
Splitting large Build Event Protocol
events

Author: buchgr@google.com, lpino@google.com
Approvers: aehlig@google.com, kxu@google.com, eduardocolaco@google.com

Last Updated: 2018-08-24 1

Status: Draft, In review, Approved, Implemented
Tracking bug(s): #5715

This document is world commentable.

Objective
Provide a general approach for splitting the list of child events of large BEP events. Initially
we’ll apply this design to only split PatternExpanded but we plan to use as a general
example on how to split large events.

Background
The PatternExpanded build event has one child event for every expanded target. Child
events are announced by embedding their BuildEventId in a repeated field in the parent
event. For builds with tens of thousands of targets or more the parent event can thus get
very large in size (tens of megabytes) which can be a problem for some consumers of the
Build Event Protocol (BEP). Most notably the Build Event Service (BES) protocol, the
network transport protocol for the BEP, expects build events to be at most 50 MB in size and
the gRPC library's default max message size is even smaller at 4 MB. Further, the protocol
buffer documentation recommends individual messages to be no larger than 1MB in size.

Detailed Design
We propose to introduce a new build event ChildEventsContinuation whose sole purpose is
to announce child events that didn't fit in a parent event. The first ChildEventsContinuation
event will be announced as a child of e.g. the PatternExpanded event or a child of another
ChildEventsContinuation. The subsequent example should make things clear.

Example
The PatternExpanded event below announces 3000 child events.

PatternExpanded {​
 id : patternExpandedId { pattern : "..."},​
 children : [targetConfiguredId {label: ":1"},

1 Date of creation: 2018-07-26

https://github.com/bazelbuild/bazel/issues/5715
https://developers.google.com/protocol-buffers/docs/techniques#large-data
https://developers.google.com/protocol-buffers/docs/techniques#large-data

 targetConfiguredId {label: ":2"}, ...,

 targetConfiguredId {label: ":3000"}

}

We want to split it up into multiple events using ChildEventsContinuation continuation events
that contain at most 1000 child events each.

PatternExpanded {​
 id : patternExpandedId { pattern : "..."},​
 children : [targetConfiguredId {label: ":1"}, ...,

 targetConfiguredId {label: ":1000"},

 childEventsContinuationId { id : "unique1"}]​
}​
​
ChildEventsContinuation {​
 id : childEventsContinuationId { id : "unique1" },

 logical_parent_id : patternExpandedId { pattern : "..."},​
 children : [targetConfiguredId {label: ":1001"},

 ..., targetConfiguredId {label: ":2000"},

 childEventsContinuationId { id : "unique2"}]​
}​
​
ChildEventsContinuation {​
 id : childEventsContinuationId { id : "unique2" },

 logical_parent_id : patternExpandedId { pattern : "..."},​
 children : [targetConfiguredId {label: ":2001"}, ...,

 targetConfiguredId {label: ":3000"}]​
}

The changes to the BEP protobuf definition are summarized below

message BuildEventId {​
 ...​
​
 message ChildEventsContinuationId {​
 string id = 1;​
 }​
 ​
 oneof id {​
 ...​
​
 ChildEventsContinuation child_events_continuation = 23;​
 }​
}​
​
message ChildEventsContinuation {​
}​
​
message BuildEvent {​

 ...​
​
 oneof payload {​
 ...​
​
 ChildEventsContinuation child_events_continuation = 25;​
 }​
}

Code Changes in Bazel
We propose to merge the ChainableEvent interface into the BuildEvent interface and to
further change the method signature of getChildrenEvents() from

Collection<BuildEventId> getChildrenEvents()

to

List<BuildEventOrId> getChildrenEvents()

As the name suggests the BuildEventOrId type provides either a BuildEvent or a
BuildEventId. That is a BuildEvent has now the ability to split itself up into multiple
BuildEvents for serialization purposes. This interface should be general and powerful
enough to in the future also allow other build events (i.e. OptionsParsed) to split themselves
up to without code changes outside the event implementation.

Note that the collection type was changed to j.u.List because the order of the embedded
child events matters now. That is events announcing child events need to appear before the
child events in the list.

public interface BuildEvent extends ExtendedEventHandler.Postable {​
 ...​
 /**​
 * Provides either a {@link BuildEventId} or a {@link BuildEvent}.​
 */​
 final class BuildEventOrId {​
​
 private final BuildEventId id;​
 private final BuildEvent event;​
​
 public BuildEventOrId(BuildEventId id) {​
 this.id = Preconditions.checkNotNull(id);​
 this.event = null;​
 }​
​
 public BuildEventOrId(BuildEvent event) {​
 this.event = Preconditions.checkNotNull(event);​
 this.id = null;​
 }​
​

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

 @Nullable​
 public BuildEventId id() {​
 return id;​
 }​
​
 @Nullable​
 public BuildEvent event() {​
 return event;​
 }​
 }​
​
 /**​
 * Provide the children of the event.​
 *​
 * <p>It is a requirement of a well-formed event stream that for every​
 * event that does not indicate the beginning of a new build, at least​
 * one parent be present before the event itself.​
 * However, more parents might appear later in the stream (e.g.,​
 * if a test suite expanded later discovers that a test that is already​
 * completed belongs to it).​
 *​
 * <p>A build-event stream is finished if and only if all​
 * announced children have occurred.​
 */​
 List<BuildEventOrId> getChildrenEvents();​
​
 ...​
​
 /**

 * Provide a binary representation of the event.​
 *​
 * <p>Provide a presentation of the event according to the specified

 * binary format, as appropriate protocol buffer.

 *

 * <p>The serialized size must not exceed 1 MiB.

 */​
 BuildEventStreamProtos.BuildEvent asStreamProto(

 BuildEventContext context);​
}

Furthermore the changes in the BuildEventStreamer should be minimally invasive. After
having posted a BuildEvent we need to recurse through the embedded child events and post
them in the order they appear. If there are concerns of stack overflows we may choose to
implement the recursion iteratively.

@Subscribe​
public void buildEvent(BuildEvent event) {​
 ...​
​
 post(event);​

​
 ...​
​
 for (BuildEventOrId childEvent : event.getChildrenEvents()) {​
 if (childEvent.event() != null) {​
 buildEvent(childEvent.event());​
 }​
 }​
 ...​
}

Migration Path
The proposed changes are not backwards compatible and might break clients who don't
support ChildEventsContinuation events. We propose to add a flag --build_event_splitting
which allows to disable ChildEventsContinuation. We’ll roll out in three phases: opt-in (the
flag exists), opt-out (the flag is the default) and mandatory (the flag is a no-op).

	Splitting large Build Event Protocol events
	Background
	Detailed Design
	Example
	Code Changes in Bazel

	Migration Path

