Parallax Propeller 2 Assembly Instruction Set

Here you find the instruction set for the new P2 (2015) chip Please feel free to edit this document and if something requires more explanation or examples
then just link that to another section of the document. The emphasis is mainly on the instruction set and memory map while Chip's document provides the
overview and many other details. Please refer to his document for more information about the Propeller 2 chip itself.

<click here for published version>

CONTENTS

LINKS
LABELS
EXPRESSIONS
ADDRESSING
P2 MEMORY MAP
EXEC MAP
COG REGISTERS
LUT
HUB
HUB ROM
P2 INTERNAL STACK
Conditional execution codes table
INSTRUCTION BIT-FIELD SYMBOLS
P2 INSTRUCTIONS LIST
SHIFTS ROTATES
ARITHMETIC
LOGICAL
INSTRUCTION MODIFIERS
COG NIBBLE/BYTE/WORD Operations
BRANCHING
CALL REGISTERII99i
CALL LONG

https://docs.google.com/document/d/10qQn_-B7avY2ce0N1MDDdzOF1lACPNWUJkjHFyzITiY/edit?usp=sharing
https://goo.gl/mH5892

LUT MEMORY
Example: Create stacks in LUT memory.
HUB MEMORY
SMART PINS
nd HUB NTROL
CORDICbb
EVENTS. WAITS and INTERRUPT.
NOTES

SETTING EDGE EVENTS
ALIASES
POINTER ADDRESSING MODE

Examples:
HUB MEMORY READING AND WRITING
STREAMER
ALTDS

ALTDS Examples

1 r from .src to . t

PUSHZC ??? - Old P2_hot instruction 22?
RDFAST
P2 INTERNAL STACK
MAILBOXES AND DEBUG INTERRUPT VECTORS
Migrating From Propeller 1

Instruction Changes

Removed Instructions/Registers/Effects
Experimenting with different ment | t

LINKS

Link to Chip's P2 document

Link to PBJ's opcode testing (pubdocs version)
Mindrobot's P2 memory-map architecture spreadsheet

https://docs.google.com/document/d/10qQn_-B7avY2ce0N1MDDdzOF1lACPNWUJkjHFyzITiY/edit
https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/edit?usp=sharing
https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/pub
https://docs.google.com/spreadsheets/d/1wQ6gwGFXRr22bM7S5PZaukQL9LrnEU5oqh3p8ZntNO8/pubhtml

Discussion about LUT to HUB flow is here

LABELS

Labels are either globally-scoped or locally-scoped.

A globally-scoped label must begin with an underscore or letter (a-z, A-Z). All other characters must be an underscore, letter (a-z,
A-Z) or number (0-9).

A locally-scoped label must begin with a period, followed by an underscore or letter (a-z, A-Z). All other characters must be an
underscore, letter (a-z, A-Z) or number (0-9).

Each local scope begins immediately after each global label and ends immediately before the next global label.
All labels must be unique within the scope they belong fto.

Label values are determined as follows:

Labels defined in an ORGH section resolve to a hub address or offset (in bytes), regardless of whether the label is referenced in
an ORGH or ORG section.

Labels defined in an ORG section resolve to a cog address or offset (in longs), regardless of whether the label is referenced in
an ORGH or ORG section.

When the effective hub address or offset is needed for a label that is defined in an ORG section, the label may be preceded by a
"@" to force resolution to a hub address or offset.

Though it is possible to apply the "@" to labels defined in ORGH sections, it has no effect.

EXPRESSIONS

Expressions can contain numbers, labels, and nested expressions. The simplest expression is either a single number or label.
An expression that begins with # or ## is known as an "immediate" value.

For branching instructions, immediate values can be either "absolute" or "relative", depending on context.

For non-branching instructions, immediate values are always "absolute".

"Absolute immediate" interpretation can be forced by using "#\" or "##\".

There is no operator for forcing a "relative immediate" interpretation.

indicates a 9-bit (short-form) or 20-bit (long-form) immediate value:

For short-form branch instructions, this is a 9-bit relative immediate.

For long-form branch instructions that change execution mode (cog <-> hub), this is a 20-bit absolute immediate.
For long-form branch instructions that do not change execution mode, this is a 20-bit relative immediate.

For all other instructions, this is a 9-bit absolute immediate.

o

o O O

https://forums.parallax.com/discussion/comment/1345743/#Comment_1345743

o In circumstances where an absolute immediate must be forced, the expression is prefaced with "#\".
e {# indicates a 32-bit immediate value

o Animplicit AUGx will precede the instruction containing the expression.

o The lower 9 bits will be encoded in the instruction and the upper 23 bits will be encoded in the AUGX.

o For short-form branch instructions, this is a 20-bit relative immediate. The upper 12 bits are ignored.

o For non-branch instructions, this is a 32-bit absolute immediate.

o This is meaningless for long-form branche instructions. PNUT throws an error.
e For BYTE/WORD/LONG, the expression is encoded as raw data. If the expression begins with # or ##, PNUT throws an error.
e for all other expressions that do not begin with # or ##, the expression is encoded as a register address and must be between

$000 and $1FF.

ADDRESSINGP2 MEMORY MAP

<mindrobots cheat sheet>

Reading memory from $0000 to $03FF with RDxxxx will read from hub memory whereas a jump/call to these locations will execute from cog or lut.

EXEC MAP
ADDR NAME DESCRIPTION
S00_0000. .500_01EF | COG EXEC Code executes from cog register space (self-modifying code permitted)
$00_0200. .500_03FF | LUT EXEC Code executes from lut register space
S00_0400. .50F_FFFF | HUB EXEC Code executes from hub space (hub uses byte addressing)
Code is not required to be long aligned
Uses instruction streamer
COG REGISTERS

(9-bit addressable)

01F0: 0000.0000 0000.0000 0000.0000 0000.0000 CO00.0000 O0CO0.0000 0000.0980 0000.0000
01F8: 0000.131C 0000.0010 6000.0000 4000.0000 0000.0000 4000.0000 FFFF.FFFE FCOO.0000

ADDR READ WRITE NAME/USE DESCRIPTION

https://docs.google.com/spreadsheets/d/1wQ6gwGFXRr22bM7S5PZaukQL9LrnEU5oqh3p8ZntNO8/pubhtml

000-1EF | RAM RAM user general-purpose 32-bit registers (and cog exec code space)
1FO | RAM RAM IJIMP3 interrupt call address for INT3
1F1 | RAM RAM IRET3 interrupt return address for INT3
1F2 | RAM RAM IJMP2 interrupt call address for INT2
1F3 | RAM RAM IRET2 interrupt return address for INT2
1F4 | RAM RAM IJMP1 interrupt call address for INT1
1F5 | RAM RAM IRET1 interrupt return address for INT1
1F6 | RAM RAM ADRA receives CALLD-immediate return or LOC address
1F7 | RAM RAM ADRB receives CALLD-immediate return or LOC address
1F8 | PTRA PTRA PTRA dedicated register for hub access pointer with auto inc/dec, cog ram is not accessible
1F9 | PTRB PTRB PTRB dedicated register for hub access pointer with auto inc/dec, cog ram is not accessible
1FA | RAM DIRA (+RAM) DIRA output enables for P0O..P31
1FB | RAM DIRB (+RAM) DIRB output enables for P32..P63
1FC | RAM OUTA (+RAM) OUTA output states for P0O..P31
1FD | RAM OUTB (+RAM) ouTB output states for P32..P63
1FE | INA RAM INA input states for P0..P31 (also debug shadow int call address)
1FF | INB RAM INB input states for P32..P63 (also debug shadow int ret address)

LUT
ADDR R/W NAME DESCRIPTION

200-3FF | RAM user/cog-exec

HUB
Updated 151010

ADDR R/W

NAME

DESCRIPTION

$00_0000. .507_FFFF | RAM

user/hub-exec

(hubexec does not function for hub $00000..SOOFFF as it is mapped to COG & LUT)

SOF _FF80..S0F _FFBF mailboxes 16 special longs that create r/w events

SOF FFCO..SOF _FFFF Cog 0..15 (initial) debug interrupt vectors (PNut does not download to this)
HUB ROM
ADDR R/W NAME DESCRIPTION

S00_0000. .500_3FFF | n/a ROM boot only - not accessible

INTERNAL STACK

P2 STACKssw

There is an eight level 22-bit Internal Stack in all COGs. This is accessible using the following instructions:

PUSH D/#

push D/# on internal stack

POP D {WC,WZ}

pop D from internal stack

CALL D {WC,WZ}

save return address on internal stack

CALL #abs/@rel

save return address on internal stack

http://forums.parallax.com/discussion/comment/1348215/#Comment_1348215

RET

{WC,Wz}

jump via internal stack

Conditional execution codes table

CODE |PASM directive ALT Description Logic
1111 Jalways default

1100 |Jif c if b if below C
0011 |if nc if ae if above or equal NC
1010 |if z if e if equal 7
0101 |if nz if_ne if not equal NZ
1000 Jif c_ and z C&Z
0100 |if_c_and_nz C&NZ
0010 |if nc_and z NC&Z
0001 |if nc_and nz if a if above NC&NZ
1110 |if_c_or_z if_be if below or equal C|Z
1101 |if c or_ nz CINZ
1011 |if_nc_or z NC|Z
0111 |if nc_or nz NC|NZ
1001 |if_c_eq z C=Z
0110 |if c ne z C<>Z
0000 |never forces NOP

INSTRUCTION BIT-FIELD SYMBOLS

Field | Description

S Source address

D Destination address

I Immediate source

L Immediate destination
R Relative address

C Effects Carry status

V4 Effects Zero status

Fixed instruction field

CCCC | Conditional execution code - default is "always"

P2 INSTRUCTIONS LIST

SHIFTS ROTATES

ROR D, SiH# {wc,wz} Rotate Right

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

c|fcjcjcjofofojojofofoe|)Cc|z|(I1|(b|D|D(D|(D|D|D[D|D|S]|S|S|S]|S]S

Rotate D right by S linking from bit O to bit 31. If wc is specified the C will be set if the Isb of the result = 1 ?

ROL D, SH# {wc,wz} Rotate Left

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

c|fcjcjcjofofojojofof1)Cc|z|(I1(bD|D|D(D|(D|D|D[D|D|S]|S|[S|S]|S]S

Rotate D left by S linking from bit 31 to bit 0. If wc is specified the C will be set if the msb of the result = 1

SHR D, SH {wcwz) Shift Right

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcjofofojojof1fo|)Cc|z|(I1(b|D|D[(D|(D|D|D[D|D|S|S|[S|S]|S]S

Shift D right by S with zero written to bit 31. If wc is specified the C will be set if the Isb of the result = 1

SHL D, SH {wcwz) Shift Left

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cjcjcjcjofofofojojr1y1|Cc(z|(I1|{p|b|bD|D|ID(D[D[D|D|S|S|S|S|S]S

Shift D left by S with zero written to bit 0. If wc is specified the C will be set if the msb of the result = 1

RCR D, SiH# {wc,wz} Rotate Carry Right

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

c|fcjcjcjofofojoj1fofoe|)Cc|z|(I1r(b|bD|D(D|(D|D|D[D|D|S]|S|S|S]|S]S

X

RCL D, SH# {wc,wz} Rotate Carry Left

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcjofofojoj1fofr1)Cc|z|(I1(b|D|D(D|(D|D|D[D|D|S|S|[S|S]|S]S

SAR D, Si# {wc,wz} Shift Arithmetic Right

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

cfcjcjcjofofojoj1fr1joe)jCcyz|(1r|p|p|dDf(D|{D|D|D[D|D|S|S|S]S

Shift Arithmetic right and preserve sign

SAL D, S {wc,wz} Shift Arithmetic Left

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

cfcjcjcjofofojoja1fr2y12)Ccyz|(1r|o|p|dDf(dDID|D|D[D|ID|S|S|S]S

Shift Arithmetic left and preserves Isb

ARITHMETIC

ADD D, S {wc,wz} Add StoD

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|fcjcjcjofofojr1jofojoe)jcyz|(1r|p|p|dDf(bD|fD|D|D[D|D|S|S|S]S

Add S to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

ADDX D, SH# {wc,wz} Add S and carry to D

31 [30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

cfcjcjcjofojojr1jofoy|r1)Ccyz|(1r|p|p|dDf(bD|fD|D|D[D|D|S|S|S]S

Add S with carry to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

ADDS D, S {wc,wz} Add signed S to D

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|fcjcjcjofojojrjofr1jo)jCcyz|(1r|o|p|dDf(bDfb|dD|D[(D|ID|S|S|S]S

Add S to D signed. If the wc is specified then the carry flag is set if there is an overflow

ADDSX D, SiH# {wc,wz} Add signed S with carry to D

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cjcjcjcjofofof12joj1|1|Cc(z|(I1|{p|b|bD|D|IDID[D[D|D|S|S|S|S|S]S

Add S with carry to D signed. If the wc is specified then the carry flag is set if there is an overflow

SuUB D, SiH# {wc,wz} Subtract S from D

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcjofofojrj1fofoe|)Cc|z|{I1r(b|bD|D(D|(D|D|D[D|D|S]|S|S|S]|S]S

Subtract S from D unsigned. If the wc is specified then the carry flag is set if there is an overflow

SuBX D, SH# {wc,wz} Subtract S with carry from D

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

c|fcjcjcjofofojryj1fofr1)Cc|z|{I1(b|D|D(D|(D|D|D[D|D|S|S|[S|S]|S]S

Subtract S with carry from D unsigned. If the wc is specified then the carry flag is set if there is an overflow

SUBS D, S {wc,wz} Subtract signed S from D

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcjofofo)jr1j1f12fo)Cc|z|{I1(b|bD|D(D(D|D|D[D|D|S|S|[S|S]|S]S

Subtract S from D signed. If the wc is specified then the carry flag is set if there is an overflow

SUBSX D, SiH# {wc,wz} Subtract signed S with carry from D

31 |30 | 29 | 28 | 27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cjcjcjcjofofof1j1)j1yj1|Cc(z|(I1|{p|b|bD|D|IDID[(D[D|D|S|S|S|S|S]S

Subtract S with carry from D signed. If the wc is specified then the carry flag is set if there is an overflow

CMP D, S {wc,wz} Compare StoD

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcjofofr1jojofofoe|)Cc|z|{I1(b|bD|D(D|(D|D|D[D|D|S]|S|[S|S]|S]S

Comapre S to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

CMPX D, SH# {wc,wz} Compare S with carry to D

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

c|fcjcjcjofofrjojofof1)Cc|z|(I1(bD|D|D[(D|D|D|D[D|D|S|S|[S|S]|S]S

Compare S with carry to D unsigned. If the wc is specified then the carry flag is set if there is an overflow

CMPSX D, SH# {wc,wz} Compare signed S with carry to D
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 8 7 6 5 4 3 2 1 0

cjcjcjcjofoj1foejof1|1|Cctz|1(D|D(D|D|D|D|D|D|D|S|S|S|IS]|S|S]|S|S]|S
Compare S with carry to D signed. If the wc is specified then the carry flag is set if there is an overflow

CMPR D, S {wc,wz} Compare Reverse (D to S)
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cjcjcjcjofoj1foej1foejo|Cctz|1(p|bD(bD|D|D|ID|D|ID|D|S|S|S|IS]|S|S]|S|S]|S
Compare D to S (reversed) unsigned. If the wc is specified then the carry flag is set if there is an overflow

CMPM D, Si# {wc,wz} Compare (MSB) Sto D

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcjcjofojr1foj1f{oe|1|Cctz|1(D|D(D|D|D|ID|D|ID|D|S|S|S|IS]|S|S]|S|S]|S
Compare S to D unsigned. If the wc is specified then the carry flag is set with the MSB of the (unwritten) result

SUBR D, S {wc,wz} Subtract Reverse (D from S)
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cfcjcjcjofofjr1joj1f1joe)Ccjyz|(1r|p|bD|{D(D|ID|D|D|D|D|S|S|[S|S]|S|S|[S]|S]S
Subtract D from S unsigned with result in D. If the wc is specified then the carry flag is set if these is an overflow

CMPSUB D, SH# {wc,wz} Compare S to D and Subtract if S<=D

31 |30 |29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 8 7 6 5 4 3 2 1 0
cjcjcjcjofoj1foej)j1f12|1|Cctz|1(D|D(D|D|D|ID|D|D|D|S|S|S|IS]|S|S]|S|[S]|S
Compare S to D unsigned and subtract S from D if it is lesser or equal. If the wc is specified then the carry flag is set if these is an overflow?

MIN D, S {wc,wz} Minimum limit

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcjcjofoj1f1jofoejo|Cctz|1(p|bD(D|D|D|ID|D|D|D|S|S|S|IS]|S|S]|S|S]|S
Limit value of D to a minimum of S

MAX D, SiH# {wc,wz} Maximum limit
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cicjcjcjojofr1j)j12|0ojot1jc|z|(r|opyp|p(pf{p|DfD|D|ID|S|IS|S|S|S]|]S|S]|S]|S
Limit value of D to a maximum of S

MINS D, S {wc,wz} Minimum Signed limit
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcjcjotfoj1f1jof1j0|Cctz|1(pD|D(D|D|D|ID|D|ID|D|S|S|S|IS]|S|S]|S|S]|S
Limit signed value of D to a minimum of S
MAXS D, Si# {wc,wz} Maximum Signed limit
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcjcjofofa2j2jo)12|1(cCc|(z|{r|p|b|bD|D(D(D[D|D|D|S|S|S|[S|S]|S|S]|S]|S
Limit signed value of D to a maximum of S
0
MnajSUMC D, Si# {wc,wz} Sum Carry signed
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10 8 7 6 5 4 3 2 1 0
cjcjcjcjotfoj1f1j)j1foejo|Cctz|1(o|bD(bD|D|D|ID|D|ID|D|S|S|S|IS]|S|S]|S|S]|S
Sum signed value of D with the signed value of S which is negated if C=1
SUMNC D, Si# {wc,wz} Sum Not Carry signed
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10 8 7 6 5 3 2 1 0
cjcjcjcjofofa2j12j2)joy|1(cCc|(z|{r|p|b|bD|D(D(D[D|D|D|S|S|S|[S|S]|S]|S]|S]|S
Sum signed value of D with the signed value of S which is negated if C=0
SUMz D, Si# {wc,wz} Sum Zero signed
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10 8 7 6 5 4 3 2 1 0
cjcjcyjcjofofa2j12j12)j12|jof(Cc|(z|{r|p|b|bD|D(D(D[D|D|D|S|S|S|[S|S]|S|S]|S]|S
Sum signed value of D with the signed value of S which is negated if Z=1
SUMNZ D, S {wc,wz} Sum Not Zero signed
31 |30 |29 | 28 | 27 |26 | 25 | 24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcyjcjofofa2j12j1)12y|1(c|(z|{1r|p|b|D|DID(D[D|D|D|S|S|[S|[S|S|S|S]|S]|S
Sum signed value of D with the signed value of S which is negated if Z=0
MUL D, SiH# {wc,wz} Multiply 16x16
[31 |30 |20 |28 |27 |26 |25 |2a [23[22 |21 |20 a0 fa8 |17 |26]|as]|afz|2|as]e]|ofa|[7]6]|s[a[3]2]1]0e]

cfcjcjcjofr1y1j)j1yj1f1jo)jCcjyz|(r|p|b{bDf(b|yDyD[{D|D|D]S

Multiply 16-bit S with 16-bit D with a 32-bit result in D

MULS D, SH# {wc,wz} Multiply Signed 16x16

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8

cfcjcjcjofr1y1j)j12yj12f12yj12)Ccjyz|(r|p|b{dDfdb|yD|D[{D|D]|D]S

Multiply signed 16-bit S with 16-bit D with a 32-bit signed result in D

ABS D, S {wc,wz} Absolute value

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8

c|cjcjcjofr1j1jojofr1jo)jCcjyz|(1r|o|bp{pf(bybyb{DfD|D]S

Absolute value of S into D, that is negate the value of S if it is negative to make it positive.

NEG D, Si# {wc,wz} Negate value

31 |30 |29 |28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8

cjcjc|jcjof1r1f2fojojr1|1y|c(z|(Ir|{p|b|b|D|ID(D(D|D|D]S

Negate value of S into D.

NEGC D, S {wc,wz} Negate value if Carry set

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8

cfcjcjcjofr1j1joj1fojoejcjyz|(r|p|b{bDf(b|ybD|D[{D|D|D]S

Get value S into D and negate if C=1.

NEGNC D, SH# {wc,wz} Negate value if Not Carry

31 [30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8

cfcjcjcjofr1y1joj1foyj1)Ccjz|(r|op|b{bDf(db|yDyD[{D|D|D]S

Get value S into D and negate if C=0.

NEGZ D, S {wc,wz} Negate value if Zero set

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8

c|cjcjcjofr1y1joj1f1jo0)Ccjyz|(1r|o|bp{bpf(bybybD{D[D|D]S

Get value S into D and negate if Z=1.

NEGNZ D, SiH# {wc,wz} Negate value if Not Zero

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cicjcyjcjofrfrfoyfry(r2y(2y(cfz(I(pfbpfbf(bfbDf{DfD|D
Get value S into D and negate if Z=0.
LOGICAL
ISOB D, Si# {wc,wz} Isolate Bit
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cicjcjcjofr1fofofofof(o(cf(z(rI(pfpf(bfbfbf{bDfD|D
Isolate bit D[S/#] into C.
NOTB D, Si# {wc,wz} Not Bit
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjc|jcjof1jofojofoey|1|Cctz)r(p|bfp|D|DID|D|D
Invert bit D[S/#] and set C to bit before it was inverted
CLRB D, SH# {wc,wz} Clear bit
31 |30 |29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjofr1jofojof12|j0e|Cctz)r(p|b(b|D|D|(D|D|D
Clear bit D[S/#] and set C to bit before it was clear
SETB D, S {wc,wz} Set bit
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjof12jofojof1|1|Cctz)r(p|bD(b|D|D|ID|D|D
Clear bit D[S/#] and set C to bit before it was set
SETBC D, Si# {wc,wz} Set bitto C
31 |30 |29 | 28 | 27 |26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cicjcjcjofrfofofrfof(oy(cf(z(rI(pfpf(bf(bfbf(bDfD|D

Set bit D[S/#] to C and set C to bit before it was modified

SETBNC D, SH# {wc,wz} Set bit to Not C

31 |30 |29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjof12jofoyj1f{oey|1|Ccftz)r(p|b(pb|D|DID|D|D
Set bit D[S/#] to Not C and set C to bit before it was modified
SETBZ D, Si# {wc,wz} Set bit to Z
31 |30 |29 | 28 | 27 |26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjof12jofoyj1f1|j0|Cctz)r(p|b(b|dD|DID|D|D
Set bit D[S/#] to Z and set C to bit before it was modified
SETBNZ D, Si# {wc,wz} Set bit to Not Z
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cicjcyjcjofrfofofry(ry(2y(cfz(r(pfbpfbf(bfbDfDfD|D
Set bit D[S/#] to Not Z and set C to bit before it was modified
ANDN D, Si# {wc,wz} AND Not
31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 | 18 |17 |16 | 15 | 14 | 13 | 12 | 11 | 10
cjcjcjcjof12jof12jofoe|joejctz)r(p|bfpb|D|D|(D|D|D
AND the Not of Sto D
AND D, Si# {wc,wz} AND
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjof12jof12jof{o0ey|1|Ccftz)r(p|b(b|D|D|ID|D|D
AND StoD
OR D, S {wc,wz} OR
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjofr1jof12jof12|j0|Cctz)r(p|b(b|D|D|ID|D|D
ORStoD
XOR D, SiH# {wc,wz} XOR
31 |30 |29 | 28 | 27 |26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cicjcjcjofrfofrfofry(r2y(cf{z(rI(pfbpfbf(bfbDfDfD|D

XOR StoD

MUXC D, S {wc,wz} MUX C

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjofr2jof12j1foyjojCctz)r(p|dbf{b|dD|DID|D|D
Set the bits in D according to C using the mask in S
MUXNC D, SiH# {wc,wz} MUX Not C
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjc|jcjof12jofa2yj1foey|1|Cctz)r(p|bf(p|D|DID|D|D
Set the bits in D according to Not C using the mask in S
MUXZ D, Si# {wc,wz} MUX Z2
31 |30 | 29 | 28 | 27 | 26 |25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjof12jof2yj1f2|j0|Cctz)r(p|b(b|D|D|ID|D|D
Set the bits in D according to Z using the mask in S
MUXNZ D, Si# {wc,wz} MUX Not Z
31 |30 | 29 | 28 | 27 | 26 |25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjof12jof2yj1f2|12|Cctz)r(p|bD(pb|D|D|ID|D|D
Set the bits in D according to Not Z using the mask in S
NOT D, SiH# {wc,wz} NOT
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcjofr2j1fojofoy|1|Cctz)r(p|dbf{b|dD|DID|D|D
Invert the bits in S to D
TESTN D, SiH# {wc,wz} Test Not bits
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcjcj1|of12fojojo|jo|yCc(z|(r|p|b|bD|D|D(D|D|D
Test the bits in D using the inverted mask in S and set Z and C accordingly
TEST D, SH# {wc,wz} Test bits
31 |30 | 29 | 28 | 27 | 26 |25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjr1t|oj1fojofoey|1|Cctz)r(p|op(pb|D|D(D|D|D

Test the bits in D using the mask in S and set Z and C accordingly

ANYB D, SH# {wc,wz} Any Bit

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 8 7 6 5 4 3 2 1 0
cjcjcyjcj1fof12jojojr1|jofcCc|(z|{r|p|pb|bD|D(D(D[D|D|D|S|S|S|[S|S]|S]|S]|S]|S
OR S and D without modification and set C=any bit set, Z=result = 0

TESTB D, SH {wcwz} Test Bit

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 8 7 6 5 4 3 2 1 0
cijcjfcjcjr1t|oj1foejof12|1|Cctz|1(p|D(D|D|D|ID|D|D|D|S|S|S|IS]|S|S]|S|S]|S
Test bit D[S/#] and set C/Z to state ??7?

INSTRUCTION MODIFIERS

ALTI D, S/# Alter D/S in the next instruction
31 |30 | 29 |28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 | 13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

cjcjfcjcjofr1j1f12jofo|jojo|oe|I1(D|D(D|D|D|D|D|D|D|S|S|S|S]|S|S]|S|S]|S
Uses a D register for D/S field substitutions in the next instruction, while S/# modifies the D register's D and S fields and controls D/S substitution.

This is the old ALTDS without the wc,wz options.

ALTR D, S/# Alter R in the next instruction
31 |30 |29 | 28 | 27 |26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cjcjcjcjofr1j1f1jofo|joje(12|1(D|D(D|D|D|D|D|D|D|S|S|S|IS]|S|S]|S|S]|S
Use the sum of D and S/# for the result register in the next instruction

ALTD D, S/# Alter D in the next instruction
31 |30 | 29 |28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 | 13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

cjcjfcjcjofr2j1f12jofoe|joj12(0e|1(D|D(D|D|D|D|D|D|D|S|S|S|S]|S|S]|S|S]|S
Use the sum of D and S/# for the D register in the next instruction

ALTS D, Si# Alter S in the next instruction
| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0

cycjc|jcjofa2j1f12jo0f{oe|oej1(2)1r1(p|bDf(p|D|DID|D|D
Use the sum of D and S/# for the S register in the next instruction
RGBSQz D, Sl# RGB Squeeze
31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcj1({ojof1j1fojoj1(o)r(p|dbf{b|dD|DID|D|D
Squeeze RGB
RGBEXP D, Sl# RGB Expand
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjr1(ojof12j1fo|oj12(2)1(D|D(D|ID|D|D|D|D
Expand RGB
ADDPIX D, Sl# ADD Pixels
31 |30 | 29 |28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjr1tfoj1f1jof1|1j0(o)1r(p|dbfb|D|DID|D|D
Add pixlels
MULPIX D, Sl# Multiply Pixels
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjfcyjcj1t(oj1f12jof2|1joef(2)1r(p|bDf(p|D|D|ID|D|D
Multiply pixlels
BLNPIX D, Sl# Blank Pixels
31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 | 12 | 11 | 10
cjcjcjcjr1t(oj1f2jof2|1j12(oe)r(p|opf(pb|D|DID|D|D
Blank pixlels?
MIXPIX D, Sl# Mix Pixels
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjr1t(oj1f12jo0f2|12j2(2)1(D|D(D|ID|D|D|D|D

Mix pixlels

REV D, S/# Reverse bits
31 |30 |29 | 28 | 27 |26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cjcjfcjcjr1t|ojof1j1f{oe|j1j0(06|I1(D|D(D|D|D|ID|D|ID|D|S|S|S|IS]|S|S]|S|S]|S
Reverse the bits in S and write to D (changed from P1)

SETI D, S/# Set Instruction field
31 |30 |29 | 28 | 27 |26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cjcjcjcjr1t{ojof12j)j1f{oe|1j606(2|1(D|D(D|D|D|D|D|D|D|S|S|S|IS]|S|S]|S|S]|S
Set Instruction field (b27..b19)? of Destination with Source

SETD D, Si# Set Destination field
31 |30 | 29 | 28 | 27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

cjcjcjcj1jojof1f12(of1f{1{o|1|D)D)D|D|D|D|D|ID[D|S|S|S|IS|S]|S]|S]|S]|S
Set destination field of D with S

SETS D, Si# Set Source field

31 | 30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
cjcjcjcj1|ojof1f(12(of1(12y12|1|/D)D)D|D|D|D|D|ID[D|S|S|S|S|S|S]|S]|S]|S
Set source field of D with S

REP Di#, S/i# Repeat instruction block
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10

cicjcjcyryfr2fofofrf(rf(of(2fL(Ir(pfbpfbf(bfbDfDfD|D
Repeat following dest instructions by source count where 0 = infinite

©
(-3}
~
o
(0]
a
w
N
[
®

o
wn
wn
wn
wn
wn
wn
wn
wn
wn

AUGS #S(23) Augment source of next instruction
31|30 |29 |28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 [12 |11 [10

D | ©
\,
»
a
IS
w
N
-
o

9
cjcjcjcj1ij1j1f{1{ofnfn|{nin|nin|n|n|n|n|n|in|{n|n

Augment the next instruction by extending its source field to a full 32-bits (9+23) <test>
Augment the next instruction's S or D field with additional 23-bits taken from b31..b9 of the assembler supplied parameter (b8..b0 are disregarded in PNut)

https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/edit#bookmark=id.srtifs5xdtyg

AUGD #D(23) Augment destination of next instruction

31130129 |28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10]| 9 |8 |7 | 6

cjcjcjcj1ij1ij1j1f{1fnfnfnin|nin|n|n|n|n|nin|n|n|n|{n|n

Augment the next instruction by extending its destination field to a full 32-bits (9+23) <test>

SETCZ D/# {wc,wz} Set C and Z flags

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7

cfcjcjcj1f1r1fojr2yjo0f22)Ccjz|fL(b|pD|D(D(D|D|D|[D|D|O]JO|O

Set the carry and zero flags to b1 and b0 of D. If WC is applied then C = b1 of D and Z = b0 of D

TOPONE D, S {wc,wz} Top one

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6

cfcjcjcjofr1tfr1j1j0f1jo)Ccyz|(1r(o|bD|Df(D(D|D|D[D|D|S]|S|S

Index of most significant bit that is set to 1, C is set to (S/# = 0)

BOTONE D, S {wc,wz} Bottom one

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6

cfcjcjcjofr1fr1j1j0f11)Ccyz|(1r(o|p|dDf(D(D|D|D[D|D|S]|S|S

Index of least significant bit that is setto 1, C is set to (S/# = 0)

INCMOD D, S {wc,wz} Increment Modulo

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6

cfcjcjcjofr1tfr1j1j1fofoe)Ccyz|(1r(o|bD|dDfDfD|ID|D[ID|D|S]|S|S

D = (D==S ? 0 : D+1) Increment to S/# then wrap to zero. (inclusive)

DECMOD D, S {wc,wz} Decrement Modulo

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6

cfcjcjcjofr11)j1yj1foe1)Ccjyz|(1r(o|p|dDfdDfD|D|D[ID|D|S]|S|S

D = (D==S ? 0 : D-1) Decrement to zero then wrap to S/#.

DECOD D, S {wc,wz} Decode alias MASK

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6

c|cjcjcjofr1fr1)j1j0fof1)Ccj|z|(1r(o|p|pDfbfp|D|DfD|D|S]|S|S

https://docs.google.com/document/d/1vPUk9IlBU3LmSLl6vKgJ4qjObtzibHEPy4ITmbHtkGs/edit#bookmark=id.srtifs5xdtyg

Decode index in S[4..0] into a mask in D. All other bits are set to 0.

MOV D, SiH# {wc,wz} Move

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7

cfcjcjcjofr1fr1jojofofo)jCcjz|{r(op|bp|bDf{dDf(D|D|D|[D|D]|S]S

Move from cog source to cog destination

NOT D, SiH# {wc,wz} Not

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7

cfcjcjcjofr1fr1jojofof1)Cc|z|(1r(p|p|bDf{dDf(D|D|D[D|D]|S]S

Bitwise negation, Z = (result = 0), C = result[31]

LOC reg, #abs/@rel Locate

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7

cicjcjcj1ij1ij1|o9of{1({WIWIR|Nn|n|n|n|n|n]|n|n|n|n|n|n|n

Locate the 20-bit address in hub and load into a pointer register. W: ? R:? ADRA/ADRB

~
Py

COG NIBBLE/BYTE/WORD Operations

SETNIB D, Si#, #n Set Nibble

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7

cfcjcjcj1fofojojofofn|n|n|{(I(D|D|D|[D|D|D|D|[D|D]|S]S

Set the nth nibble in the cog register D to S[3..0]

GETNIB D, S/#, #n Get Nibble

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 18 | 17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7

cfcjcjcj1fofojojof{1fn|n|n|{I|(D|D|D|[D|D|D|D|[D|D]|S]S

Get the nth nibble in the cog register S to D[3..0] ??7?

ROLNIB D, S/#, #n Rotate Left Nibble

31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22

18

17

16

15

14

13

12

11

10

cjcjcyjcj1fjofofoj1jo0|n|ni|n

I

D

D

D

Rotate the cog register D left by 4 bits, then add nth nibble in S

SETBYTE D, S/#, #n

Set Byte

31 |30 | 29 | 28 |27 | 26 | 25 |24 |23 |22 | 21

18

17

16

15

14

13

12

11

10

c|cjcjcj1fofojoj1f1ifo

N

D

Set the nth byte in the cog register D to S[7..0]

GETBYTE D, Si#, #n

Get Byte

17

16

15

14

13

12

11

10

31 [30 |29 |28 [27 |26 |25 |24 | 23 | 22 | 21
cjcfcjcfjrjojofoj1j|1(|{1|n|n

D

Get the nth byte in the cog register S to D[7..0]

ROLBYTE D, S/#, #n

Rotate Left Byte

18

17

16

15

14

13

12

11

10

31 |30 [29 |28 | 27 |26 |25 | 24 | 23 |22 | 21
cjcfcjcfjr1j{ojof1jo|06f(o|n|n

I

D

D

D

Rotate the cog register D left by 8 bits, then add nth byte in S

SETWORD D, S/i#, #n

Set Word

18

17

16

15

14

13

12

11

10

31 |30 [29 |28 |27 |26 [25 | 24 | 23 |22 | 21 | 20
c|fcjcjcj1fojoj1jofo1]0|n

I

D

Set the nth word in the cog register D to S[15..0]

GETWORD D, S/#, #n

Get Word

18

17

16

15

14

13

12

11

10

31 (30 |29 |28 [27 |26 |25 |24 | 23 [22 | 21 | 20
cjcfcjcfir1jojofr1jojof1j1]n

I

D

Get the nth word in the cog register S to D[15..0]

ROLWORD D, Si#, #n

Rotate Left Word

18

17

16

15

14

13

12

11

10

31 [30 |29 |28 [27 |26 | 25 |24 | 23 [22 | 21 | 20
cjcfcjcfr1jojof1joe|1|(o]o6|n

I

D

D

D

Rotate the cog register D left by 16 bits, then add nth word in S

SETBYTS D, S/# Set Bytes

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

cjcjcjcj1r1fofojr1joj1|jof1f(oe|{Ir|bp|b|D

Set ?

MOVBYTS D, S/# Move Bytes

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|cjcjcj1fojojr1jof1jo0)j1{12(Ir|D|D|D

Move ?

SPLITB D, Si# Split Bytes

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|fcjcjcj1|(ojoj1jof1j1j0|0|(I|D|D|D

Split ?

MERGEB D, S/i# Merge Bytes

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|cjcjcj1|(ojoj12jof1j1j0|1(I1|D|DJ|D

Merge ?

SPLITW D, S/# Split Words

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

cjcjcjcjsr1|ofoj12j0j1|1|(1f(oe|{Ir|p|b|b

Split ?

MERGEW D, S/# Merge Words

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|cjcjcj1|(ojoj12jof(1|1)2(12(I1|D|DJ|D

Merge ?

SEUSSF D, Si# SEUSS Forward

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cfcjcjcjr1|(ojoj12j1f(ojojojoe|(1r|D|bD{D(D|ID|D|[D|D|D|S|S|[S]|S]S

Overwrite register “D (0-511)” with a pseudo random bit pattern seeded from the value in source.
After 32 forward iterations, the original bit pattern is returned.

SEUSSR D, S/# SEUSS Reverse

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

c|fcjcjcj1|(ojoj12j1f(ojojo0|12|(I1|D|D[D(D|ID|D|[D|D|D|S|S|[S]|S]S

Set ?

BRANCHING

Relative jumps are 9-bit signed so instructions such as DJNZ may jump forward as well as backward.

DJZ D, SI@ Decrement and Jump if Zero

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|fcjcjcj1fojojr1ja1fr1jojo|oe|(1r|bo|p|{dDf(dbyD|D[D[D|D|S|S|[S]|S]S

Decrement dest and if zero jump to source (9-bit signed relative)

DJNZ D, SI@ Decrement and Jump if Not Zero

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cjcjcjcj1fofofj1j1j1|jo0fo(12(I|pD|D|ID|ID|ID(D[D|D|D|S|S|S|S]S

Decrement dest and if NOT zero jump to source (9-bit signed relative)

DJS D, SI@ Decrement and Jump if Signed

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|fcjcjcj1fojojryja1fr1joj1|0|(1r|b|b{dDf(D|ID|ID[D|D|D|S|S|[S]|S]S

Decrement dest and if signed positive jump to source (9-bit signed relative)

DJNS D, S/@ Decrement and Jump if Not Signed

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|fcjcjcj1fofjojr1ja1fr12joj12|2|(1r|D|bD{D(D|ID|D|D|D|D|S|S|[S]|S]S

Decrement dest and if NOT signed positive jump to source (9-bit signed relative)

TJZ D, S/I@ Test and Jump if Zero

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

c|fcjcjcj1fojojr1jafr2j2jo0|0|(r|p|p|{Df(dbDyD|ID[D|D|D|S|S|[S]|S]S

Test dest and if zero jump to source (9-bit signed relative)

TJNZ D, SI@ Test and Jump if Not Zero

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

c|fcjcjcj1fojojr1ja2fr2j12j06|2|(1r|D|D{D(D|ID|ID|[D|D|D|S|S|[S]|S]S

Test dest and if NOT zero jump to source (9-bit signed relative)

TJS D, SI@ Test and Jump if Signed

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

c|fcjcjcj1fojojr1jafr2yj12j12j0|(1r|o|b|{Df(dD|yD|ID[D|D|D|S|S|[S]|S]S

Test dest and if signed positive jump to source (9-bit signed relative)

TJNS D, S/I@ Test and Jump if Not Signed

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cfcjcjcj1fojoja1ja2f12y12j2|2|(1r|o|bD{D(D|ID|D|[D|D|D|S|S|[S]|S]S

Test dest and if NOT signed positive jump to source (9-bit signed relative)

JMPREL D/# Jump relative indexed

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cfcjcjcj1f1joj12yjofr2j12jo0j|ofL|bo|p|{Df(dD|yD|D|{D|(D|DJO|O|[O]|1]1

Jump relative to the instruction using the index which automatically adjusts for hub (x4) or cog memory

Example
jmprel index 'works in both cog and hub
jmp #pgmo
jmp #pgml
jmp #pgm2
jmp #pgm3

CALL REGISTER

CALL D {wc,wz} Call
31 |30 |29 | 28 | 27 |26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjc|jcjr1(12jof12jof2|1|Ccf{zjo(D|D(D|D|D|D]|D|D
Call indirectly via dest register and use the internal hardware stack (8 levels)
CALLA D {wc,wz} Call using PTRA
31 (30 |29 |28 |27 |26 |25 |24 | 23 |22 |21 |20 [29 | 18 | 17 [16 | 15 [14 |13 | 12 | 11 | 10
cicjcjcyryfr2fofrfofry(r2y(cf(fz(o(DfDf(D(D(D|(D|D|D
Call indirectly via dest register and use PTRA for the stack pointer
CALLB D {wc,wz} Call using PTRB
31 (30 |29 |28 |27 |26 |25 |24 | 23 |22 |21 |20 [19 | 18 | 17 [16 | 15 [14 |13 | 12 | 11 | 10
cjcjcjcjr1y(12jof12jo0f12|1|Cc{zjo(D|D(D|D|D|D|D|D
Call indirectly via dest register and use PTRB for the stack pointer
POP D {wc,wz} Pop hardware stack
31 (30 |29 |28 |27 | 26 |25 |24 | 23 |22 |21 |20 [19 | 18 | 17 [16 | 15 [14 |13 | 12 | 11 | 10
cjcjcjcjr1y(12jof12jo0f12|1|Cc{zjo(D|D(D|D|D|D|D|D
Pop the return address from the hardware stack into register (23 bits?)
PUSH D/# Push hardware stack
31 (30 |29 |28 |27 |26 |25 |24 | 23 |22 |21 |20 [19 |28 | 17 [16 | 15 [14 |13 | 12 | 11 | 10
cjcjcjcjr1y(12jof12jof12|1jo0(o|jL(D|D(D|D|D|D|D|D
Push the register or immediate value onto the hardware stack
RET D {wc,wz} Return
31 (30 |29 |28 |27 | 26 [25 |24 | 23 |22 |21 |20 [19 | 18 | 17 [16 | 15 |14 |13 | 12 | 11 | 10
cjcfcjcfrjr1jof1jo|1f1jc|z|o)jo|(o|jo|Oofo]|]O]|0O|0O
Return via the hardware stack
RETA D {wc,wz} Return using PTRA
31 (30 |29 |28 |27 | 26 |25 |24 | 23 |22 |21 |20 [19 | 18 | 17 [16 | 15 |14 [13 | 12 | 11 | 10
cjcfcjcfrjr1jof1jo|1f1jc|z|o)jo|(o|jo|Oofo]|]O]|0O|0O

Return via the PTRA stack

RETB D {wc,wz} Return using PTRB

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

c|fcjcjcj1fr1jojr1jofrjr1jcjz|(ojojojofojojojofojojojofo|1]1

Return via the PTRB stack

CALLD D, Si@ {wc,wz} Call and link D

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|fcjcjcj1fofjr1joj1foyj1)Ccjyz|(1r|o|p|{dDf(dDyDID[D[D|D|S|S|[S]|S]S

Call dest and save return in register S ?

CALL LONG

JMP #abs20/@rel20 Jump to 20-bit absolute or relative address

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cjicjcjcj1ij1jof1f{1(o(o|fRfn|n|n|nln|n|n|n|in|in|{n|in|n|n|n|n

Call the 20-bit absolute or relative address and use the internal hardware stack (8 levels)

CALL #abs20/@rel20 Call 20-bit absolute or relative address

31 [30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cjcjcjcjr1ij1jof1f{1(of1{R{n|n|n|nln|n|n|in|in|{nf{n|in|n|n|n|n

Call the 20-bit absolute or relative address and use the internal hardware stack (8 levels)

CALLA #abs20/@rel20 Call subroutine at 20-bit absolute or relative address

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cjicjcjcj1ij1jof1f{1(1(o|fRfn|n|n|nln|n|n|n|in|in|{n|in|n|n|n|n

Call the 20-bit absolute or relative address and use PTRA for the stack pointer

CALLB #abs20/@rel20 Call subroutine at 20-bit absolute or relative address

31 [30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4

cjcjcjcj1j1jof1f{1(1(1{Rf{n|n|n|n|n|n|n|inin|{nf{n|in|n|n|n|n

Call the 20-bit absolute or relative address and use PTRB for the stack pointer

CALLD reg,#abs20/@rel20 Call subroutine at 20-bit absolute or relative address
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cjcjcjcjr1ij1j1fofofw|wi|RIn|n|n|n|n|n|n|n|in|{n|{n|{n|n|n|n|n|n|n]|n]|n
Call the 20-bit absolute or relative address and store the return address in index register "ww" (PTRA,PTRB,ADRA,ADRB)

LUT MEMORY

These instructions are mainly used to construct stacks as they work in a similar way to WRLONG and RDLONG.

WRLUT Di#, S/ Write to LUT memory
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cjcjcjcjr1tj1jofojofoe|1joefL|I1(D|D(D|D|D|ID|D|D|D|S|S|S|S]|S|S]|S|S]|S
Write to LUT RAM where S is the pointer to write D to

RDLUT D, Si# {wc,wz} Read from LUT memory
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0

cicjcjcyjrjofrfoyry(r2(o0o(Cc(z|(I1|pD(D|(D(D(D|ID[D|ID|D|[S|S|S|[S|S|[S|S|S]|S
Read from LUT memory

Example: Create stacks in LUT memory.

Pushing data to an incrementing stack

wrlut mydata,stkptr ' Save mydata
add stkptr,#1
Popping data from an incrementing stack
sub stkptr,#1
rdlut mydata,stkptr ' restore mydata from top of stack

HUB MEMORY

WMLONG

D,

S/#/PTRx

Write masked long

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

C

1

0

1

0

1

0

0

1

0

I

D

D

D

D

D

D

D

Works like WRLONG but doesn't write $FF bytes, works with SETQ/SETQ2

RDBYTE

D,

S/#/PTRx {wc,wz}

Read Byte from hub

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

C

1

0

1

1

0

0

0

C

Y4

I

D

D

D

D

Read byte from hub using S for pointer

RDWORD

D,

SH#/IPTRx {wc,wz}

Read Word from hub

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

C

1

0

1

1

0

0

1

C

Y4

I

D

D

D

D

D

Read unaligned word from hub using S for pointer

RDLONG

D,

SH#/PTRx {wc,wz}

Read Long from hub

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

C

1

0

1

1

0

1

0

C

Y4

I

D

D

D

D

Read unaligned long from hub using S for pointer

WRBYTE

D/#,

S/#/PTRx

Write Byte to hub

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

C

1

1

0

0

0

1

0

L

I

D

D

D

D

Write byte to hub using S for pointer

WRWORD

D/#,

S/#/PTRx

Write Word to hub

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

C

1

1

0

0

0

1

1

L

I

D

D

D

D

Write word to hub using S for pointer

WRLONG

D/#,

S/H#/IPTRx

Write Long to hub

31

30

29

28

27

26

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

C

C

C

1

1

0

0

0

1

L

I

D

D

D

D

Write long to hub using S for pointer

SETQ D/# Set HUB repeat

31|30 (29|28 (27|26 25|24 |23 2221|2019 (18 |17 |16 15|14 |13 |12 |11|10

cfcjcjcj1f1fojr1yjo0f12f12)j0j06(L(D|D|D|(D|(D|D|D|[D|D|O]|]O|O

Repeat HUB memory op (RDxxxx/WRxxxx) with auto increment. D = count-1

SETQ2 D/# Set LUT repeat

3113029 |28 |27 |26 25|24 |23 |22|21|20|19 |18 |17 |16 |15|14 |13 |12 |11 |10

cjcjcjcj1f1fojfj12j0)j12|1fofoefL|pb|b|D|DID(D|[D|D|D|O|O]|O

Repeat LUT memory op (RDxxxx/WRxxxx) with auto increment. D = count-1

RDFAST Di#, S/ Read Fast setup

31130 (29|28 |27 |26 |25|24|23|22|21|20|19 |18 |17 |16 |15|14|13|12|11|10|9 |8 |7 |6

cfcjcjcj1f1fojojof1f1)2|L|(Ir(b|D|D(D|(D|D|D[D|D|S]|S|S

Setup a RDFAST block with D 64-byte blocks starting from address S

WRFAST D/#, Si# Write Fast setup

31130(29 |28 (27 |26 (25|24 |23 2221|2019 |18 |17 (1615|1413 |12]|11|(10|9 |8 |7 | 6

cfcjcjcj1f1fojoj1fofoejojL|(I(bo|bD|D(D(D|D|D[D|D|S]|S|S

Setup a WRFAST block with D times 64-byte blocks starting from address S before wrapping.
To make wrapping work S needs to be long aligned. If D = 0 = infinite then there is no wrapping.

FBLOCK D/i#, Si# Fast Block

3113029 |28 |27 |26 |25|24|23|22|21|20|19 |18 |17 |16 |15|14|13|12|11|10|9 |8 |7 |6

cjcjcyjcjr1f1f{ofjojr1jo|jof12(L|{Ir|{p|bD|D|ID|ID(D(D|D|D|S]|S]|S

Fast Block

RFBYTE D {wc,wz} Read Fast Byte

31130129 |28 |27 |26 |25|24|23|22|21|20 |19 |18 |17 |16 |15]|14 |13 |12 |11 |10

cfcjcjcj1f1fojr2yjo0f12|12)cjz|(o(b|D|D|(D(D|D|D|[D|D|O|O|O

Read fast byte

RFWORD D {wc,wz} Read Fast Word

3130|2928 |27 |26 25|24 |23 |22 |21 |20 |19 |18 |17 |16 |15|14 |13 |12|11|10]|9 |8 |7 |6 |5 | 4
cjcjfcjcyjr1t{12jo0f2jof2y|j1|Cctzj|o|(bD|Df(D|D|D|D|D|ID|D|[O]|JO[O]|O
Read fast word

RFLONG D {wc,wz} Read Fast Long

31 (30|29 |28 (27|26 |25(24 |23 |22 (21|20 |19 |18 |17 |16 |15[14 |13 |12|11|10|9 |8 |7 |6 |5 | 4
cicjcjcyryr2fofr2fofry(r2y(cf(z(o(Df(D(D(D(D(D|fD|fD|fDfO|[O|[O|O
Read fast long

WFBYTE D/# {wc,wz} Write Fast Byte

31 (30|29 |28 (27|26 |25 (24|23 |22 (21|20 |19 |18 |17 |16 |15|14 |13 |12(11|10|9 |8 |7 |6 |5 | 4
cjcfcjcj1t{12jof12jof2|j1jo(o|jL(D)Df(D|D|D|D|D|D|D|fO]|JO[O]|O
Write fast byte

WFWORD D/# {wc,wz} Write Fast Word

31 (30|29 |28 (27|26 |25 (24|23 |22 (21|20 |19 |18 |17 |16 |15|14 |13 |12|11|10|9 |8 |7 |6 |5 | 4
cjcjfcjcjr1t{12jof12jof12|j1jo(0oj|jL(D)D(D|D|D|D|D|ID|D|[O]JOfO]O
Write fast word

WFLONG D/# {wc,wz} Write Fast Long

31 (30|29 |28 (27|26 |25(24 |23 |22 (21|20 |19 |18 |17 |16 |15|14 |13 |12(11|10|9 |8 |7 |6 |5 | 4
cjcfcjcj1t{12jof12jof2y|j1f{oejo|L(D|D|(D|D|D|D|D|D]|D 0 0
Write fast long

SMART PINS

COND |INSTR ZCR |DEST SOURCE NAME OPER EFFECTS |DESCRIPTION

CCCC |1611110 |OLI |DDDDDDDDD |SSSSSSSSS |SETPAE |D/#,S/# Set Port A Edges ?
CCCC |1611110 |1LI |DDDDDDDDD |SSSSSSSSS |SETPAN |D/#,S/# Set Port A edge polarity?
CCCC |1011111 |OLI |DDDDDDDDD |SSSSSSSSS |SETPBE |D/#,S/# Set Port B Edges ?
CCCC 1611111 J1LI |DDDDDDDDD |SSSSSSSSS |SETPBN |D/#,S/# Set Port B Edges ?

CCCC 1100001 [J1LI |DDDDDDDDD |SSSSSSSSS IMSGOUT D/#,S/#

CCCC 1010111 |JCZI |DDDDDDDDD |SSSSSSSSS |MSGIN D,S/# {WC,Wz}

CCCC 11100000 JOLI |DDDDDDDDD |SSSSSSSSS |IP D/#,S/@ Jump to source if dest pin is high (dest spans ports)
CCCC 1100000 |1LI |DDDDDDDDD JSSSSSSSSS |INP D/#,S/@ Jump to source if dest pin is low (dest spans ports)
CCCC |1100101 |OLI)DDDDDDDDD |SSSSSSSSS |XINIT |D/#,S/# transfer init, reset phase

CCCC |1100101 |1LI)DDDDDDDDD |SSSSSSSSS |XZERO |D/#,S/# transfer init, reset phase

CCCC |1100110 |OLI |DDDDDDDDD |SSSSSSSSS |XCONT |D/#,S/# transfer update, wait for rollover, continue

SMART PINS - INSTRUCTIONS

WSBYTE D/#,S/# 'write D[07:0] to pin S[5:0] data, mode dependent

WSWORD D/#,S/# 'write D[15:0] to pin S[5:0] data, mode dependent

WSLONG D/#,S/# 'write D[31:0] to pin S[5:0] data, mode dependent

WSMODE D/#,S/# 'write D[31:0] to pin S[5:0] mode %MMMMM_FFFFCIOHHHLLL

RSBYTE D,S/#
RSLONG D, S/#

'read byte from pin S[5:0] into D, mode dependent
'read long from pin S[5:0] into D, mode dependent

A = IN from this pad, B = IN from other pad, B OUT = OUT to other pad
pad pad
MMMMM Description DIR ouT Pattern Setup Update
00000 OUT (default) DIR ouT
00001 B OUT DIR B OUT
00010 CLK DIR CLK
00011 * transitions DIR mode update-period-repeat WSBYTE=prescaler WSLONG=transitions
00100 * duty DIR mode update-period-repeat WSBYTE=prescaler WSLONG=adder ~
00101 * nco DIR mode update-period-repeat WSBYTE=prescaler WSLONG=adder ~
00110 * pwm sawtooth 16:16 DIR mode update-period-repeat WSBYTE=prescaler WSLONG=F:T, WSWORD=T ~
00111 * pwm triangle 16:16 DIR mode update-period-repeat WSBYTE=prescaler WSLONG=F:T, WSWORD=T ~
01000 * count highs DIR ** OUT period-update-repeat WSLONG=period (O=cont) RSLONG=count ~
01001 * count lows DIR ** OUT period-update-repeat WSLONG=period (0=cont) RSLONG=count ~
01010 * count all edges DIR ** QUT period-update-repeat WSLONG=period (O=cont) RSLONG=count ~
01011 * count positive edges DIR ** OUT period-update-repeat WSLONG=period (0O=cont) RSLONG=count ~
01100 * time highs DIR ** OUT event-update-repeat RSLONG=count ~
01101 * time lows DIR ** QUT event-update-repeat RSLONG=count ~

01110 * time highs/lows DIR ** OUT event-update-repeat RSLONG=count ~ (MSB=state)
01111 * time positive edges DIR ** QUT event-update-repeat RSLONG=count ~

10000 * DAC cog channel DIR ouTt event-update-repeat WSLONG=period

10001 * DAC random per period DIR ouTt event-update-repeat WSLONG=period

10010 * DAC 16-bit dither DIR out event-update-repeat WSLONG=period WSWORD=value ~

10011 * DAC 16-bit pwm LSB DIR out event-update-repeat WSLONG=period WSWORD=value ~

10100 * A-high inc, B-high dec DIR ** OUT period-update-repeat WSLONG=period (O=cont) RSLONG=count ~
10101 * A-rise inc, B-rise dec DIR ** OUT period-update-repeat WSLONG=period (0=cont) RSLONG=count ~
10110 * A-B encoder DIR ** OUT period-update-repeat WSLONG=period (0O=cont) RSLONG=count ~

10111 * pulse, wait B DIR mode period-update-repeat WSLONG=16:16 H:L period RSLONG=last wait for B ~
11000 * sync tx byte, B clk DIR mode transmit-wait-repeat WSWORD=baud *** WSBYTE=data ~~

11001 * sync tx long, B clk DIR mode transmit-wait-repeat WSWORD=baud *** WSLONG=data ~~

11010 * sync rx byte, B clk DIR ** OUT wait-receive-repeat WSWORD=baud *** RSBYTE=data ~

11011 * sync rx long, B clk DIR ** QUT wait-receive-repeat WSWORD=baud *** RSLONG=data ~

11100 * async tx byte DIR mode transmit-wait-repeat WSWORD=baud WSBYTE=data ~~

11101 * async tx long DIR mode transmit-wait-repeat WSWORD=baud WSLONG=data ~~

11110 * async rx byte DIR ** OUT wait-receive-repeat WSWORD=baud RSBYTE=data ~

1M111 * async rx long DIR ** OUT wait-receive-repeat WSWORD=baud RSLONG=data ~

* DIR from cogs: O=reset, 1=start; IN to cogs: 1=done; !OUT from cogs clears done

** set %HHHLLL to %111111 (float/float) if your intent is to input
**%* for tx, update data after B-rise; for rx, sample data before b-rise (delay input data by one clk)

~ data is buffered
~~ data is double buffered

COG and HUB CONTROL

ADDCT1 D, S/# Add and set Clock Tick 1

31 (30|29 |28 (27|26 |25 (24|23 |22 21|20 |19 |18 |17 |16 |15(14 |13 |12|11|10|9 |8 |7 |6 |5 |4 |3 |2 [1]0
cic|jcjcjrt|ofr2fofr2(o(o(o(o|(rI|p(p|(pD(D(D(D[D|D|D|[S|S|S|[S|S|[S|S|S]|S
Adds S/# to D, and sets internal timer counter 1 to the same value

ADDCT2 D, S/# Add and set Clock Tick 2
3130|2928 |27 |26 |25 |24 |23 |22 21|20 |19 |18 |17 |16 |15]|14 |13 |12|11|10|9 |8 |7 |6 |5 |4 |3 |2 |1 |0
cjcjcfjcj1fojr1foj1fojofe|1|(I1|D|D(D|D(D|D|D|D|D|S|S]|S|S|S|S|S]|S]|S

Adds S/# to D, and sets internal timer counter 1 to the same value

ADDCT3 D, S/# Add and set Clock Tick 3

31|30 |29 |28 |27 |26 |25|24|23|22|21|20|19|18 |17 |16 |15|14|13|12|11|10|9 |8 |7 |6 |5 |4 |3 |2

cfcjcjcj1fofrjoj1fofoej12j0(1r{(p|pD|D(D|(D|D|D[D|D|S|S|[S|[S]|S]|S]|S

Adds S/# to D, and sets internal timer counter 1 to the same value

COGINIT D/#, Si# {wc} Cog Init

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2

cjcjcyjcjr1fr1fojoj1j1|1|Cc(L|{Ir|p|bD|D|IDID(D[D|D|D|S|S|S|S|[S]|S]|S

Initialize Cog

D[8:6] Reserved

D[5] = %0 Copy $1F8 longs from Hub @PTRB into cog, then JMP to $000

D[5] = %1 JMP to PTRB

D[4:0] = %1---- Target cog is lowest-numbered inactive cog

D[4:0] = %Onnnn Target cog is indicated by %nnnn

S Address of first instruction to execute, copied to PTRB of the target cog

20-bit value provided by SETQ, copied to PTRA of the target cog
{wc} If D[4] = %1 and D is not an immediate value:

e If no cog is available, C is set to %1
e Otherwise, C is set to %0 and D is set to new cog’s ID

COGID D/# {wc,wz} CogID

31 |30 | 29 |28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10

cfcjcjcj1f1fojr2yjo0f12f12)Ccjz|fL(b|p|dDfdD(D|D|D(D|D|O|JO|[O|O|O]|]O|O

Read the Cog's ID

COGSTOP D/# Cog Stop

31 |30 |29 |28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 | 18 | 17

cjcjcyjcjr1f|1fofj1joj1|1fof(oefL|D

Stop the Cog

CLKSET D/# {wc,wz} Clock Set

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 | 18 | 17

c|fcjcjcj1f1r1jojrjofr1f1)Cc|z|L|D

Set the system clock modes (PLL etc)

LOCKNEW D {wc,wz} Lock New

31 |30 |29 | 28 |27 |26 | 25 |24 |23 |22 |21 |20 |19 | 18 | 17

c|fcjcjcj1f1jojrjoef1f1)Ccjz|o|D

Lock new

LOCKRET D/# Lock ret

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 | 18 | 17

c|fcjcjcj1f1jojr1jof1f1j0]06|fL|D

Lock ret

LOCKCLR D/# {wc} Lock Clear

31 |30 |29 |28 |27 | 26 | 25 |24 |23 |22 |21 |20 | 19 | 18 | 17

cjcjcyjcjrf1fofj1jojr1j1fcf|ofL|nD

Clear the lock

LOCKSET D/# {wc} Lock Set

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 | 19 | 18 | 17

c|fcjcjcj1f1jojrjof1f1)CcjofL|D

Set the lock

GETCNT D Get Count

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 | 18 | 17

c|fcjcjcj1f1joj1jof1f1j0j06|(0|D

Get system clock count into D

CORDIC
QMUL Di#, Si# Cordic Multiply

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcyjcjr1f1foj12jo0jojofofL|{r|p|bD|D|ID|(D(D[D|D|D|S|S|[S|[S|S]|S]|S]|S]|S
Multiply S to D using the cordic engine for a 64-bit result in X (low) and Y (high). Use GETQX and GETQY to retrieve result.

QDIV D/i#, Si# Cordic Divide

31 |30 |29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 8 7 6 5 4 3 2 1 0
cjcjcjcjr1t1jof12jofoejoej12{L|I1(D|D(D|D|D|ID|D|D|D|S|S|S|S]|S|S]|S|S]|S
Divide D by S using the cordic engine for a 32-bit quotient in X and 32-bit remainder in Y. Use GETQX and GETQY to retrieve result.
(64 / 32 unsigned divide)

QSQR D/i#, Si# Cordic Square Root

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3 2 1 0
cjcjcyjcjr1f1foj12jo0jo|1fofL|{r|p|b|D|ID(D(D[D|D|D|S|S|S|[S|S]|S]|S]|S]|S
Find the square root of S and place the integer result in the high word of X and the fractional result in the low word of X.
D is not used ? (supposed to be a 64-bit to 32-bit op)

Use GETQX to retrieve result. Example: TF2# 2 SQRT .LONG 0001.6A09 ok

SETDACS D/# Set DACs

31 | 30 | 29 | 28 | 27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10 9 8 7 6 5 4 3 2
cicjc|jcja2t|1|oj2¢|oj2t12|jojofrL|pyD|D|ID|D|DID|D|DJ|]O|O|O|O|2])]21T]|21]0O0]0
Set DACs

SETXFRQ D/# Set XFRQ

31 |30 | 29 | 28 | 27 |26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 | 13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
cicjc|jcjrJ|1fojr2|oj2t1jojofr|pyD|DID|D|IDID|D|D|]O|IO|O|IO|T]21T]|1]0]1
Set XFRQ

GETXCOS D Get X Cosine

31 | 30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
cicyjc|jcja2|1|foj12|oj121|jo|jofo|pD|yD|D|ID|D|DID|D|IDJO|O|O|O|2])]2T]|21]2]0
Get X Cosine

GETXSIN D Get X Sine

31 | 30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10 9 8 7 6 5 4 3 2 1 0
cjcjcjcj1i|1j|of12fof12(1fofojo|DyD)D|D|D|D|DfDfID|O|O|O]O]T]2T]2]2]12
Set DACs

CCCC 1101011 ooL DDDDDDDDD 000010110 SETQ D/#

CCCC 1101011 o0L DDDDDDDDD 000010111 SETQ2 D/#

CCCC 1101011 CZ0 DDDDDDDDD 000011000 GETQX D {WC,Wz}
CCCC 1101011 CZ0 DDDDDDDDD 000011001 GETQY D {wC,wz}

CCCC 1101011 000 DDDDDDDDD 000011010 GETCT D
CCCC 1101011 CZ0 DDDDDDDDD 000011011 GETRND {D} {WC,Wz}

4c

*WFBYTE and WFWORD write hub at first opportunity, bypassing the FIFO, meaning data no longer lingers until whole longs are formed
* Color space converter added after Transfer to do RGB->YIQ/YPbPr/YUV/etc conversions

* ALTR/ALTD/ALTS instructions added for doing indirect or base+offset accesses in next instruction

* ALTDS renamed to ALTI

* SETXDAC renamed to SETDACS

* GETPTR instruction added to read back WFxxxx/RFxxxx address - doesn't wrap, though

* GETINT instruction added to read INT1/INT2/INT3 states and event flags (non-destructive)

* SETBRK modified to read back STALLI status and INT1/INT2/INT3 selector settings

*SETCY/SETCI/SETCQ/SETCFRQ/SETCMOD instructions added to support colorspace converter

Older news:

* Hub exec FIFO-level bug fixed

* GETCNT renamed to GETCT

* The Prop123-A7 board now has 10 cogs, not 11.

* ADDCNT expanded to ADDCT1/ADDCT2/ADDCT3 - three timer events usable as interrupts
* WMLONG added - like WRLONG, but doesn't write $FF bytes, works with SETQ/SETQ2
*'JMP D' added - CALLD still required for interrupt returns

* SETRDL/SETWRL - related bugs fixed

* C/Z properly restored on RETurns now

* New SETHLK used to set hub LOCK bit event

* GETQX/GETQY waiting improved to allow overlapped CORDIC operations without WAITX
* PNut SUBX bug fixed

* PNut now allows unary NOT/ABS/NEG... instructions (if D-only, D gets used for S)

* PNut fixed for properly-oriented if _00/if_01/if_xO...

Initial debug ISR's have been moved up to $FFFCO0..$FFFFF.
Event-triggering LONGs have been moved up to $FFF80..$FFFBF.
(No more complications at the bottom of hub RAM - everything starts at $00000)

EVENTS, WAITS and INTERRUPTS
SETHLK D/# Set Hub Lock

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

cfcjcjcj1f1foj12jofr1y12jojofL|{p|p|dDf(dD|D|D|DfD|DJO|O|[O]1

Set hub LOCK bit event

POLLINT {wc} Poll interrupt

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

c|cjcjcj1f1jojr1joefr1j1jcjofojojojofojojojofojojojofol|1

Poll ?

POLLCT1 {wc} Poll counter 1

31 |30 | 29 | 28 | 27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

cjcjcyjcj1r1f1fojr1joj1|j1jc|fojojojojojofofojojoj1|jofo|fo|1

Poll ?

POLLCT2 {wc} Poll counter 2
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcjcjr1fj1jofr1jofr1j1jc|ojofojofojojojojol|1
Poll ?
POLLCT3 {wc} Poll counter 3
31 |30 |29 | 28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcyjcj1f1foef1joj1|j1|jcl|ofojojojojojlo|o|fo]1
Poll ?
POLLPAT {wc} Poll Pattern
31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcyjcfj1f1fof1joj1|j1|c|ofojojojojojofofiijo
Poll ?
POLLEDG {wc} Poll Edge
31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjcyjcj1f1fof1joj1|j1jc|ofojojojojojofofijo
Poll ?
POLLRDL {wc} Poll RDLONG
31 |30 | 29 |28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10
cjcjfcjcjr1fjr1jofr1jofrj1jc|ojofojofojojof|oj1i|1
Poll ?
POLLWRL {wc} Poll WRLONG
31 |30 |29 | 28 |27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjfcjcjr1f1jofr1jofr1j1jcjojofojofojojof|o]1i|1
Poll ?
POLLHLK {wc} Poll Hub Lock
31 |30 |29 | 28 | 27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11 | 10
cjcjcyjcjr1f1fof1joj1|j1|c|ofojojojojofjof1f{ojo

Poll hub lock

POLLXMT {wc} Poll XMT

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 7 5 2
cjcjcyjcj1f1fojr2jo0j1|1|cfojojojo|jojofofr1jojoj1|jofofof1j0j]o0]1(10|o0
Poll ?

POLLXFI {wc} Poll XFI

31 |30 |29 | 28 | 27 |26 | 25 | 24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 3 2 1 0
cjcjcyjcj1f1foj1joj1|1jcfojojojojojofofrjoj1|jojofofof1joj]0]1(10|o0
Poll ?

POLLXRO {wc} Poll XRO

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 5 2
cjcjcjcjr1t|1jofr1jofr1j1jcjojofojofojojofr1jofr1j1fojojoj1jo0f(o]1f(oj]o
Poll the Transfer-NCO-rolled-over event flag

POLLFBW {wc} Poll FBW

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 | 10 5 2
cjcjcyjcj1f1fojr2jo0j1|1|cfojojojo|jojofofr1jr1jojo|jofof(f0of1j0]0]|]1]10|O0
Poll ?

POLLRLE {wc} Poll RLE

31 |30 |29 | 28 | 27 |26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |16 | 9 7 5 2
cjcjcyjcjr1f1fojr2jo0)j1|1jcfofjojojo|jojofofrjr1joj1|jo0fofof1j0j]0]1(10|o0
Poll ?

WAITINT {wc} Wait for Interrupt

31 |30 |29 | 28 | 27 |26 | 25 | 24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 3 2 1 0
cjcjcyjcj1f1fojr1joj1|1jcfojojojo|jojof1fojojojojofofof1joej]o0]1(10|o
wait for interrupt-event, WC=1 for timeout using Q

WAITCT1 {wc} Wait for Counter 1

[31 |30 |20 |28 |27 |26 |25 |2a 23|22 |21 |20 |10 (18|27]|a6]as]|afz|ra|as]e]|ofa|[7]6]|s5[a[3]2]1]0e]

c|cjcjcj1f1fojr1jof1f1|jcjofjfofojojo|o

Wait for timer-event , WC=1 for timeout using Q

WAITCT2 {wc} Wait for Counter 2

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 | 15 | 14

c|cjcjcj1f1fojr1jof1j1|jcjof(fofojojo|o

Wait for timer-event , WC=1 for timeout using Q

WAITCT3 {wc} Wait for Counter 3

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 | 15 | 14

cjcjcyjcj1f1foef1joj1j1|jc|ofojojojo|o

Wait for timer-event , WC=1 for timeout using Q

WAITPAT {wc} Wait for Pattern

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 | 14

c|fcjcjcj1f1fojr1jof1f1|jcjofofojojo|o

Wait for

WAITEDG {wc} Wait for Edge

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 | 17 |16 | 15 | 14

c|cjcjcj1f1fojr1jof1f1|jcjof(fofojojojo

Poll the pin-edge-detected event flag

WAITRDL {wc} Wait for RDLONG

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 | 15 | 14

c|cjcjcj1f1fojr1jof1fr1|jcjofjfofojojo|o

Wait for the special-long-read event flag

WAITWRL {wc} Wait for WRLONG

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 | 15 | 14

cjcjcyjcj1f1foef1joj1j1|jc|ofojojojo|o

Wait for the special-long-written event flag

WAITHLK {wc} Wait for Hub Lock

31 |30 |29 |28 |27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11

cjcjcyjcjr1f1fojr1joj1|j1jcfojojojojojof1f1ijo

Wait for the hub-LOCK-edge-detected event flag

WAITXRO {wc} Wait for Transfer Rolled-Over

31 |30 | 29 | 28 | 27 | 26 |25 | 24 | 23 |22 |21 | 20 |19 |18 |17 |16 |15 |14 |13 |12 | 11

c|fcjcjcj1f1joj1jofr1jr1jcjofojojojofo|1]1|o

Wait for Transfer-NCO-rolled-over event flag

WAITFBW {wc} Wait for FIFO Block Wrap

31 |30 |29 | 28 |27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 | 12 | 11

c|cjcjcj1f1joj1jofr1jr1jcjofojojojofo|1]1|o

Poll the hub-FIFO-interface-block-wrap event flag

WAITRLE {wc} Wait for RAM Block Event

31 |30 |29 | 28 |27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11

c|cjcjcj1f1joj1joefrjr1jcjofojojojofoj1j1|o

Wait for the hub-RAM-FIFO-interface-block-wrap event flag

ALLOWI Allow Interrupts

31 |30 |29 | 28 |27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 | 11

cjcjcyjcj1f1foj1joj1|j1jofojojojojof1f(ofojo

Allow Interrupts

STALLI Stall Interrupts

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11

c|fcjcjcj1f1joj1jof1r1j1jo0j0ofojojojof1je0]0|o0

Stall Interrupts

SETINTA1 D/# Set Interrupt 1 mode

31 |30 | 29 | 28 | 27 | 26 |25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11

c|cjcjcj1f1joj1joefr1j1jo0|ef(L|D|D|{D|(D|D|D|D

Set INT1 event to 0..15

SETINT2 D/# Set Interrupt 2 mode

31 |30 | 29 | 28 | 27 | 26 | 25 |24 | 23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcj1f1joj12yjofr2y12jo0j0f(L|byp|{DfdD|D|D|{D|(D|DJO|O|[O]|]1]0O]|O

Set INT2 event to 0..15

SETINT3 D/# Set Interrupt 3 mode

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5

cfcjcjcj1f1joj12yjofr2j12jo0j0efL|byp|{pfdD|D|D|{D(D|DJO|O[O]|]1]0O]|O

Set INT3 event to 0..15

WAITX D/# Wait for X cycles

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cjcjcjcj1f1f(of12jo0j12j1jofoefL|{p|p|p|D|ID(D(D|[D|DJO|JO]O|1(|[O]1

Wait for X cycles

SETCZ D/# {wc,wz} SetC and Z

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcj1f1fojr2yjof2r2f2)Ccjz|fL(b|p|dDf(D(D|D|D|fD|DJOJO|O|[1T]0O]1

Set C flag to state of b1 in D if wc is specified, Set Z flag to state of b0 in D if wz is specified

PUSH D/# Push

31 |30 | 29 | 28 | 27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcj1f1fojr2yjo0fr2f2j0j0f(L(D|D|D(D|(D|D|D|D|DJOJO|O|[1T]0O]1

Push D onto the internal 8-level stack

POP D {wc,wz} Pop D

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cfcjcjcj1f1r1fojryjof12f2)Ccjz|fL(b|yp|pfdDfD|D|D(D|IDJOJO|O|1T]0O]1

Pop from the internal stack to D (typically return address from CALL) - Note, this stack is only 23-bits wide?

JMP D {wc,wz} Jump

31 |30 |29 | 28 |27 | 26 |25 |24 |23 |22 |21 |20 |19 |18 |17 |16 |15 |14 |13 |12 |11 |10 | 9 8 7 6 5 4 3

cjcjcjcyj1f1f(of12jo0)j1yj1y|c(z|fL|{p|p|p|D|ID(D(D|[D|DJO|JO]O|L1(|[O]1

Jump to the 9-bit cog location (or via register?)

GETPTR D Get fast Pointer

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 |16 | 15

cjcjcjcj1f1foj1joj1|1jof(oefoe|b|D|D

Get the current RD/WR FAST pointer

GETINT D Get Interrupt

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 |17 | 16 | 15

c|cjcjcj1f1joj1jof1j1j0|0(o|D|D|D

Get interrupt ?

SETBRK D/# Set break

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|fcjcjcj1f1joj1joefr1j1j0|0e(L|D|D|D

Set break

SETCY D/# Set CY

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|cjcjcj1f1joj1joef1j1j0|0e(L|D|D|D

Set CY

SETCI D/# Set CI

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

Set CI

SETCQ D/# Set CQ

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|(cjcjcj1f1joej1jof1j1j0|0e(L|D|D|D

Set CQ

SETCFRQ D/# Set CFRQ

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|fcjcjcj1f1joj1joefr1j1j0|0(L|D|D|D

Set CFRQ

SETCMOD D/# Set CMOD

31 |30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|fcjcjcj1f1joj1joefr1j1j0|0(L|D|D|D

Set CMOD - color space converter

SETPIX D/# Set Pixels

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

c|cjcjcj1f1joj1joef1j1j0|0(L|D|D|D

Set pixels

SETPIV D/# Set PIV

31 |30 |29 | 28 |27 | 26 | 25 |24 |23 |22 |21 |20 |19 |18 | 17 | 16 | 15

cjcjcyjcjr1f1foj1joj1|1jofoefL|b|D|D

Set PIV?

NOTES

SETTING EDGE EVENTS

SETEDG %L_EE_PPPPPP

%L = pin
1 = lock
%EE : 00 = any edge
01 = pos edge
10 = neg edge
11 = any edge
%PPPPPP: pin number
%xXPPPP: lock number
SETRWL %RRRR_WWWW
%RRRR : RDLONG-event address %0000_0000_0000_OORR_RROO
%WIWWW : WRLONG-event address %0000_0000_0000_00WW_WWOO

SETINT1/SETINT2/SETINT3 %MMM

%MMM 000 = disable interrupt - default
001 = enable timer-event interrupt
010 = enable pat-event interrupt
011 = enable edge-event interrupt
100 = enable RDLONG-event interrupt
101 = enable WRLONG-event interrupt
110 = enable transfer-rollover-event interrupt
111 = enable fast-block-wrap-event interrupt

WAITINT is waiting for an interrupt. The next instruction is already in the pipeline. WAITINT stops waiting when an interrupt occurs. The

next instruction executes, while the interrupt CALLD is being injected into the pipeline.
So the instruction following the WAITINT executes before the interrupt code.

ALIASES

JMP reg {WC,wz} = CALLD INB,reg {WC,wz}
PUSHA reg/# = WRLONG reg/#,PTRA++
PUSHB reg/# = WRLONG reg/#,PTRB++

POPA reg = RDLONG reg,--PTRA

POPB reg = RDLONG reg,--PTRB

RETIO = CALLD INB,INB WC,WZ
RETI1 = CALLD INB,S$S1F5 WC,WZ
RETI2 = CALLD INB,S$1F3 WC,WZ
RETI3 = CALLD INB,S$S1F1 WC,WZ
NOP = $00000000

POINTER ADDRESSING MODES

INDEX = -16..+15 for simple offsets, 0..15 for ++'s, or 0..16 for --'s
SCALE = 1 for byte, 2 for word, 4 for long

S =0 for PTRA, 1 for PTRB

U = 0 to keep PTRx same, 1 to update PTRx

P =0 to use PTRx + INDEX*SCALE, 1 to use PTRXx (post-modify)
NNNNN = INDEX

nnnnn = -INDEX

The next instruction that executes is CALLD.

1SUPNNNNN PTR expression

100000000 PTRA 'use PTRA
110000000 PTRB 'use PTRB
101100001 PTRA++ 'use PTRA, PTRA += SCALE
111100001 PTRB++ 'use PTRB, PTRB += SCALE
101111111 PTRA- - 'use PTRA, PTRA -= SCALE
111111111 PTRB- - 'use PTRB, PTRB -= SCALE
101000001 ++PTRA 'use PTRA + SCALE, PTRA += SCALE
111000001 ++PTRB 'use PTRB + SCALE, PTRB += SCALE
101011111 --PTRA 'use PTRA - SCALE, PTRA -= SCALE
111011111 --PTRB 'use PTRB - SCALE, PTRB -= SCALE
100ONNNNN PTRA[INDEX] 'use PTRA + INDEX*SCALE
1100NNNNN PTRB[INDEX] 'use PTRB + INDEX*SCALE
10211NNNNN PTRA++[INDEX] 'use PTRA, PTRA += INDEX*SCALE
1111NNNNN PTRB++[INDEX] 'use PTRB, PTRB += INDEX*SCALE
1011nnnnn PTRA- - [INDEX] 'use PTRA, PTRA -= INDEX*SCALE
1111nnnnn PTRB- - [INDEX] 'use PTRB, PTRB -= INDEX*SCALE
1010NNNNN ++PTRA[INDEX] 'use PTRA + INDEX*SCALE, PTRA += INDEX*SCALE
1110NNNNN ++PTRB[INDEX] 'use PTRB + INDEX*SCALE, PTRB += INDEX*SCALE
1010nnnnn --PTRA[INDEX] 'use PTRA - INDEX*SCALE, PTRA -= INDEX*SCALE
1110nnnnn --PTRB[INDEX] 'use PTRB - INDEX*SCALE, PTRB -= INDEX*SCALE
Examples:

Read byte at PTRA into D
1111 1011000 001 DDDDDDDDD 100000000 RDBYTE D, PTRA

Write lower word in D to PTRB+7*2
1111 1100010 001 DDDDDDDDD 110000111

Write long value 10 at PTRB, PTRB += 1*4
1111 1100011 011 000001010 111100001

Read word at PTRA into D, PTRA -= 1*2
1111 1011001 001 DDDDDDDDD 101111111

Write lower byte in D at PTRA-1*1, PTRA -= 1*1
1111 1100010 001 DDDDDDDDD 101011111

Read long at PTRB+10*4 into D, PTRB += 10*4
1111 1011010 001 DDDDDDDDD 111001010

Write lower byte in D to PTRA, PTRA += 15*1
1111 1100010 001 DDDDDDDDD 101101111

WRWORD

WRLONG

RDWORD

WRBYTE

RDLONG

WRBYTE

HUB MEMORY READING AND WRITING

D, PTRB[7]

#10, PTRB++

D, PTRA-—

D, --PTRA

D, ++PTRB[10]

D, PTRA++[15]

Here are the basic instructions for reading and writing hub RAM:

CCCC 1011000 CZI DDDDDDDDD SSSSSSSSS
CCCC 1011001 CcZI DDDDDDDDD SSSSSSSSS
CCCC 1011010 CZI DDDDDDDDD SSSSSSSSS
CCCC 1100010 OLI DDDDDDDDD SSSSSSSSS
CCCC 1100010 1LI DDDDDDDDD SSSSSSSSS
CCCC 1100011 OLI DDDDDDDDD SSSSSSSSS

RDBYTE
RDWORD
RDLONG
WRBYTE
WRWORD
WRLONG

In the case of the ‘S/#/PTRxX’ operand, three possibilities exist:

D,S/#/PTRx {WC,WZ}
D,S/#/PTRx {WC,WZ}
D,S/#/PTRx {WC,WZ}
D/#,S/#/PTRx
D/#,S/#/PTRx
D/#,S/#/PTRx

e Sis aregister
e #3$00..$FF indicates hub address $00..$FF
e PTRXx expression with optional pre-/post-modifier and scaled index

STREAMER

Ability to stream hub RAM and/or lookup RAM to DACs and pins, also pins to hub RAM.
By preceding RDLONG with either SETQ or SETQ2, multiple hub longs can be read into either register RAM or lookup RAM. This transfer happens at the rate of one long per clock, assuming

there is no hub streaming going on. If hub streaming is active, the hub reads will have to wait for cycles when the next-needed window occurs and the streamer is not requiring the window for

itself.
CZL 000001101 <empty> 00L 000011101 SETXFRQ D/#
00L 000001110 QLOG D/# 000 000011110 GETXCOS D

The streamer can write data directly to the i/o pins, not just to the DACs, up to 32 bits per clock, from HUB or LUT and to HUB.

Here is how you read multiple hub longs into register RAM:

SETQ #x ‘x = number of longs, minus 1, to read

RDLONG first reg,S/#/PTRx ‘read x+1 longs starting at first reg
Here is how you read hub longs into lookup RAM:

SETQ2 #x ‘x = number of longs, minus 1, to read

RDLONG first lut,S/#/PTRx ‘read x+1 longs starting at first lut
WRLONG can be preceded by SETQ or SETQ2 to write multiple hub longs from register RAM. If SETQ2 is used, only non-$FF bytes will be written. This masking feature enables byte-level
overlay data to be imposed onto existing hub data.

A simple way to do a long fill with a const, here 0, is just:

SETQ longcount

https://forums.parallax.com/discussion/comment/1346089#Comment_1346089

WRLONG #0,startaddress

The I/O Transfer Unit (Streamer) accesses HUbRAM via the FIFO Unit

The FIFO Unit of each Cog performs all HubRAM burst accesses for that Cog; including for HubExec, for RD/WRFAST instructions and for the 1/0 Transfer Unit. Only one of these three can use
the FIFO Unit at a time.

ALTDS

(Seairth) On a slightly related note, I just noticed that there weren't any INDx registers in the 8/13 document. Did we lose indirect
registers in the new design?

(Chip)

Yes, they are gone. We have an ALTDS instruction now that substitutes D and S fields in the next instruction. ALTDS also
increments/decrements those fields in its D register, with S supplying the inc/dec controls. It was a really cheap way around what could be
a huge hardware situation, 1like in Prop2-Hot.

You might want to review the conversation on ALTDS here - they describe single and double indirection code examples.
http://forums.parallax.com/discussion/156242/question-about-altds-implementation-in-new-chip/p1

(Chip)
The other day I revisited ALTDS because we had moved the CCCC bits to the front of the opcode. The old SETI instruction now writes S[8:0]

into D[27:19] (the 0000000CZ bits), instead of into the top bits
opcode: CCCC 0000000 CZI DDDDDDDDD SSSSSSSSS

The 0000000CZ bits in a variable (not an instruction) can be used to redirect result writing, while the DDDDDDDDD and SSSSSSSSS fields can
redirect D and S. It works like this:

ALTDS D,S/# 'modify D according to bits in S and possibly replace next instruction's CCCCOO00000CZI / DDDDDDDDD / SSSSSSSSS fields.
In ALTDS, S provides the following pattern: %RRR_DDD_SSS

%RRR: (101 allows instruction substitution)

http://forums.parallax.com/discussion/156242/question-about-altds-implementation-in-new-chip/p1
http://forums.parallax.com/discussion/156242/question-about-altds-implementation-in-new-chip/p1

000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

%DDD
000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

%SSS
000 =
001 =
010 =
011 =
100 =
101 =
110 =
111 =

don't affect D's CCCCOO0000000CZI field

don't affect D's CCCCOO0000000CZI field, cancel write for next instruction

decrement D's 0000000CZ field
increment D's 0000000CZ field
use D's 0000000CZ field as the result register for
use D's CCCCO000000CZI field as next instruction's
use D's 0000000CZ field as the result register for
use D's 0000000CZ field as the result register for

don't affect D's DDDDDDDDD field

copy D's SSSSSSSSS field into its DDDDDDDDD field
decrement D's DDDDDDDDD field

increment D's DDDDDDDDD field

use D's DDDDDDDDD field as the DDDDDDDDD field for
use D's DDDDDDDDD field as the DDDDDDDDD field for
use D's DDDDDDDDD field as the DDDDDDDDD field for
use D's DDDDDDDDD field as the DDDDDDDDD field for

don't affect D's SSSSSSSSS field

copy D's DDDDDDDDD field into its SSSSSSSSS field
decrement D's SSSSSSSSS field

increment D's SSSSSSSSS field

use D's SSSSSSSSS field as the SSSSSSSSS field for
use D's SSSSSSSSS field as the SSSSSSSSS field for
use D's SSSSSSSSS field as the SSSSSSSSS field for
use D's SSSSSSSSS field as the SSSSSSSSS field for

the next instruction (separate from D)
CCCCo000000CZI field

the next instruction, decrement D's 0000000CZ field
the next instruction, increment D's 0000000CZ field

the
the
the
the

the
the
the
the

next
next
next

next

next
next
next

next

instruction

instruction, copy D's SSSSSSSSS field into its DDDDDDDDD field
instruction, decrement D's DDDDDDDDD field

instruction, increment D's DDDDDDDDD field

instruction

instruction, copy D's DDDDDDDDD field into its SSSSSSSSS field
instruction, decrement D's SSSSSSSSS field

instruction, increment D's SSSSSSSSS field

You can see that when those three-bit RRR/DDD/SSS fields have their MSB's clear, they are only affecting D. When their MSB's are set,

though, they additionally affect the next instruction in some way.

When RRR is 101, it actually uses D's upper bits to replace the functionality of the next instruction, which might as well be a NOP, unless
its DDDDDDDDD and SSSSSSSSS fields are meaningful.

It hurts to think about, but I think, as someone proposed above, compounded indirection can be achieved. Also, some crazy instruction

substitution possibilities exist. And, not being self-modifying code, this can all work from hub-exec.

ALTDS uses a D register for D/S field substitutions in the next instruction, while S/# modifies the D register's D and S fields and controls

D/S substitution.

ALTDS D,S/#

D - a register whose D/S fields may be substituted for the next instructions' D/S fields

S/# - an 8-bit code: %ABBBCDDD

%A
0 = don't substitute next instructions' D field with current D register's D field

1 = substitute next instructions' D field with current D register's D field

%BBB :

000 = leave the current D register's D field the same
0xx = add 1/2/3 to D field,

1xx = subtract 1/2/3/4 from D field

0 = don't substitute next instructions' S field with current D register's S field
1 = substitute next instructions' S field with current D register's S field
%DDD :

000 = leave the current D register's S field the same

Oxx = add 1/2/3 to S field
1xx = subtract 1/2/3/4 from S field
(Cluso)

This permits the additional possibilities of:
* redirecting the result
* redirecting the result to an unused register (maybe INx) to perform a pseudo NR

Therefore, might it be beneficial, and would it be easy to do the following ???
S/# = %RRRDDDSSS
where RRR, DDD and SSS mean:

000 = don't substitute next instructions S/D/R field, leave the current D registers S/D/I value the same

001 = substitute next instructions S/D/R field with the current D registers S/D/I
010 = substitute next instructions S/D/R field with the current D registers S/D/I
011 = substitute next instructions S/D/R field with the current D registers S/D/I
100 = substitute next instructions S/D/R field with the current D registers S/D/I
101 = substitute next instructions S/D/R field with the current D registers S/D/I
value

110 = substitute next instructions S/D/R field with the current D registers S/D/I
value

111 = substitute next instructions S/D/R field with the current D registers S/D/I
value

D
D
D
D

1/2/4 covers byte/word/long in hub, and 1/2/4 longs in cog.

ALTDS Examples

(0Ozpropdev)

field,
field,
field,
field,
field,

field,

field,

then add 1 to the current D registers S/D/I value
then add 2 to the current D registers S/D/I value
then add 4 to the current D registers S/D/I value
leave the current D registers S/D/I value the same
then subtract 1 from the current D registers S/D/I

then subtract 2 from the current D registers S/D/I

then subtract 4 from the current D registers S/D/I

http://forums.parallax.com/discussion/comment/1275737/#Comment_1275737

While I agree that ALTDS is a little awkward it more than compensates I think in its efficiency.
For example

copy 16 cog regs from .src to .dest

copy_cogram mov .myreg,##.dest << 9 | .src
rep @.copy_end,#16
altds .myreg,#%000_111 111
mov 0-0,0-0

.copy_end

Nice and compact and efficient.

PUSHZC ??? - Old P2_hot instruction ???

PUSHZC rotates ZC flags into D register bits 1:0.
Bits 31:30 of D are rotated into ZC flags if WZ WC effect is included.

R >Z7Z flag ----+
| I
| +------- > C flag ------ +
| ||
WZ WC ||

||
A A ||
| VvV
31 30, iiiietiiiinnnnnnns 10
S

rotated left x2

POPZC rotates bits 0:1 of D register into ZC flags.
ZC flags are rotated into Bits 31:30 of D if WZ WC effect is included.

In this example the lower 4 bits of zc_reg contain the before and after ZC flags status.
PUSHZC zc_reg
INCMOD myreg,#13 wz,wc
PUSHZC zc_reg

RDFAST

(Chip)
RDFAST #0,startbyteaddress

Once you do that, 'RFBYTE D (WC,WZ)' can be used to read contiguous bytes, starting from startbyteaddress. RFBYTE means 'read fast byte' and
it always takes 2 clocks - meaning RDFAST blocks waiting for Hub. RDFAST initiates the read-fast mode. This doesn't work with hub exec,
because hub exec uses the RDFAST mode, itself. That first D/# term in RDFAST tells how many 64-byte blocks to read before wrapping back to

startbyteaddress (0= infinite). To make wrapping work, startbyteaddress must be long-aligned.

WRFAST works the same way, and uses WFBYTE, WFWORD, WFLONG.

NOTE: Makes use of the Cog’s FIFO Unit. This is also used by HubExec and the Streamer - Mutually exclusive.

P2 INTERNAL STACK

(ALL COGs) 24SEP2015

There is an eight level 22-bit Internal Stack in all COGs. It is intended use is to store C & Z flags plus a 20-bit return address for stack
CALL instructions.
NOTE: isn't this actually an 8-level 23-bit wide Stack just for calls? (edited above - Cluso 8 OCT)

This is accessible using the following instructions...

CCCC 1101011 66L DDDDDDDDD 000101000 PUSH D/# 'push D/# on internal stack

CCCC 1101011 CZo DDDDDDDDD 000101100 POP D {WC,WZ} 'pop D from internal stack

CCCC 1101011 CZO DDDDDDDDD 000101001 CALL D {WC,WZ} 'save return address on internal stack
CCCC 1101101 Rnn nnnnnnnnn nnnnnnnnn CALL #abs/@rel 'save return address on internal stack
CCCC 1101011 CZO 0OCOOOOOO 000101101 RET {WC,WZ} 'jump via internal stack

MAILBOXES AND DEBUG INTERRUPT VECTORS

$OF.FF80 $80 DUMPL

FF80: 0000.0000 0000.0000 0000.0000 0000.0000ccvvvvunn
FFO0: 0000.0000 0000.0000 0000.0000 0000.0000
FFAO: 0000.0000 0000.0000 0000.0000 0000.0000ccvvvvunn
FFBO: 0000.0000 0000.0000 0000.0000 0000.0000
FFCO: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF
FFDO: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF
FFEO: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF
FFFO: FABB.FFFF FABB.FFFF FABB.FFFF FABB.FFFF ok

Migrating From Propeller 1

Instruction Changes

Instruction Propeller 1 Propeller 2

CALL Alias for JMPRET, assembler trickery Push PC+1/C/Z on 8-deep stack, then jump to D
DINZ Can set C/Z with WC/WZ. C/Z stays unchanged.

JMP Alias for JMPRET NR Jump to D

MAX Zis setto (S =0), Cis set to unsigned(D<S) Zis set to (result = 0), C is set to (result <> D)
MAXS Zis setto (S =0), Cis set to signed(D<S) Zis set to (result = 0), C is set to (result <> D)
MINS Zis setto (S =0), Cis set to unsigned(D<S) Zis set to (result = 0), C is set to (result <> D)
MIN Zis setto (S =0), Cis set to signed(D<S) Zis set to (result = 0), C is set to (result <> D)
NEG C is set to S[31] C is set to result[31]

NEGC C is set to S[31] C is set to result[31]

NEGNC C is set to S[31] C is set to result[31]

NEGNZ Cis set to S[31] C is set to result[31]

NEGZ C is set to S[31] C is set to result[31]

RET Alias for JMPRET, relies on “_ret” label Returns to top address on 8-deep stack. Use with CALL.
REV D[31..0] is set to D[0..31], then shifted right by S D[31..0] is set to S[0..31]

RCL C is set to D[31] C is set to last bit shifted out

RCR C is set to D[0] C is set to last bit shifted out

ROL Cis set to D[31] C is set to last bit shifted out

ROR C is set to D[0] C is set to last bit shifted out

SHL C is set to D[31] C is set to last bit shifted out

SHR C is set to D[0] C is set to last bit shifted out

TINZ Can set C/Z with WC/WZ C/Z stays unchanged.

TJZ Can set C/Z with WC/WZ C/Z stays unchanged.

WAITCNT Wait until target CNT is reached, then add delta to D Wait until target CNT is reached. Use ADDCT1, ADDCT2, or ADDCT3 to

set target and add delta.

Removed Instructions/Registers/Effects

Name Type Comment

ABSNEG instruction Can be achieved with combination of ABS and NEG
ADDABS instruction Can be achieved with a combination of ABS and ADD
CNT register Use GETCNT instruction

CTRA register Replaced by smart pins.

CTRB register Replaced by smart pins.

FRQA register Replaced by smart pins.

FRQB register Replaced by smart pins.

JMPRET instruction Closest match is CALLD

MOVD instruction Renamed to SETD

MOVI instruction Renamed to SETI

MOVS instruction Renamed to SETS

NR effect Where the NR/WR feature is needed, two instructions exist (TEST and AND, CMP and SUB, etc.)

PAR register

PHSA register Replaced by smart pins.

PHSB register Replaced by smart pins.

SUBABS instruction Can be achieved with a combination of ABS and SUB

VCFG register

VSCL register

WAITPEQ instruction Set with SETPAE/SETPBE. Use WAITPAT to block. Can also use POLLPAT or interrupt.
WAITPNE instruction Set with SETPAN/SETPBN. Use WAITPAT to block. Can also use POLLPAT or interrupt.
WAITVID instruction

WR effect Not available on P2. Where the NR/WR feature is needed, two instructions exist.

151027 P2 UPDATES

* ADDCNT expanded to ADDCT1/ADDCT2/ADDCTS3 - three timer events usable as interrupts
* WMLONG added - like WRLONG, but doesn't write $FF bytes, works with SETQ/SETQ2
*'JMP D' added - CALLD still required for interrupt returns

* SETRDL/SETWRL - related bugs fixed

* C/Z properly restored on RETurns now

* New SETHLK used to set hub LOCK bit event

* GETQX/GETQY waiting improved to allow overlapped CORDIC operations without WAITX
* PNut SUBX bug fixed

* PNut now allows unary NOT/ABS/NEG... instructions (if D-only, D gets used for S)

* PNut fixed for properly-oriented if_00/if_01/if_xO0...

151109

*WFBYTE and WFWORD write hub at first opportunity, bypassing the FIFO, meaning data no longer lingers until whole longs are formed
* Color space converter added after Transfer to do RGB->YIQ/YPbPr/YUV/etc conversions

* ALTR/ALTD/ALTS instructions added for doing indirect or base+offset accesses in next instruction

* ALTDS renamed to ALTI

* SETXDAC renamed to SETDACS

* GETPTR instruction added to read back WFxxxx/RFxxxx address - doesn't wrap, though

* GETINT instruction added to read INT1/INT2/INT3 states and event flags (non-destructive)

* SETBRK modified to read back STALLI status and INT1/INT2/INT3 selector settings

* SETCY/SETCI/SETCQ/SETCFRQ/SETCMOD instructions added to support colorspace converter

CCCC 1101011 ooL DDDDDDDDD 000100011 SETHLK D/#

CCCC 1101011 C0O0 000000000 000100100 POLLINT {WC}
CCCC 1101011 C0O0 000000001 000100100 POLLCT1 {wC}
CCCC 1101011 C0O0 000000010 000100100 POLLCT2 {WC}
CCCC 1101011 C0O0 000000011 000100100 POLLCT3 {wC}
CCCC 1101011 C0O0 000000100 000100100 POLLPAT {WC}
CCCC 1101011 C0O0 000000101 000100100 POLLEDG {wC}
CCCC 1101011 C0O0 000000110 000100100 POLLRDL {WC}
CCCC 1101011 C0O0 000000111 000100100 POLLWRL {wC}

CCCC 1101011 C0O0 000001000 000100100 POLLHLK {wcC}

CCCC 1101011 C0O0 000001001 000100100
CCCC 1101011 C0O0 000001010 000100100
CCCC 1101011 C0O0 000001011 000100100
CCCC 1101011 C0O0 000001100 000100100

CCCC 1101011 C0O0 000010000 000100100
CCCC 1101011 C0O0 000010001 000100100
CCCC 1101011 C0O0 000010010 000100100
CCCC 1101011 C0O0 000010011 000100100
CCCC 1101011 C0O0 000010100 000100100
CCCC 1101011 C0O0 000010101 000100100
CCCC 1101011 C00 000010110 000100100
CCCC 1101011 CO0 000010111 000100100
CCCC 1101011 C0O0 000011000 000100100
CCCC 1101011 C00 000011001 000100100
CCCC 1101011 C0O0 000011010 000100100
CCCC 1101011 CO0 000011011 000100100

CCCC 1101011 000 000100000 000100100
CCCC 1101011 000 000100001 000100100

POLLXRO
POLLFBW
POLLRLE

POLLWLE

WAITINT
WAITCT1
WAITCT2
WAITCT3
WAITPAT
WAITEDG
WAITRDL
WAITWRL
WAITHLK
WAITXRO
WAITFBW
WAITRLE

ALLOWI
STALLI

{WC}
{WC}
{WC}
{WC}

{WC}
{WC}
{WC}
{WC}
{WC}
{WC}
{WC}
{WC}
{WC}
{WC}
{WC}
{WC}

	Parallax Propeller 2 Assembly Instruction Set
	LINKS
	LABELS
	EXPRESSIONS
	ADDRESSINGP2 MEMORY MAP
	EXEC MAP
	COG REGISTERS
	LUT
	HUB
	HUB ROM

	INTERNAL STACK
	P2 STACKssw
	Conditional execution codes table

	INSTRUCTION BIT-FIELD SYMBOLS
	
	P2 INSTRUCTIONS LIST
	SHIFTS ROTATES
	ARITHMETIC
	LOGICAL
	INSTRUCTION MODIFIERS
	COG NIBBLE/BYTE/WORD Operations
	BRANCHING
	CALL REGISTER
	CALL LONG
	LUT MEMORY
	Example: Create stacks in LUT memory.

	HUB MEMORY
	SMART PINS
	
	
	COG and HUB CONTROL
	CORDIC
	EVENTS, WAITS and INTERRUPTS
	
	

	NOTES
	SETTING EDGE EVENTS
	ALIASES
	POINTER ADDRESSING MODES
	Examples:

	HUB MEMORY READING AND WRITING
	STREAMER
	ALTDS
	
	ALTDS Examples
	copy 16 cog regs from .src to .dest

	PUSHZC ??? - Old P2_hot instruction ???
	RDFAST
	P2 INTERNAL STACK
	MAILBOXES AND DEBUG INTERRUPT VECTORS
	Migrating From Propeller 1
	Instruction Changes
	Removed Instructions/Registers/Effects

