​ Set Nibble
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 0 0 0 n n n I D D D D D D D D D S S S S S S S S S

Set the nth nibble in the cog register D to S[3..0]

GETNIB​ D , ​ S/#,​ #n​ ​ Get Nibble
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 0 0 1 n n n I D D D D D D D D D S S S S S S S S S

Get the nth nibble in the cog register S to D[3..0] ???

ROLNIB​ D , ​ S/#,​ #n​ ​ Rotate Left Nibble

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 0 1 0 n n n I D D D D D D D D D S S S S S S S S S

Rotate the cog register D left by 4 bits, then add nth nibble in S

SETBYTE​ D , ​ S/#,​ #n​ ​ Set Byte
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 0 1 1 0 n n I D D D D D D D D D S S S S S S S S S

Set the nth byte in the cog register D to S[7..0]

GETBYTE​ D , ​ S/#,​ #n​ ​ Get Byte
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 0 1 1 1 n n I D D D D D D D D D S S S S S S S S S

Get the nth byte in the cog register S to D[7..0]

ROLBYTE​ D , ​ S/#,​ #n​ ​ Rotate Left Byte
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 0 0 n n I D D D D D D D D D S S S S S S S S S

Rotate the cog register D left by 8 bits, then add nth byte in S

SETWORD​ D , ​ S/#,​ #n​ ​ Set Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 0 1 0 n I D D D D D D D D D S S S S S S S S S

Set the nth word in the cog register D to S[15..0]

GETWORD​ D , ​ S/#,​ #n​ ​ Get Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 0 1 1 n I D D D D D D D D D S S S S S S S S S

Get the nth word in the cog register S to D[15..0]

ROLWORD​ D , ​ S/#,​ #n​ ​ Rotate Left Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 0 0 n I D D D D D D D D D S S S S S S S S S

Rotate the cog register D left by 16 bits, then add nth word in S

SETBYTS​ D , ​ S/#​ ​ ​ Set Bytes
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 0 1 0 I D D D D D D D D D S S S S S S S S S

Set ?

MOVBYTS​ D , ​ S/#​ ​ ​ Move Bytes
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 0 1 1 I D D D D D D D D D S S S S S S S S S

Move ?

SPLITB​ D , ​ S/#​ ​ ​ Split Bytes
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 1 0 0 I D D D D D D D D D S S S S S S S S S

Split ?

MERGEB​ D , ​ S/#​ ​ ​ Merge Bytes
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 1 0 1 I D D D D D D D D D S S S S S S S S S

Merge ?

SPLITW​ D , ​ S/#​ ​ ​ Split Words
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 1 1 0 I D D D D D D D D D S S S S S S S S S

Split ?

MERGEW​ D , ​ S/#​ ​ ​ Merge Words
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 0 1 1 1 1 I D D D D D D D D D S S S S S S S S S

Merge ?

SEUSSF​ D , ​ S/#​ ​ ​ SEUSS Forward
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 0 0 0 I D D D D D D D D D S S S S S S S S S

Overwrite register “D (0-511)” with a pseudo random bit pattern seeded from the value in source.
After 32 forward iterations, the original bit pattern is returned.

SEUSSR​ D , ​ S/#​ ​ ​ SEUSS Reverse
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 0 0 0 1 I D D D D D D D D D S S S S S S S S S

Set ?

BRANCHING
Relative jumps are 9-bit signed so instructions such as DJNZ may jump forward as well as backward.

DJZ​ ​ D , ​ S/@​ ​ ​ Decrement and Jump if Zero
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 0 0 0 I D D D D D D D D D S S S S S S S S S

Decrement dest and if zero jump to source (9-bit signed relative)

DJNZ​ ​ D , ​ S/@​ ​ ​ Decrement and Jump if Not Zero
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 0 0 1 I D D D D D D D D D S S S S S S S S S

Decrement dest and if NOT zero jump to source (9-bit signed relative)

DJS​ ​ D , ​ S/@​ ​ ​ Decrement and Jump if Signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 0 1 0 I D D D D D D D D D S S S S S S S S S

Decrement dest and if signed positive jump to source (9-bit signed relative)

DJNS​ ​ D , ​ S/@​ ​ ​ Decrement and Jump if Not Signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 0 1 1 I D D D D D D D D D S S S S S S S S S

Decrement dest and if NOT signed positive jump to source (9-bit signed relative)

TJZ​ ​ D , ​ S/@​ ​ ​ Test and Jump if Zero
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 1 0 0 I D D D D D D D D D S S S S S S S S S

Test dest and if zero jump to source (9-bit signed relative)

TJNZ​ ​ D , ​ S/@​ ​ ​ Test and Jump if Not Zero
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 1 0 1 I D D D D D D D D D S S S S S S S S S

Test dest and if NOT zero jump to source (9-bit signed relative)

TJS​ ​ D , ​ S/@​ ​ ​ Test and Jump if Signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 1 1 0 I D D D D D D D D D S S S S S S S S S

Test dest and if signed positive jump to source (9-bit signed relative)

TJNS​ ​ D , ​ S/@​ ​ ​ Test and Jump if Not Signed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 0 1 1 1 1 1 1 I D D D D D D D D D S S S S S S S S S

Test dest and if NOT signed positive jump to source (9-bit signed relative)

JMPREL​ D/#​ ​ ​ ​ Jump relative indexed
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 0 0 0 0

Jump relative to the instruction using the index which automatically adjusts for hub (x4) or cog memory

Example

​ jmprel​index​ ​ 'works in both cog and hub​

​ jmp​ #pgm0​

​ jmp​ #pgm1​

​ jmp​ #pgm2​

​ jmp​ #pgm3

CALL REGISTER
CALL​ ​ D ​ ​ {wc,wz}​ Call
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 1 0 1 1 0 1

Call indirectly via dest register and use the internal hardware stack (8 levels)

CALLA​ D ​ ​ {wc,wz}​ Call using PTRA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 1 0 1 1 1 0

Call indirectly via dest register and use PTRA for the stack pointer

CALLB​ D ​ ​ {wc,wz}​ Call using PTRB
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 1 0 1 1 1 1

Call indirectly via dest register and use PTRB for the stack pointer

POP​ ​ D ​ ​ {wc,wz}​ Pop hardware stack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 1 0 1 0 1 1

Pop the return address from the hardware stack into register (23 bits?)

PUSH​ ​ D/# ​ ​ ​ ​ Push hardware stack
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 1 0 1 0

Push the register or immediate value onto the hardware stack

RET​ ​ D ​ ​ {wc,wz}​ Return
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1

Return via the hardware stack

RETA​ ​ D ​ ​ {wc,wz}​ Return using PTRA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

Return via the PTRA stack

RETB​ ​ D ​ ​ {wc,wz}​ Return using PTRB
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

Return via the PTRB stack

CALLD​ D , ​ S/@​ {wc,wz}​ Call and link D
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 1 0 1 C Z I D D D D D D D D D S S S S S S S S S

Call dest and save return in register S ?

CALL LONG

JMP​ ​ #abs20/@rel20​ ​ Jump to 20-bit absolute or relative address
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 1 0 0 R n

Call the 20-bit absolute or relative address and use the internal hardware stack (8 levels)

CALL​ ​ #abs20/@rel20​ ​ Call 20-bit absolute or relative address
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 1 0 1 R n

Call the 20-bit absolute or relative address and use the internal hardware stack (8 levels)

CALLA​ #abs20/@rel20​ ​ Call subroutine at 20-bit absolute or relative address
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 1 1 0 R n

Call the 20-bit absolute or relative address and use PTRA for the stack pointer

CALLB​ #abs20/@rel20​ ​ Call subroutine at 20-bit absolute or relative address
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 1 1 1 R n

Call the 20-bit absolute or relative address and use PTRB for the stack pointer

CALLD​ reg,#abs20/@rel20​ ​ Call subroutine at 20-bit absolute or relative address
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 1 0 0 w w R n

Call the 20-bit absolute or relative address and store the return address in index register "ww" (PTRA,PTRB,ADRA,ADRB)

LUT MEMORY
These instructions are mainly used to construct stacks as they work in a similar way to WRLONG and RDLONG.

WRLUT​ D/# , ​ S/#​ ​ ​ Write to LUT memory
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 0 0 1 0 L I D D D D D D D D D S S S S S S S S S

Write to LUT RAM where S is the pointer to write D to

RDLUT​ D , ​ S/#​ {wc,wz}​ Read from LUT memory​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 1 1 0 C Z I D D D D D D D D D S S S S S S S S S

Read from LUT memory

Example: Create stacks in LUT memory.

Pushing data to an incrementing stack
​ wrlut​ ​ mydata,stkptr​​ ' Save mydata

​ add​ ​ stkptr,#1

Popping data from an incrementing stack
​ sub​ ​ stkptr,#1

​ rdlut​ ​ mydata,stkptr​​ ' restore mydata from top of stack

HUB MEMORY

WMLONG​ D ,​ S/#/PTRx​ ​ Write masked long
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 1 0 0 1 0 I D D D D D D D D D S S S S S S S S S

Works like WRLONG but doesn't write $FF bytes, works with SETQ/SETQ2

RDBYTE​ D ,​ S/#/PTRx {wc,wz}​ Read Byte from hub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 0 0 C Z I D D D D D D D D D S S S S S S S S S

Read byte from hub using S for pointer

RDWORD​ D ,​ S/#/PTRx {wc,wz}​ Read Word from hub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 0 1 C Z I D D D D D D D D D S S S S S S S S S

Read unaligned word from hub using S for pointer

RDLONG​ D ,​ S/#/PTRx {wc,wz}​ Read Long from hub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 1 0 1 0 C Z I D D D D D D D D D S S S S S S S S S

Read unaligned long from hub using S for pointer

WRBYTE​ D/# ,​ S/#/PTRx​ ​ Write Byte to hub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 0 1 0 0 L I D D D D D D D D D S S S S S S S S S

Write byte to hub using S for pointer

WRWORD​ D/# ,​ S/#/PTRx​ ​ Write Word to hub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 0 1 0 1 L I D D D D D D D D D S S S S S S S S S

Write word to hub using S for pointer

WRLONG​ D/# ,​ S/#/PTRx​ ​ Write Long to hub
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 0 1 1 1 L I D D D D D D D D D S S S S S S S S S

Write long to hub using S for pointer

SETQ​ ​ D/#​ ​ ​ ​ Set HUB repeat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 0 1 1 0

Repeat HUB memory op (RDxxxx/WRxxxx) with auto increment. D = count-1

SETQ2​ D/#​ ​ ​ ​ Set LUT repeat
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 0 1 1 1

Repeat LUT memory op (RDxxxx/WRxxxx) with auto increment. D = count-1

RDFAST​ D/# ,​ S/#​ ​ ​ Read Fast setup
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 0 1 1 1 L I D D D D D D D D D S S S S S S S S S

Setup a RDFAST block with D 64-byte blocks starting from address S

WRFAST​ D/# ,​ S/#​ ​ ​ Write Fast setup
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 1 0 0 0 L I D D D D D D D D D S S S S S S S S S

Setup a WRFAST block with D times 64-byte blocks starting from address S before wrapping.
To make wrapping work S needs to be long aligned. If D = 0 = infinite then there is no wrapping.

FBLOCK​ D/# ,​ S/#​ ​ ​ Fast Block
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 1 0 0 1 L I D D D D D D D D D S S S S S S S S S

Fast Block

RFBYTE​ D​ ​ {wc,wz}​ Read Fast Byte
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 0 1 0 0 0 0

Read fast byte

RFWORD​ D​ ​ {wc,wz}​ Read Fast Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 0 1 0 0 0 1

Read fast word

RFLONG​ D​ ​ {wc,wz}​ Read Fast Long
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 0 1 0 0 1 0

Read fast long

WFBYTE​ D/#​ ​ {wc,wz}​ Write Fast Byte
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 0 0 1 1

Write fast byte

WFWORD​ D/#​ ​ {wc,wz}​ Write Fast Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 0 1 0 0

Write fast word

WFLONG​ D/#​ ​ {wc,wz}​ Write Fast Long
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 0 1 0 1

Write fast long

SMART PINS

COND INSTR ZCR DEST SOURCE NAME OPER EFFECTS DESCRIPTION

CCCC 1011110 0LI DDDDDDDDD SSSSSSSSS SETPAE D/#,S/# Set Port A Edges ?

CCCC 1011110 1LI DDDDDDDDD SSSSSSSSS SETPAN D/#,S/# Set Port A edge polarity?

CCCC 1011111 0LI DDDDDDDDD SSSSSSSSS SETPBE D/#,S/# Set Port B Edges ?

CCCC 1011111 1LI DDDDDDDDD SSSSSSSSS SETPBN D/#,S/# Set Port B Edges ?

CCCC 1100001 1LI DDDDDDDDD SSSSSSSSS MSGOUT D/#,S/#

CCCC 1010111 CZI DDDDDDDDD SSSSSSSSS MSGIN D,S/# {WC,WZ}

CCCC 1100000 0LI DDDDDDDDD SSSSSSSSS JP D/#,S/@ Jump to source if dest pin is high (dest spans ports)

CCCC 1100000 1LI DDDDDDDDD SSSSSSSSS JNP D/#,S/@ Jump to source if dest pin is low (dest spans ports)

CCCC 1100101 0LI DDDDDDDDD SSSSSSSSS XINIT D/#,S/# transfer init, reset phase

CCCC 1100101 1LI DDDDDDDDD SSSSSSSSS XZERO D/#,S/# transfer init, reset phase

CCCC 1100110 0LI DDDDDDDDD SSSSSSSSS XCONT D/#,S/# transfer update, wait for rollover, continue

SMART PINS - INSTRUCTIONS​
--​
WSBYTE​D/#,S/#​ ​ 'write D[07:0] to pin S[5:0] data, mode dependent​
WSWORD​D/#,S/#​ ​ 'write D[15:0] to pin S[5:0] data, mode dependent​
WSLONG​D/#,S/#​ ​ 'write D[31:0] to pin S[5:0] data, mode dependent​
WSMODE​D/#,S/#​ ​ 'write D[31:0] to pin S[5:0] mode %MMMMM_FFFFCIOHHHLLL​
​
RSBYTE​D,S/#​ ​ 'read byte from pin S[5:0] into D, mode dependent​
RSLONG​D,S/#​ ​ 'read long from pin S[5:0] into D, mode dependent​
​
A = IN from this pad, B = IN from other pad, B OUT = OUT to other pad​
​
​ ​ ​ ​ pad​ pad​
MMMMM​ Description​ ​ DIR​ OUT​ Pattern​ ​ ​ Setup​ ​ ​ ​ Update​
--​
00000​ OUT (default)​​ DIR​ OUT​
00001​ B OUT​ ​ ​ DIR​ B OUT​
00010​ CLK​ ​ ​ DIR​ CLK​
00011 *​ transitions​ ​ DIR​ mode​ update-period-repeat​ WSBYTE=prescaler​ ​ WSLONG=transitions​
​
00100 *​ duty​ ​ ​ DIR​ mode​ update-period-repeat​ WSBYTE=prescaler​ ​ WSLONG=adder ~​
00101 *​ nco​ ​ ​ DIR​ mode​ update-period-repeat​ WSBYTE=prescaler​ ​ WSLONG=adder ~​
00110 *​ pwm sawtooth 16:16​ DIR​ mode​ update-period-repeat​ WSBYTE=prescaler​ ​ WSLONG=F:T, WSWORD=T ~​
00111 *​ pwm triangle 16:16​ DIR​ mode​ update-period-repeat​ WSBYTE=prescaler​ ​ WSLONG=F:T, WSWORD=T ~​
​
01000 *​ count highs​ ​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
01001 *​ count lows​ ​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
01010 *​ count all edges​ ​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
01011 *​ count positive edges​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
​
01100 *​ time highs​ ​ DIR **​OUT​ event-update-repeat​​ ​ ​ ​ RSLONG=count ~​
01101 *​ time lows​ ​ DIR **​OUT​ event-update-repeat​​ ​ ​ ​ RSLONG=count ~​

01110 *​ time highs/lows​ ​ DIR **​OUT​ event-update-repeat​​ ​ ​ ​ RSLONG=count ~ (MSB=state)​
01111 *​ time positive edges​DIR **​OUT​ event-update-repeat​​ ​ ​ ​ RSLONG=count ~​
​
10000 *​ DAC cog channel​ ​ DIR​ OUT​ event-update-repeat​WSLONG=period​
10001 *​ DAC random per period​ DIR​ OUT​ event-update-repeat​WSLONG=period​
10010 *​ DAC 16-bit dither​ DIR​ OUT​ event-update-repeat​WSLONG=period​​ ​ WSWORD=value ~​
10011 *​ DAC 16-bit pwm LSB​ DIR​ OUT​ event-update-repeat​WSLONG=period​​ ​ WSWORD=value ~​
​
10100 *​ A-high inc, B-high dec​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
10101 *​ A-rise inc, B-rise dec​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
10110 *​ A-B encoder​ ​ DIR **​OUT​ period-update-repeat​ WSLONG=period (0=cont)​ ​ RSLONG=count ~​
10111 *​ pulse, wait B​​ DIR​ mode​ period-update-repeat​ WSLONG=16:16 H:L period​ ​ RSLONG=last wait for B ~​
​
11000 *​ sync tx byte, B clk​DIR​ mode​ transmit-wait-repeat​ WSWORD=baud ***​ ​ ​ WSBYTE=data ~~​
11001 *​ sync tx long, B clk​DIR​ mode​ transmit-wait-repeat​ WSWORD=baud ***​ ​ ​ WSLONG=data ~~​
11010 *​ sync rx byte, B clk​DIR **​OUT​ wait-receive-repeat​WSWORD=baud ***​ ​ ​ RSBYTE=data ~​
11011 *​ sync rx long, B clk​DIR **​OUT​ wait-receive-repeat​WSWORD=baud ***​ ​ ​ RSLONG=data ~​
​
11100 *​ async tx byte​​ DIR​ mode​ transmit-wait-repeat​ WSWORD=baud​ ​ ​ WSBYTE=data ~~​
11101 *​ async tx long​​ DIR​ mode​ transmit-wait-repeat​ WSWORD=baud​ ​ ​ WSLONG=data ~~​
11110 *​ async rx byte​​ DIR **​OUT​ wait-receive-repeat​WSWORD=baud​ ​ ​ RSBYTE=data ~​
11111 *​ async rx long​​ DIR **​OUT​ wait-receive-repeat​WSWORD=baud​ ​ ​ RSLONG=data ~​
​
 * DIR from cogs: 0=reset, 1=start; IN to cogs: 1=done; !OUT from cogs clears done​
 ** set %HHHLLL to %111111 (float/float) if your intent is to input​
*** for tx, update data after B-rise; for rx, sample data before b-rise (delay input data by one clk)​
 ~ data is buffered​
 ~~ data is double buffered

COG and HUB CONTROL
ADDCT1​ D ,​ S/#​ ​ ​ Add and set Clock Tick 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 1 0 0 0 0 I D D D D D D D D D S S S S S S S S S

Adds S/# to D, and sets internal timer counter 1 to the same value

ADDCT2​ D ,​ S/#​ ​ ​ Add and set Clock Tick 2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 1 0 0 0 1 I D D D D D D D D D S S S S S S S S S

Adds S/# to D, and sets internal timer counter 1 to the same value

ADDCT3​ D ,​ S/#​ ​ ​ Add and set Clock Tick 3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 0 1 0 1 0 0 1 0 I D D D D D D D D D S S S S S S S S S

Adds S/# to D, and sets internal timer counter 1 to the same value

COGINIT​ D/# , ​ S/#​ {wc}​ ​ Cog Init​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 0 1 1 1 C L I D D D D D D D D D S S S S S S S S S

Initialize Cog

D[8:6]​​ ​ Reserved

D[5] = %0​ ​ Copy $1F8 longs from Hub @PTRB into cog, then JMP to $000
D[5] = %1​ ​ JMP to PTRB

D[4:0] = %1----​ Target cog is lowest-numbered inactive cog
D[4:0] = %0nnnn​ Target cog is indicated by %nnnn

S​ ​ ​ Address of first instruction to execute, copied to PTRB of the target cog
Q​ ​ ​ 20-bit value provided by SETQ, copied to PTRA of the target cog

{WC}​ ​ ​ If D[4] = %1 and D is not an immediate value:

●​ If no cog is available, C is set to %1
●​ Otherwise, C is set to %0 and D is set to new cog’s ID

COGID​ D/# ​ ​ {wc,wz}​ Cog ID​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z L D D D D D D D D D 0 0 0 0 0 0 0 0 1

Read the Cog's ID

COGSTOP​ D/# ​ ​ ​ ​ Cog Stop​

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 0 0 0 1

Stop the Cog

CLKSET​ D/# ​ ​ {wc,wz}​ Clock Set
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z L D D D D D D D D D 0 0 0 0 0 0 0 0 0

Set the system clock modes (PLL etc)

LOCKNEW​ D ​ ​ {wc,wz}​ Lock New
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z 0 D D D D D D D D D 0 0 0 0 0 0 1 0 0

Lock new

LOCKRET​ D/# ​ ​ ​ ​ Lock ret​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 0 0 1 0 1

Lock ret

LOCKCLR​ D/# ​ ​ {wc}​ ​ Lock Clear
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 L D D D D D D D D D 0 0 0 0 0 0 1 1 0

Clear the lock

LOCKSET​ D/# ​ ​ {wc}​ ​ Lock Set
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 L D D D D D D D D D 0 0 0 0 0 0 1 1 1

Set the lock

GETCNT​ D ​ ​ ​ ​ Get Count
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 D D D D D D D D D 0 0 0 0 1 1 0 1 0

Get system clock count into D

CORDIC
QMUL​​ D/# , ​ S/#​ ​ ​ Cordic Multiply​
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 0 0 0 L I D D D D D D D D D S S S S S S S S S

Multiply S to D using the cordic engine for a 64-bit result in X (low) and Y (high). Use GETQX and GETQY to retrieve result.

QDIV​ ​ D/# , ​ S/#​ ​ ​ Cordic Divide
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 0 0 1 L I D D D D D D D D D S S S S S S S S S

Divide D by S using the cordic engine for a 32-bit quotient in X and 32-bit remainder in Y. Use GETQX and GETQY to retrieve result.
(64 / 32 unsigned divide)

QSQR​​ D/# , ​ S/#​ ​ ​ Cordic Square Root
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 0 1 0 L I D D D D D D D D D S S S S S S S S S

Find the square root of S and place the integer result in the high word of X and the fractional result in the low word of X.
D is not used ? (supposed to be a 64-bit to 32-bit op)
 Use GETQX to retrieve result. Example: TF2# 2 SQRT .LONG 0001.6A09 ok

SETDACS​ ​ D/# ​ ​ ​ Set DACs
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 1 1 0 0

Set DACs

SETXFRQ​ ​ D/# ​ ​ ​ Set XFRQ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 0 1 1 1 0 1

Set XFRQ

GETXCOS​ ​ D​ ​ ​ Get X Cosine
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 D D D D D D D D D 0 0 0 0 1 1 1 1 0

Get X Cosine

GETXSIN​ ​ D ​ ​ ​ Get X Sine
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 D D D D D D D D D 0 0 0 0 1 1 1 1 1

Set DACs

CCCC 1101011 00L DDDDDDDDD 000010110 ​ SETQ​ D/#
CCCC 1101011 00L DDDDDDDDD 000010111 ​ SETQ2 D/#
CCCC 1101011 CZ0 DDDDDDDDD 000011000 ​ GETQX D ​ {WC,WZ}
CCCC 1101011 CZ0 DDDDDDDDD 000011001 ​ GETQY D ​ {WC,WZ}

CCCC 1101011 000 DDDDDDDDD 000011010 ​ GETCT D
CCCC 1101011 CZ0 DDDDDDDDD 000011011 ​ GETRND {D} ​ {WC,WZ}

4c
* WFBYTE and WFWORD write hub at first opportunity, bypassing the FIFO, meaning data no longer lingers until whole longs are formed
* Color space converter added after Transfer to do RGB->YIQ/YPbPr/YUV/etc conversions
* ALTR/ALTD/ALTS instructions added for doing indirect or base+offset accesses in next instruction
* ALTDS renamed to ALTI
* SETXDAC renamed to SETDACS
* GETPTR instruction added to read back WFxxxx/RFxxxx address - doesn't wrap, though
* GETINT instruction added to read INT1/INT2/INT3 states and event flags (non-destructive)
* SETBRK modified to read back STALLI status and INT1/INT2/INT3 selector settings
* SETCY/SETCI/SETCQ/SETCFRQ/SETCMOD instructions added to support colorspace converter

Older news:

* Hub exec FIFO-level bug fixed

* GETCNT renamed to GETCT
* The Prop123-A7 board now has 10 cogs, not 11.
* ADDCNT expanded to ADDCT1/ADDCT2/ADDCT3 - three timer events usable as interrupts
* WMLONG added - like WRLONG, but doesn't write $FF bytes, works with SETQ/SETQ2
* 'JMP D' added - CALLD still required for interrupt returns
* SETRDL/SETWRL - related bugs fixed
* C/Z properly restored on RETurns now
* New SETHLK used to set hub LOCK bit event
* GETQX/GETQY waiting improved to allow overlapped CORDIC operations without WAITX
* PNut SUBX bug fixed
* PNut now allows unary NOT/ABS/NEG... instructions (if D-only, D gets used for S)
* PNut fixed for properly-oriented if_00/if_01/if_x0...

Initial debug ISR's have been moved up to $FFFC0..$FFFFF.
Event-triggering LONGs have been moved up to $FFF80..$FFFBF.
(No more complications at the bottom of hub RAM - everything starts at $00000)

EVENTS, WAITS and INTERRUPTS
SETHLK​ D/#​ ​ ​ ​ Set Hub Lock
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 0 0 1 1

Set hub LOCK bit event

POLLINT​ ​ ​ {wc}​ ​ Poll interrupt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

Poll ?

POLLCT1​ ​ ​ {wc}​ ​ Poll counter 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0

Poll ?

POLLCT2​ ​ ​ {wc}​ ​ Poll counter 2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

Poll ?

POLLCT3​ ​ ​ {wc}​ ​ Poll counter 3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0

Poll ?

POLLPAT​ ​ ​ {wc}​ ​ Poll Pattern
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0

Poll ?

POLLEDG​ ​ ​ {wc}​ ​ Poll Edge
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0

Poll ?

POLLRDL​ ​ ​ {wc}​ ​ Poll RDLONG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0

Poll ?

POLLWRL​ ​ ​ {wc}​ ​ Poll WRLONG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0

Poll ?

POLLHLK​ ​ ​ {wc}​ ​ Poll Hub Lock
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0

Poll hub lock

POLLXMT​ ​ ​ {wc}​ ​ Poll XMT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0

Poll ?

POLLXFI​ ​ ​ {wc}​ ​ Poll XFI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0

Poll ?

POLLXRO​ ​ ​ {wc}​ ​ Poll XRO
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0

Poll the Transfer-NCO-rolled-over event flag​

POLLFBW​ ​ ​ {wc}​ ​ Poll FBW
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0

Poll ?

POLLRLE​ ​ ​ {wc}​ ​ Poll RLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0

Poll ?

WAITINT​ ​ ​ {wc}​ ​ Wait for Interrupt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0

wait for interrupt-event, WC=1 for timeout using Q

WAITCT1​ ​ ​ {wc}​ ​ Wait for Counter 1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0

Wait for timer-event , WC=1 for timeout using Q

WAITCT2​ ​ ​ {wc}​ ​ Wait for Counter 2
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0

Wait for timer-event , WC=1 for timeout using Q

WAITCT3​ ​ ​ {wc}​ ​ Wait for Counter 3
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0

Wait for timer-event , WC=1 for timeout using Q

WAITPAT​ ​ ​ {wc}​ ​ Wait for Pattern
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0

Wait for

WAITEDG​ ​ ​ {wc}​ ​ Wait for Edge
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0

Poll the pin-edge-detected event flag

WAITRDL​ ​ ​ {wc}​ ​ Wait for RDLONG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0

Wait for the special-long-read event flag

WAITWRL​ ​ ​ {wc}​ ​ Wait for WRLONG
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0

Wait for the special-long-written event flag

WAITHLK​ ​ ​ {wc}​ ​ Wait for Hub Lock

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0

Wait for the hub-LOCK-edge-detected event flag

WAITXRO​ ​ ​ {wc}​ ​ Wait for Transfer Rolled-Over
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0

Wait for Transfer-NCO-rolled-over event flag​

WAITFBW​ ​ ​ {wc}​ ​ Wait for FIFO Block Wrap
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0

Poll the hub-FIFO-interface-block-wrap event flag

WAITRLE​ ​ ​ {wc}​ ​ Wait for RAM Block Event
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0

Wait for the hub-RAM-FIFO-interface-block-wrap event flag

ALLOWI​ ​ ​ ​ ​ Allow Interrupts
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0

Allow Interrupts

STALLI​ ​ ​ ​ ​ Stall Interrupts
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0

Stall Interrupts

SETINT1​ D/# ​ ​ ​ ​ Set Interrupt 1 mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 0 1 0 1

Set INT1 event to 0..15

SETINT2​ D/# ​ ​ ​ ​ Set Interrupt 2 mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 0 1 1 0

Set INT2 event to 0..15

SETINT3​ D/# ​ ​ ​ ​ Set Interrupt 3 mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 0 1 1 1

Set INT3 event to 0..15

WAITX​​ D/# ​ ​ ​ ​ Wait for X cycles
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 1 0 0 0

Wait for X cycles

SETCZ​ D/# ​ ​ {wc,wz}​ Set C and Z
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z L D D D D D D D D D 0 0 0 1 0 1 0 0 1

Set C flag to state of b1 in D if wc is specified, Set Z flag to state of b0 in D if wz is specified

PUSH​ ​ D/# ​ ​ ​ ​ Push
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 0 1 0 1 0

Push D onto the internal 8-level stack

POP​ ​ D ​ ​ {wc,wz}​ Pop D
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z L D D D D D D D D D 0 0 0 1 0 1 0 1 1

Pop from the internal stack to D (typically return address from CALL) - Note, this stack is only 23-bits wide?

JMP​ ​ D ​ ​ {wc,wz}​ Jump
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 C Z L D D D D D D D D D 0 0 0 1 0 1 1 0 0

Jump to the 9-bit cog location (or via register?)

GETPTR​ D ​ ​ ​ ​ Get fast Pointer
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 D D D D D D D D D 0 0 0 1 1 0 1 0 0

Get the current RD/WR FAST pointer

GETINT​ D ​ ​ ​ ​ Get Interrupt
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 0 D D D D D D D D D 0 0 0 1 1 0 1 0 1

Get interrupt ?

SETBRK​ D/# ​ ​ ​ ​ Set break
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 0 1 1 0

Set break

SETCY​ D/# ​ ​ ​ ​ Set CY
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 0 0 0

Set CY

SETCI​​ D/# ​ ​ ​ ​ Set CI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 0 0 1

Set CI

SETCQ​ ​ D/# ​ ​ ​ ​ Set CQ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 0 1 0

Set CQ

SETCFRQ​ ​ D/# ​ ​ ​ ​ Set CFRQ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 0 1 1

Set CFRQ

SETCMOD​ ​ D/# ​ ​ ​ ​ Set CMOD
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 1 0 0

Set CMOD - color space converter

SETPIX​ ​ D/# ​ ​ ​ ​ Set Pixels
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 1 0 1

Set pixels

SETPIV​ ​ D/# ​ ​ ​ ​ Set PIV
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C C C C 1 1 0 1 0 1 1 0 0 L D D D D D D D D D 0 0 0 1 1 1 1 1 0

Set PIV?

NOTES

SETTING EDGE EVENTS

SETEDG​%L_EE_PPPPPP

%L:​ ​ 0 = pin

1 = lock

%EE:​ ​ 00 = any edge

01 = pos edge

10 = neg edge

11 = any edge

%PPPPPP:​ pin number

%xxPPPP:​ lock number

SETRWL​%RRRR_WWWW

%RRRR:​​ RDLONG-event address %0000_0000_0000_00RR_RR00

%WWWW:​​ WRLONG-event address %0000_0000_0000_00WW_WW00

SETINT1/SETINT2/SETINT3 %MMM

%MMM:​ ​ 000 = disable interrupt - default

001 = enable timer-event interrupt

010 = enable pat-event interrupt

011 = enable edge-event interrupt

100 = enable RDLONG-event interrupt

101 = enable WRLONG-event interrupt

110 = enable transfer-rollover-event interrupt

111 = enable fast-block-wrap-event interrupt

WAITINT is waiting for an interrupt. The next instruction is already in the pipeline. WAITINT stops waiting when an interrupt occurs. The

next instruction executes, while the interrupt CALLD is being injected into the pipeline. The next instruction that executes is CALLD.

So the instruction following the WAITINT executes before the interrupt code.

ALIASES

JMP ​ reg ​ {WC,WZ} ​= ​ CALLD INB,reg​ {WC,WZ}

PUSHA reg/# ​ = ​ WRLONG reg/#,PTRA++

PUSHB reg/# ​ = ​ WRLONG reg/#,PTRB++

POPA​ reg ​ = ​ RDLONG reg,--PTRA

POPB​ reg ​ = ​ RDLONG reg,--PTRB

RETI0 ​ = ​ CALLD INB,INB ​ WC,WZ

RETI1 ​ = ​ CALLD INB,$1F5​ WC,WZ

RETI2 ​ = ​ CALLD INB,$1F3​ WC,WZ

RETI3 ​ = ​ CALLD INB,$1F1​ WC,WZ

NOP ​ = ​ $00000000

POINTER ADDRESSING MODES
 INDEX = -16..+15 for simple offsets, 0..15 for ++'s, or 0..16 for --'s
 SCALE = 1 for byte, 2 for word, 4 for long

 S = 0 for PTRA, 1 for PTRB
 U = 0 to keep PTRx same, 1 to update PTRx
 P = 0 to use PTRx + INDEX*SCALE, 1 to use PTRx (post-modify)
 NNNNN = INDEX
 nnnnn = -INDEX

1SUPNNNNN PTR expression​

 --​

 100000000 PTRA 'use PTRA​

 110000000 PTRB 'use PTRB​

 101100001 PTRA++ 'use PTRA, PTRA += SCALE​

 111100001 PTRB++ 'use PTRB, PTRB += SCALE​

 101111111 PTRA-- 'use PTRA, PTRA -= SCALE​

 111111111 PTRB-- 'use PTRB, PTRB -= SCALE​

 101000001 ++PTRA 'use PTRA + SCALE, PTRA += SCALE​

 111000001 ++PTRB 'use PTRB + SCALE, PTRB += SCALE​

 101011111 --PTRA 'use PTRA - SCALE, PTRA -= SCALE​

 111011111 --PTRB 'use PTRB - SCALE, PTRB -= SCALE​

​

 1000NNNNN PTRA[INDEX] 'use PTRA + INDEX*SCALE​

 1100NNNNN PTRB[INDEX] 'use PTRB + INDEX*SCALE​

 1011NNNNN PTRA++[INDEX] 'use PTRA, PTRA += INDEX*SCALE​

 1111NNNNN PTRB++[INDEX] 'use PTRB, PTRB += INDEX*SCALE​

 1011nnnnn PTRA--[INDEX] 'use PTRA, PTRA -= INDEX*SCALE​

 1111nnnnn PTRB--[INDEX] 'use PTRB, PTRB -= INDEX*SCALE​

 1010NNNNN ++PTRA[INDEX] 'use PTRA + INDEX*SCALE, PTRA += INDEX*SCALE​

 1110NNNNN ++PTRB[INDEX] 'use PTRB + INDEX*SCALE, PTRB += INDEX*SCALE​

 1010nnnnn --PTRA[INDEX] 'use PTRA - INDEX*SCALE, PTRA -= INDEX*SCALE​

 1110nnnnn --PTRB[INDEX] 'use PTRB - INDEX*SCALE, PTRB -= INDEX*SCALE

Examples:

Read byte at PTRA into D
1111 1011000 001 DDDDDDDDD 100000000 RDBYTE D,PTRA

Write lower word in D to PTRB+7*2
1111 1100010 001 DDDDDDDDD 110000111 WRWORD D,PTRB[7]

Write long value 10 at PTRB, PTRB += 1*4
1111 1100011 011 000001010 111100001 WRLONG #10,PTRB++

Read word at PTRA into D, PTRA -= 1*2
1111 1011001 001 DDDDDDDDD 101111111 RDWORD D,PTRA--

Write lower byte in D at PTRA-1*1, PTRA -= 1*1
1111 1100010 001 DDDDDDDDD 101011111 WRBYTE D,--PTRA

Read long at PTRB+10*4 into D, PTRB += 10*4
1111 1011010 001 DDDDDDDDD 111001010 RDLONG D,++PTRB[10]

Write lower byte in D to PTRA, PTRA += 15*1
1111 1100010 001 DDDDDDDDD 101101111 WRBYTE D,PTRA++[15]

HUB MEMORY READING AND WRITING
Here are the basic instructions for reading and writing hub RAM:

CCCC 1011000 CZI DDDDDDDDD SSSSSSSSS RDBYTE D,S/#/PTRx {WC,WZ}

CCCC 1011001 CZI DDDDDDDDD SSSSSSSSS RDWORD D,S/#/PTRx {WC,WZ}

CCCC 1011010 CZI DDDDDDDDD SSSSSSSSS RDLONG D,S/#/PTRx {WC,WZ}

CCCC 1100010 0LI DDDDDDDDD SSSSSSSSS WRBYTE D/#,S/#/PTRx

CCCC 1100010 1LI DDDDDDDDD SSSSSSSSS WRWORD D/#,S/#/PTRx

CCCC 1100011 0LI DDDDDDDDD SSSSSSSSS WRLONG D/#,S/#/PTRx

In the case of the ‘S/#/PTRx’ operand, three possibilities exist:

●​ S is a register

●​ #$00..$FF indicates hub address $00..$FF

●​ PTRx expression with optional pre-/post-modifier and scaled index

STREAMER
Ability to stream hub RAM and/or lookup RAM to DACs and pins, also pins to hub RAM.

By preceding RDLONG with either SETQ or SETQ2, multiple hub longs can be read into either register RAM or lookup RAM. This transfer happens at the rate of one long per clock, assuming

there is no hub streaming going on. If hub streaming is active, the hub reads will have to wait for cycles when the next-needed window occurs and the streamer is not requiring the window for

itself.

 CZL 000001101 <empty> 00L 000011101 SETXFRQ D/# ​

 00L 000001110 QLOG D/# 000 000011110 GETXCOS D

The streamer can write data directly to the i/o pins, not just to the DACs, up to 32 bits per clock, from HUB or LUT and to HUB.

Here is how you read multiple hub longs into register RAM:

​ SETQ #x​ ​ ​ ​ ‘x = number of longs, minus 1, to read

​ RDLONG first_reg,S/#/PTRx​​ ‘read x+1 longs starting at first_reg

Here is how you read hub longs into lookup RAM:

​ SETQ2 #x​ ​ ​ ​ ‘x = number of longs, minus 1, to read

​ RDLONG first_lut,S/#/PTRx​​ ‘read x+1 longs starting at first_lut

WRLONG can be preceded by SETQ or SETQ2 to write multiple hub longs from register RAM. If SETQ2 is used, only non-$FF bytes will be written. This masking feature enables byte-level

overlay data to be imposed onto existing hub data.

A simple way to do a long fill with a const, here 0, is just:

SETQ longcount

https://forums.parallax.com/discussion/comment/1346089#Comment_1346089

WRLONG #0,startaddress

The I/O Transfer Unit (Streamer) accesses HubRAM via the FIFO Unit

The FIFO Unit of each Cog performs all HubRAM burst accesses for that Cog; including for HubExec, for RD/WRFAST instructions and for the I/O Transfer Unit. Only one of these three can use

the FIFO Unit at a time.

ALTDS
(Seairth) On a slightly related note, I just noticed that there weren't any INDx registers in the 8/13 document. Did we lose indirect

registers in the new design?

(Chip)

Yes, they are gone. We have an ALTDS instruction now that substitutes D and S fields in the next instruction. ALTDS also

increments/decrements those fields in its D register, with S supplying the inc/dec controls. It was a really cheap way around what could be

a huge hardware situation, like in Prop2-Hot.

You might want to review the conversation on ALTDS here - they describe single and double indirection code examples.
http://forums.parallax.com/discussion/156242/question-about-altds-implementation-in-new-chip/p1

(Chip)

The other day I revisited ALTDS because we had moved the CCCC bits to the front of the opcode. The old SETI instruction now writes S[8:0]

into D[27:19] (the OOOOOOOCZ bits), instead of into the top bits

opcode: CCCC OOOOOOO CZI DDDDDDDDD SSSSSSSSS

The OOOOOOOCZ bits in a variable (not an instruction) can be used to redirect result writing, while the DDDDDDDDD and SSSSSSSSS fields can

redirect D and S. It works like this:

ALTDS D,S/# 'modify D according to bits in S and possibly replace next instruction's CCCCOOOOOOOCZI / DDDDDDDDD / SSSSSSSSS fields.

In ALTDS, S provides the following pattern: %RRR_DDD_SSS

%RRR: (101 allows instruction substitution)

http://forums.parallax.com/discussion/156242/question-about-altds-implementation-in-new-chip/p1
http://forums.parallax.com/discussion/156242/question-about-altds-implementation-in-new-chip/p1

000 = don't affect D's CCCCOOOOOOOOOCZI field

001 = don't affect D's CCCCOOOOOOOOOCZI field, cancel write for next instruction

010 = decrement D's OOOOOOOCZ field

011 = increment D's OOOOOOOCZ field

100 = use D's OOOOOOOCZ field as the result register for the next instruction (separate from D)

101 = use D's CCCCOOOOOOOCZI field as next instruction's CCCCOOOOOOOCZI field

110 = use D's OOOOOOOCZ field as the result register for the next instruction, decrement D's OOOOOOOCZ field

111 = use D's OOOOOOOCZ field as the result register for the next instruction, increment D's OOOOOOOCZ field

%DDD

000 = don't affect D's DDDDDDDDD field

001 = copy D's SSSSSSSSS field into its DDDDDDDDD field

010 = decrement D's DDDDDDDDD field

011 = increment D's DDDDDDDDD field

100 = use D's DDDDDDDDD field as the DDDDDDDDD field for the next instruction

101 = use D's DDDDDDDDD field as the DDDDDDDDD field for the next instruction, copy D's SSSSSSSSS field into its DDDDDDDDD field

110 = use D's DDDDDDDDD field as the DDDDDDDDD field for the next instruction, decrement D's DDDDDDDDD field

111 = use D's DDDDDDDDD field as the DDDDDDDDD field for the next instruction, increment D's DDDDDDDDD field

%SSS

000 = don't affect D's SSSSSSSSS field

001 = copy D's DDDDDDDDD field into its SSSSSSSSS field

010 = decrement D's SSSSSSSSS field

011 = increment D's SSSSSSSSS field

100 = use D's SSSSSSSSS field as the SSSSSSSSS field for the next instruction

101 = use D's SSSSSSSSS field as the SSSSSSSSS field for the next instruction, copy D's DDDDDDDDD field into its SSSSSSSSS field

110 = use D's SSSSSSSSS field as the SSSSSSSSS field for the next instruction, decrement D's SSSSSSSSS field

111 = use D's SSSSSSSSS field as the SSSSSSSSS field for the next instruction, increment D's SSSSSSSSS field

You can see that when those three-bit RRR/DDD/SSS fields have their MSB's clear, they are only affecting D. When their MSB's are set,

though, they additionally affect the next instruction in some way.

When RRR is 101, it actually uses D's upper bits to replace the functionality of the next instruction, which might as well be a NOP, unless

its DDDDDDDDD and SSSSSSSSS fields are meaningful.

It hurts to think about, but I think, as someone proposed above, compounded indirection can be achieved. Also, some crazy instruction

substitution possibilities exist. And, not being self-modifying code, this can all work from hub-exec.

ALTDS uses a D register for D/S field substitutions in the next instruction, while S/# modifies the D register's D and S fields and controls

D/S substitution.

ALTDS D,S/#

D - a register whose D/S fields may be substituted for the next instructions' D/S fields

S/# - an 8-bit code: %ABBBCDDD

%A:

0 = don't substitute next instructions' D field with current D register's D field

1 = substitute next instructions' D field with current D register's D field

%BBB:

000 = leave the current D register's D field the same

0xx = add 1/2/3 to D field,

1xx = subtract 1/2/3/4 from D field

%C:

0 = don't substitute next instructions' S field with current D register's S field

1 = substitute next instructions' S field with current D register's S field

%DDD:

000 = leave the current D register's S field the same

0xx = add 1/2/3 to S field

1xx = subtract 1/2/3/4 from S field

(Cluso)

This permits the additional possibilities of:

* redirecting the result

* redirecting the result to an unused register (maybe INx) to perform a pseudo NR

Therefore, might it be beneficial, and would it be easy to do the following ???

S/# = %RRRDDDSSS

where RRR, DDD and SSS mean:

000 = don't substitute next instructions S/D/R field, leave the current D registers S/D/I value the same

001 = substitute next instructions S/D/R field with the current D registers S/D/I field, then add 1 to the current D registers S/D/I value

010 = substitute next instructions S/D/R field with the current D registers S/D/I field, then add 2 to the current D registers S/D/I value

011 = substitute next instructions S/D/R field with the current D registers S/D/I field, then add 4 to the current D registers S/D/I value

100 = substitute next instructions S/D/R field with the current D registers S/D/I field, leave the current D registers S/D/I value the same

101 = substitute next instructions S/D/R field with the current D registers S/D/I field, then subtract 1 from the current D registers S/D/I

value

110 = substitute next instructions S/D/R field with the current D registers S/D/I field, then subtract 2 from the current D registers S/D/I

value

111 = substitute next instructions S/D/R field with the current D registers S/D/I field, then subtract 4 from the current D registers S/D/I

value

1/2/4 covers byte/word/long in hub, and 1/2/4 longs in cog.

ALTDS Examples
(Ozpropdev)

http://forums.parallax.com/discussion/comment/1275737/#Comment_1275737

While I agree that ALTDS is a little awkward it more than compensates I think in its efficiency.

For example

copy 16 cog regs from .src to .dest

copy_cogram​ mov​ .myreg,##.dest << 9 | .src​

​ ​ rep​ @.copy_end,#16​

​ ​ altds​ .myreg,#%000_111_111​

​ ​ mov​ 0-0,0-0​

.copy_end​

​

Nice and compact and efficient.

PUSHZC ??? - Old P2_hot instruction ???
PUSHZC rotates ZC flags into D register bits 1:0.​

Bits 31:30 of D are rotated into ZC flags if WZ WC effect is included.​

​

+-----------> Z flag ----+​

| |​

| +-------> C flag ------+​

| | | |​

WZ WC | |​

 | |​

 ^ ^ | |​

| | V V​

​

31 30.................... 1 0​

 <-----------------------​

 rotated left x2​

​

​

POPZC rotates bits 0:1 of D register into ZC flags.​

ZC flags are rotated into Bits 31:30 of D if WZ WC effect is included.​

​

In this example the lower 4 bits of zc_reg contain the before and after ZC flags status.

 PUSHZC zc_reg​

 INCMOD myreg,#13 wz,wc​

 PUSHZC zc_reg

RDFAST
(Chip)

RDFAST #0,startbyteaddress

Once you do that, 'RFBYTE D (WC,WZ)' can be used to read contiguous bytes, starting from startbyteaddress. RFBYTE means 'read fast byte' and

it always takes 2 clocks - meaning RDFAST blocks waiting for Hub. RDFAST initiates the read-fast mode. This doesn't work with hub exec,

because hub exec uses the RDFAST mode, itself. That first D/# term in RDFAST tells how many 64-byte blocks to read before wrapping back to

startbyteaddress (0= infinite). To make wrapping work, startbyteaddress must be long-aligned.

WRFAST works the same way, and uses WFBYTE, WFWORD, WFLONG.

NOTE: Makes use of the Cog’s FIFO Unit. This is also used by HubExec and the Streamer - Mutually exclusive.

P2 INTERNAL STACK
(ALL COGs) 24SEP2015​

==​

There is an eight level 22-bit Internal Stack in all COGs. It is intended use is to store C & Z flags plus a 20-bit return address for stack

CALL instructions.

NOTE: isn't this actually an 8-level 23-bit wide Stack just for calls? (edited above - Cluso 8 OCT)​

This is accessible using the following instructions...​

--​

CCCC 1101011 00L DDDDDDDDD 000101000 PUSH D/# 'push D/# on internal stack​

CCCC 1101011 CZ0 DDDDDDDDD 000101100 POP D {WC,WZ} 'pop D from internal stack​

CCCC 1101011 CZ0 DDDDDDDDD 000101001 CALL D {WC,WZ} 'save return address on internal stack​

CCCC 1101101 Rnn nnnnnnnnn nnnnnnnnn CALL #abs/@rel 'save return address on internal stack​

CCCC 1101011 CZ0 000000000 000101101 RET {WC,WZ} 'jump via internal stack​

==​

​

MAILBOXES AND DEBUG INTERRUPT VECTORS
$0F.FF80 $80 DUMPL

FF80: 0000.0000 0000.0000 0000.0000 0000.0000​................

FF90: 0000.0000 0000.0000 0000.0000 0000.0000​................

FFA0: 0000.0000 0000.0000 0000.0000 0000.0000​................

FFB0: 0000.0000 0000.0000 0000.0000 0000.0000​................

FFC0: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF​................

FFD0: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF​................

FFE0: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF​................

FFF0: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF​................ ok

Migrating From Propeller 1

Instruction Changes

Instruction Propeller 1 Propeller 2

CALL Alias for JMPRET, assembler trickery Push PC+1/C/Z on 8-deep stack, then jump to D

DJNZ Can set C/Z with WC/WZ. C/Z stays unchanged.

JMP Alias for JMPRET NR Jump to D

MAX Z is set to (S = 0), C is set to unsigned(D<S) Z is set to (result = 0), C is set to (result <> D)

MAXS Z is set to (S = 0), C is set to signed(D<S) Z is set to (result = 0), C is set to (result <> D)

MINS Z is set to (S = 0), C is set to unsigned(D<S) Z is set to (result = 0), C is set to (result <> D)

MIN Z is set to (S = 0), C is set to signed(D<S) Z is set to (result = 0), C is set to (result <> D)

NEG C is set to S[31] C is set to result[31]

NEGC C is set to S[31] C is set to result[31]

NEGNC C is set to S[31] C is set to result[31]

NEGNZ C is set to S[31] C is set to result[31]

NEGZ C is set to S[31] C is set to result[31]

RET Alias for JMPRET, relies on “_ret” label Returns to top address on 8-deep stack. Use with CALL.

REV D[31..0] is set to D[0..31], then shifted right by S D[31..0] is set to S[0..31]

RCL C is set to D[31] C is set to last bit shifted out

RCR C is set to D[0] C is set to last bit shifted out

ROL C is set to D[31] C is set to last bit shifted out

ROR C is set to D[0] C is set to last bit shifted out

SHL C is set to D[31] C is set to last bit shifted out

SHR C is set to D[0] C is set to last bit shifted out

TJNZ Can set C/Z with WC/WZ C/Z stays unchanged.

TJZ Can set C/Z with WC/WZ C/Z stays unchanged.

WAITCNT Wait until target CNT is reached, then add delta to D Wait until target CNT is reached. Use ADDCT1, ADDCT2, or ADDCT3 to
set target and add delta.

Removed Instructions/Registers/Effects

Name Type Comment

ABSNEG instruction Can be achieved with combination of ABS and NEG

ADDABS instruction Can be achieved with a combination of ABS and ADD

CNT register Use GETCNT instruction

CTRA register Replaced by smart pins.

CTRB register Replaced by smart pins.

FRQA register Replaced by smart pins.

FRQB register Replaced by smart pins.

JMPRET instruction Closest match is CALLD

MOVD instruction Renamed to SETD

MOVI instruction Renamed to SETI

MOVS instruction Renamed to SETS

NR effect Where the NR/WR feature is needed, two instructions exist (TEST and AND, CMP and SUB, etc.)

PAR register

PHSA register Replaced by smart pins.

PHSB register Replaced by smart pins.

SUBABS instruction Can be achieved with a combination of ABS and SUB

VCFG register

VSCL register

WAITPEQ instruction Set with SETPAE/SETPBE. Use WAITPAT to block. Can also use POLLPAT or interrupt.

WAITPNE instruction Set with SETPAN/SETPBN. Use WAITPAT to block. Can also use POLLPAT or interrupt.

WAITVID instruction

WR effect Not available on P2. Where the NR/WR feature is needed, two instructions exist.

151027 P2 UPDATES
* ADDCNT expanded to ADDCT1/ADDCT2/ADDCT3 - three timer events usable as interrupts
* WMLONG added - like WRLONG, but doesn't write $FF bytes, works with SETQ/SETQ2
* 'JMP D' added - CALLD still required for interrupt returns
* SETRDL/SETWRL - related bugs fixed
* C/Z properly restored on RETurns now
* New SETHLK used to set hub LOCK bit event
* GETQX/GETQY waiting improved to allow overlapped CORDIC operations without WAITX
* PNut SUBX bug fixed
* PNut now allows unary NOT/ABS/NEG... instructions (if D-only, D gets used for S)
* PNut fixed for properly-oriented if_00/if_01/if_x0...

151109
* WFBYTE and WFWORD write hub at first opportunity, bypassing the FIFO, meaning data no longer lingers until whole longs are formed
* Color space converter added after Transfer to do RGB->YIQ/YPbPr/YUV/etc conversions
* ALTR/ALTD/ALTS instructions added for doing indirect or base+offset accesses in next instruction
* ALTDS renamed to ALTI
* SETXDAC renamed to SETDACS
* GETPTR instruction added to read back WFxxxx/RFxxxx address - doesn't wrap, though
* GETINT instruction added to read INT1/INT2/INT3 states and event flags (non-destructive)
* SETBRK modified to read back STALLI status and INT1/INT2/INT3 selector settings
* SETCY/SETCI/SETCQ/SETCFRQ/SETCMOD instructions added to support colorspace converter

CCCC 1101011 00L DDDDDDDDD 000100011 ​ SETHLK D/#

CCCC 1101011 C00 000000000 000100100 ​ POLLINT ​ {WC}
CCCC 1101011 C00 000000001 000100100 ​ POLLCT1 ​ {WC}
CCCC 1101011 C00 000000010 000100100 ​ POLLCT2 ​ {WC}
CCCC 1101011 C00 000000011 000100100 ​ POLLCT3 ​ {WC}
CCCC 1101011 C00 000000100 000100100 ​ POLLPAT ​ {WC}
CCCC 1101011 C00 000000101 000100100 ​ POLLEDG ​ {WC}
CCCC 1101011 C00 000000110 000100100 ​ POLLRDL ​ {WC}
CCCC 1101011 C00 000000111 000100100 ​ POLLWRL ​ {WC}
CCCC 1101011 C00 000001000 000100100 ​ POLLHLK ​ {WC}

CCCC 1101011 C00 000001001 000100100 ​ POLLXRO ​ {WC}
CCCC 1101011 C00 000001010 000100100 ​ POLLFBW ​ {WC}
CCCC 1101011 C00 000001011 000100100 ​ POLLRLE ​ {WC}
CCCC 1101011 C00 000001100 000100100 ​ POLLWLE ​ {WC}

CCCC 1101011 C00 000010000 000100100 ​ WAITINT ​ {WC}
CCCC 1101011 C00 000010001 000100100 ​ WAITCT1 ​ {WC}
CCCC 1101011 C00 000010010 000100100 ​ WAITCT2 ​ {WC}
CCCC 1101011 C00 000010011 000100100 ​ WAITCT3 ​ {WC}
CCCC 1101011 C00 000010100 000100100 ​ WAITPAT ​ {WC}
CCCC 1101011 C00 000010101 000100100 ​ WAITEDG ​ {WC}
CCCC 1101011 C00 000010110 000100100 ​ WAITRDL ​ {WC}
CCCC 1101011 C00 000010111 000100100 ​ WAITWRL ​ {WC}
CCCC 1101011 C00 000011000 000100100 ​ WAITHLK ​ {WC}
CCCC 1101011 C00 000011001 000100100 ​ WAITXRO ​ {WC}
CCCC 1101011 C00 000011010 000100100 ​ WAITFBW ​ {WC}
CCCC 1101011 C00 000011011 000100100 ​ WAITRLE ​ {WC}

CCCC 1101011 000 000100000 000100100 ​ ALLOWI
CCCC 1101011 000 000100001 000100100 ​ STALLI

	Parallax Propeller 2 Assembly Instruction Set
	LINKS
	LABELS
	EXPRESSIONS
	ADDRESSINGP2 MEMORY MAP
	EXEC MAP
	COG REGISTERS
	LUT
	HUB
	HUB ROM

	INTERNAL STACK
	P2 STACKssw
	Conditional execution codes table

	INSTRUCTION BIT-FIELD SYMBOLS
	
	P2 INSTRUCTIONS LIST
	SHIFTS ROTATES
	ARITHMETIC
	LOGICAL
	INSTRUCTION MODIFIERS
	COG NIBBLE/BYTE/WORD Operations
	BRANCHING
	CALL REGISTER
	CALL LONG
	LUT MEMORY
	Example: Create stacks in LUT memory.

	HUB MEMORY
	SMART PINS
	
	
	COG and HUB CONTROL
	CORDIC
	EVENTS, WAITS and INTERRUPTS
	
	

	NOTES
	SETTING EDGE EVENTS
	ALIASES
	POINTER ADDRESSING MODES
	Examples:

	HUB MEMORY READING AND WRITING
	STREAMER
	ALTDS
	
	ALTDS Examples
	copy 16 cog regs from .src to .dest

	PUSHZC ??? - Old P2_hot instruction ???
	RDFAST
	P2 INTERNAL STACK
	MAILBOXES AND DEBUG INTERRUPT VECTORS
	Migrating From Propeller 1
	Instruction Changes
	Removed Instructions/Registers/Effects

