GA4GH Passport Visa Conditions

Authors: craigv@aoogle.com
Last updated: Sept 18, 2019

Background
Current Syntax
Current Semantics
Current Example

Feedback

Proposals
Proposal 1: Refactor object layout
Proposal 2: Boolean Language
Proposal 3: Boolean Flexible Struct
Proposal 4: Boolean Fixed Struct

N OO A WW N DN -

Background

Given the scope of changes to the rest of the passport spec, the "condition" field was left pretty
much untouched. Now that the Passport Visa pieces are in place (perhaps with some edits to
come as we find gaps), this is one of the last opportunities to revisit the format and figure out
what we want to do about it for v1.0.

It is difficult to introduce new condition syntax and semantics later without making it a breaking
change. New condition types cannot simply be ignored as they must be enforced. Therefore, we
should assume that we do not have an opportunity to materially change conditions until v2.0 at
a minimum.

Current Syntax

"condition": {
"<PassportVisaTypel>" : {
"<FieldNamel>": [
"<Valuela>",
"<Valuelb>"

1,
"<FieldName2>": ["<Value2>"],

by

mailto:craigv@google.com

"<PassportVisaType2>" : { ... }
}

Current Semantics

e The Passport Clearinghouse MUST verify that for each condition claim and each
condition field present, a single corresponding Passport Visa Object and its
corresponding fields match as per the matching algorithms described elsewhere in this
specification, along with the following requirements:

e Checking the correctness of the condition MUST be performed first. For example, the
field name but be a valid choice.

e A condition field matches when any one string within the specified list matches a
corresponding claim’s field in the Passport.

e All condition fields that are specified MUST match the same Passport Visa Object in the
Passport.

Current Example

"condition": {
"AffiliationAndRole": {
"value": [

"faculty@uni-heidelberg.de",
"student@uni-heidelberg.de"
]I
"by": [
"so",
"system"

Feedback

1. The format was chosen to match the format of the former "ga4gh" JWT claim. Should it
look more like a Passport Visa now?

2. Wording about "condition fields" doesn't seem to align as well to new Passport Visa
format.

3. No boolean logic is available. Martin K suggested this would be desirable.

Proposals

Proposal 1: Refactor object layout

"conditions": [
{

"type": "AffiliationAndRole",

"value": [
"faculty@uni-heidelberg.de",
"student@uni-heidelberg.de"

1y

"by": [
"so",
"system"

Description:
e Move conditions to be a list of conditions, ALL of which must be met (implicit AND).
e Perhaps "type" is single valued while other "fields" are all list of ORed options.
e Leave most of the semantics the same for how evaluation works.
e Additional Option 1a: If value fields like "faculty@example.org" start with "*" AND end
with "$", then the string it to be interpreted as a regex. Example: "Maculty@.*$".

Pros Cons

Looks more aligned with Passport Visas

Non-intuitive

Allows the AND of multiple Passport Visas
with the same Passport Visa Type

More difficult to extend in a fluid, backwards
compatible way.

With option 1a: allows matching of substrings
of structured values like AffiliationAndRole,
Linkedldentities, etc.

Still a fairly limited syntax

Proposal 2: Boolean Language

"conditions": [
"AffiliationAndRole.value="faculty@cam.ac.uk" ",
"AffiliationAndRole.value in [

"faculty@uni-heidelberg.de", "student@uni-heidelberg.de"
]
and
AffiliationAndRole.by in ["so", "system"]°,

The above example introduces the following "conditions" to a given Passport Visa:
e The Passport must also have a Passport Visa that asserts an AffiliationAndRole of
faculty@cam.ac.uk; and
e The Passport must also have a Passport Visa that asserts a faculty or student
AffilationAndRole at Heidelberg by either an "so" or "system".
e Both of the above conditions must be met in the same Passport.

Description:

e Within each expression string (there are two in the above example), the expression must
match a single Passport Visa. Use multiple entries within "conditions" to AND across
Passport Visas similar to Proposal 1 and existing semantics.

e Language could be a simple grammar of:

o {expression} one of:
m XY ="string"
m X.Yin["string", "string", ...]
o {condition} one of:
m {expression}
m {expression} AND {expression}
o Allow "string" to also be regex via one of the following:
m Same as Option 1a: ""matcher$"
m Modify {expression} to include /matcher/ or regexp("matcher")
m Introduce regex operator ~=

e |[f the language does not parse, then permission denied (i.e. backwards compliant by not

being overly permissive).

Easy to make fully backwards compatible as the language gets extended.

Option 2a: alternative is to allow a full language like CEL off the start. Finding an OSS
library that works in many common languages could be a challenge, and difficult to
specify in a spec.

https://github.com/google/cel-spec

Pros

Cons

More expressive

Complexity of finding a reliable library
available in many languages

More extensible with backwards compatibility

Possible security issues due to complexity of
implementation and vulnerabilities

Restrictive enough to avoid open language
problems / attacks (can address differently in
future spec versions)

Proposal 3: Boolean Flexible Struct

"condition": {
"and": [
{ "check": "=",
"type": "AffiliationAndRole"
} 4
{
"or": [
{
"check": "=",
"value": "faculty@cam.ac.uk"
b
{
"check": "regex",
"value": "“faculty@"
}
]
} 4
{ "check": "=",
"by": "so"
}
]
}
Description:

e Parsed boolean logic into a structure

o

{and} = [{expression}, ...]
{or} = [{expression}, ...]

o O O

{expression} = {check} | {and} | {or}

{check} = JSON { "check": "="| "I="| "regex", {field}: {value}, ... }

o {field} = "type" | "value" | "source" | "by"
o {value} = {{string}}
e |[f the language does not parse, then permission denied (i.e. backwards compliant by not
being overly permissive).

Pros Cons

Expressive Hard for humans to encode

Need tools to help non-programmers

Proposal 4: Boolean Fixed Struct

"conditions": [
[
{
"type": "AffiliationAndRole",
"value": "const:faculty@uni-heidelberg.de",
"by": "const:so"
}, // AND
{
}
1, // OR
[
{
"type": "AffiliationAndRole",
"value": "pattern:faculty@*",
"source": "const:https://visas.elixir.org"
"by": "const:system"
}
]
]
Description:

e Conditions is a two-nested-lists structure (Disjunctive Normal Form):
o Outer level list is a set of OR clauses
o Inner level list is a set of AND clauses that contain Condition Objects
o A Condition Object MUST specify a "type" to match the Passport Visa Type along
with at least one other field with a name that matches a Passport Visa Object
field name.

o The values of Condition Object fields MUST have a string prefix followed by a
colon and then string suffix except for "type" where it MUST be assumed to be
"const" and is not specified.

If prefix is "const", then suffix MUST match using a case sensitive value
by comparing full strings.

If prefix is "pattern”, then suffix MUST use full string Glob pattern
matching.

If prefix is "split_pattern”, then split the input string on ";" and then use
"pattern” to match any one substring. (this supports cases when value
fields encode more than one value like Linkedldentities)

If prefix is unknown or unsupported, then condition must fail to match.

Pros

Cons

Expressive enough to handle foreseeable use | Hard for humans to remember the definitions

cases of the different levels
Reasonable in terms of implementation Need tools to help non-programmers
complexity

Easier to ensure security than some
alternatives (avoids regex, deep
substructures causing JSON parser issues,

etc)

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_13
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_13

