

Cloud
Computing
Online
Courseware
​​Subject Code: CS703C

​​2019

Proposed Syllabus for B.Tech Computer Science and Engineering Programme (Autonomy)
4th Year, 7th Semester

Paper Name: Cloud Computing
Code: CS703C Contacts:

3L Credits: 3
Allotted hours: 35L

​​COURSE OBJECTIVES

​​ The student will also learn how to apply trust-based security model to real-world security
problems.

​​ An overview of the concepts, processes, and best practices needed to successfully secure
information within Cloud infrastructures.

​​ Students will learn the basic Cloud types and delivery models and develop an understanding
of the risk and compliance responsibilities and Challenges for each Cloud type and service
delivery model.

Module 1: Definition of Cloud Computing and its Basics

1.​ Definition of Cloud Computing: Defining a Cloud, Cloud Types – NIST model, Cloud Cube model,
Deployment models (Public , Private, Hybrid and Community Clouds), Service models – Infrastructure as a Service,
Platform as a Service, Software as a Service with examples of services/ service providers, Cloud Reference model,
Characteristics of Cloud Computing – a shift in paradigm Benefits and advantages of Cloud Computing
2.​ Cloud Architecture: Cloud Infrastructure, Architecture of each component, Virtualization versus Traditional
Approach, Virtualization Model for Cloud Computing.
3.​Services and Applications by Type
IaaS – Basic concept, Workload, partitioning of virtual private server instances, Pods, aggregations, silos
PaaS – Basic concept, tools and development environment with examples
SaaS - Basic concept and characteristics, Open SaaS and SOA, examples of SaaS platform
Identity as a Service (IDaaS) Compliance as a Service (CaaS)

Module 2: Use of Platforms in Cloud Computing

1.​Concepts of Abstraction and Virtualization
Virtualization technologies: Types of virtualization, Load Balancing and Virtualization: Basic Concepts, Network
resources for load balancing; Classification of Virtualization Environment: Scheduling-based Environment, Load-
Distribution-Based Environment, Energy Aware-Based Environment, Operational-Based Environment, Distributed
Pattern-Based Environment, Transactional-Based Environment
Mention of The Google Cloud as an example of use of load balancing Hypervisors: Virtual machine technology and
types, VMware vSphere Machine imaging (including mention of Open Virtualization Format – OVF)
Porting of applications in the Cloud: The simple Cloud API and AppZero Virtual Application appliance
2.​Concepts of Platform as a Service
Definition of services, Distinction between SaaS and PaaS (knowledge of Salesforce.com and Force.com), Application
development.Use of PaaS Application frameworks
3.​Use of Google Web Services
Discussion of Google Applications Portfolio – Indexed search, Dark Web, Aggregation and disintermediation,
Productivity applications and service, Adwords, Google Analytics, Google Translate, a brief discussion on Google
Toolkit (including introduction of Google APIs in brief), major features of Google App Engine service.
4.​Use of Amazon Web Services
Amazon Web Service components and services: Amazon Elastic Cloud, Amazon Simple Storage system, Amazon
Elastic Block Store, Amazon SimpleDB and Relational Database Service
5.​Use of Microsoft Cloud Services
Windows Azure platform: Microsoft’s approach, architecture, and main elements, overview of Windows Azure
AppFabric, Content Delivery Network, SQL Azure, and Windows Live services

Module 3 : Cloud Infrastructure

Types of services required in implementation – Consulting, Configuration, Customization and Support
1.​Cloud Management

An overview of the features of network management systems and a brief introduction of related products from large
cloud vendors, Monitoring of an entire cloud computing deployment stack – an overview with mention of some
products, Lifecycle management of cloud services (six stages of lifecycle)
2.​Live Migration of Virtual Machines:
Need of Live Migration of Virtual Machine, A Designing Process of Live Migration, and Security Issues during live
migration
3.​Concepts of Cloud Security
Infrastructure Security, Infrastructure Security: The Network Level, The Host Level, The Application Level, Data
Security and Storage, Aspects of Data Security, Data Security Mitigation Provider Data and Its Security, Identity and
Access Management
4.​Auditing and Compliance in Cloud Environment:
Data Security in Cloud Computing Environment, Need for Auditing in Cloud Computing Environment, Third Party
Service Provider, Cloud Auditing Outsourcing Lifecycle Phases, Auditing Classification.

Module 4 : Concepts of Services and Applications

1.​ Service Oriented Architecture: Basic concepts of message-based transactions, Protocol stack for an SOA
architecture, Event-driven SOA, Enterprise Service Bus, Service catalogs
2.​ Applications in the Cloud: Concepts of cloud transactions, functionality mapping, Application attributes,
Cloud service attributes, System abstraction and Cloud Bursting, Applications and Cloud APIs
3.​Cloud-based Storage: Cloud storage definition – Manned and Unmanned
4.​ Webmail Services: Cloud mail services including Google Gmail, Mail2Web, Windows Live Hotmail,
Yahoo mail, concepts of Syndication services

Books Recommended:
1.​Cloud Computing Bible by Barrie Sosinsky, Wiley India Pvt. Ltd, 2013
2.​ Mastering Cloud Computing by Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi,
McGraw Hill
Education (India) Private Limited, 2013
3.​ Fundamentals of Cloud Computing by Prasant Kumar Pattnaik, Souvik Pal, Manas Ranjan
Kabat, Vikas Publications
4.​Cloud computing: A practical approach, Anthony T. Velte, Tata Mcgraw-Hill
5.​Cloud Computing, Miller, Pearson
6.​Building applications in cloud:Concept, Patterns and Projects, Moyer, Pearson

References:
1.​Cloud Computing – Second Edition by Dr. Kumar Saurabh, Wiley India

COURSE OUTCOMES
After completion of course, students would be able to:

CS703C .1. Identify security aspects of each cloud model
CS703C .2. Develop a risk-management strategy for moving to the Cloud
CS703C .3. Implement a public cloud instance using a public cloud service provider
CS703C .4. Apply trust-based security model to different layer

CO-PO Mapping

CO PO1 PO2 POP3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CS703C.1
 √

CS703C.2

√

√

√

CS703C.3 √ √
CS703C.4 √ √

​​Module – I

​​Definition of Cloud Computing

and its Basics

Defining Cloud
Computing

Cloud computing refers to applications and services that run on a dis-tributed
network using virtualized resources and accessed by com-mon Internet
protocols and networking standards. It is distinguished

by the notion that resources are virtual and limitless and that details of the
physical systems on which software runs are abstracted from the user.

In an effort to better describe cloud computing, a number of cloud types
have been defined. In this chapter, you learn about two different classes of
clouds: those based on the deployment model and those based on the service
model. The deployment model tells you where the cloud is located and for
what purpose. Public, private, community, and hybrid clouds are deploy-
ment models.

Service models describe the type of service that the service provider is
offer-ing. The best-known service models are Software as a Service,
Platform as a Service, and Infrastructure as a Service—the SPI model. The
service models build on one another and define what a vendor must
manage and what the client’s responsibility is.

Cloud computing represents a real paradigm shift in the way in which sys-
tems are deployed. The massive scale of cloud computing systems was
enabled by the popularization of the Internet and the growth of some large
service companies. Cloud computing makes the long-held dream of utility
computing possible with a pay-as-you-go, infinitely scalable, universally
available system. With cloud computing, you can start very small and
become big very fast. That’s why cloud computing is revolutionary, even
if the technology it is built on is evolutionary.

Not all applications benefit from deployment in the cloud. Issues with
latency, transaction control, and in particular security and regulatory compli-
ance are of particular concern.

​​Defining Cloud Computing

Cloud computing takes the technology, services, and applications that are similar to those on
the Internet and turns them into a self-service utility. The use of the word “cloud” makes
reference to the two essential concepts:

⚫​Abstraction: Cloud computing abstracts the details of system implementation from

users and developers. Applications run on physical systems that aren’t specified, data
is stored in locations that are unknown, administration of systems is outsourced to
others, and access by users is ubiquitous.

⚫​Virtualization: Cloud computing virtualizes systems by pooling and sharing
resources. Systems and storage can be provisioned as needed from a centralized
infrastructure, costs are assessed on a metered basis, multi-tenancy is enabled, and
resources are scalable with agility.

Computing as a utility is a dream that dates from the beginning of the computing industry itself.
A set of new technologies has come along that, along with the need for more efficient and
affordable computing, has enabled an on-demand system to develop. It is these enabling
technologies that are the focal point of this book.

Many people mistakenly believe that cloud computing is nothing more than the Internet given
a different name. Many drawings of Internet-based systems and services depict the Internet as
a cloud, and people refer to applications running on the Internet as “running in the cloud,” so
the confusion is understandable. The Internet has many of the characteristics of what is now
being called cloud computing. The Internet offers abstraction, runs using the same set of
protocols and standards, and uses the same applications and operating systems. These same
characteristics are found in an intranet, an internal version of the Internet. When an intranet
becomes large enough that a diagram no longer wishes to differentiate between individual
physical systems, the intranet too becomes identified as a cloud.

Cloud computing is an abstraction based on the notion of pooling physical resources and
present-ing them as a virtual resource. It is a new model for provisioning resources, for staging
applica-tions, and for platform-independent user access to services. Clouds can come in many
different types, and the services and applications that run on clouds may or may not be delivered
by a cloud service provider. These different types and levels of cloud services mean that it is
important to define what type of cloud computing system you are working with.

To help clarify how cloud computing has changed the nature of commercial system
deployment, consider these three examples:

⚫ Google: In the last decade, Google has built a worldwide network of datacenters to

service its search engine. In doing so Google has captured a substantial portion of the
world’s advertising revenue. That revenue has enabled Google to offer free software to
users based on that infrastructure and has changed the market for user-facing software.
This is the classic Software as a Service case described in Chapter 8.

⚫​Azure Platform: By contrast, Microsoft is creating the Azure Platform. It enables .NET

Framework applications to run over the Internet as an alternate platform for Microsoft
developer software running on desktops, which you will learn about in Chapter 10.

⚫​Amazon Web Services: One of the most successful cloud-based businesses is Amazon
Web Services, which is an Infrastructure as a Service offering that lets you rent virtual
computers on Amazon’s own infrastructure. AWS is the subject of Chapter 9.

These new capabilities enable applications to be written and deployed with minimal expense and
to be rapidly scaled and made available worldwide as business conditions permit. This is truly a
revolutionary change in the way enterprise computing is created and deployed.

​​Cloud Types

To discuss cloud computing intelligently, you need to define the lexicon of cloud computing;
many acronyms in this area probably won’t survive long. Most people separate cloud
computing into two distinct sets of models:

⚫​Deployment models: This refers to the location and management of the cloud’s

infrastructure.

⚫​Service models: This consists of the particular types of services that you can access on
a cloud computing platform.

This is a very useful demarcation that is now widely accepted.

​​The NIST model
The United States government is a major consumer of computer services and, therefore, one of
the major users of cloud computing networks. The U.S. National Institute of Standards and
Technology (NIST) has a set of working definitions (http://csrc.nist.gov/groups/SNS/cloud-
computing/cloud-def-v15.doc) that separate cloud computing into service models and deployment
models. Those models and their relationship to essential characteristics of cloud com-puting are
shown in Figure 1.1.

The NIST model originally did not require a cloud to use virtualization to pool resources, nor did it
absolutely require that a cloud support multi-tenancy in the earliest definitions of cloud computing.
Multi-tenancy is the sharing of resources among two or more clients. The latest version of the NIST
definition does require that cloud computing networks use virtualization and support multi-tenancy.

http://csrc.nist.gov/groups/SNS/cloud-

The NIST cloud computing definitions

Because cloud computing is moving toward a set of modular interacting components based on
standards such as the Service Oriented Architecture (described in Chapter 13), you might expect
that future versions of the NIST model may add those features as well. The NIST cloud model
doesn’t address a number of intermediary services such as transaction or service brokers, provi-
sioning, integration, and interoperability services that form the basis for many cloud computing
discussions. Given the emerging roles of service buses, brokers, and cloud APIs at various
levels, undoubtedly these elements need to be added to capture the whole story.

​​The Cloud Cube Model
The Open Group maintains an association called the Jericho Forum (https://www.open
group.org/jericho/index.htm) whose main focus is how to protect cloud networks. The group has an
interesting model that attempts to categorize a cloud network based on four dimen-sional factors.
As described in its paper called “Cloud Cube Model: Selecting Cloud Formations for Secure
Collaboration” (http://www.opengroup.org/jericho/cloud_cube_model_
v1.0.pdf), the type of cloud networks you use dramatically changes the notion of where the
boundary between the client’s network and the cloud begins and ends.

The four dimensions of the Cloud Cube Model are shown in Figure 1.2 and listed here:

⚫​ Physical location of the data: Internal (I) / External (E) determines your

organization’s boundaries.

⚫​ Ownership: Proprietary (P) / Open (O) is a measure of not only the technology
ownership, but of interoperability, ease of data transfer, and degree of vendor application
lock-in.

http://www.opengroup.org/jericho/cloud_cube_model_

⚫​Security boundary: Perimeterised (Per) / De-perimiterised (D-p) is a measure of

whether the operation is inside or outside the security boundary or network
firewall.

⚫​Sourcing: Insourced or Outsourced means whether the service is provided by the cus-
tomer or the service provider.

The Jericho Forum’s Cloud Cube Model

Outsourced

Insourced

Taken together, the fourth dimension corresponds to two different states in the eight possible cloud
forms: Per (IP, IO, EP, EO) and D-p (IP, IO, EP, EO). The sourcing dimension addresses the
deliverer of the service. What the Cloud Cube Model is meant to show is that the traditional notion
of a network boundary being the network’s firewall no longer applies in cloud computing.

​​Deployment models
A deployment model defines the purpose of the cloud and the nature of how the cloud is located.

The NIST definition for the four deployment models is as follows:

⚫​Public cloud: The public cloud infrastructure is available for public use alternatively for
a large industry group and is owned by an organization selling cloud services.

⚫​Private cloud: The private cloud infrastructure is operated for the exclusive use of an
organization. The cloud may be managed by that organization or a third party. Private
clouds may be either on- or off-premises.

⚫​Hybrid cloud: A hybrid cloud combines multiple clouds (private, community of
public) where those clouds retain their unique identities, but are bound together as a
unit. A

hybrid cloud may offer standardized or proprietary access to data and applications, as
well as application portability.

⚫ Community cloud: A community cloud is one where the cloud has been organized to
serve a common function or purpose.

It may be for one organization or for several organizations, but they share common con-
cerns such as their mission, policies, security, regulatory compliance needs, and so on. A
community cloud may be managed by the constituent organization(s) or by a third party.

Figure 1.3 shows the different locations that clouds can come in. In the sections that follow, these
different cloud deployment models are described in more detail.

Deployment locations for different cloud types

Off premises​ On premises
(external)​ (internal)

The United States Government, under the auspices of the General Services Administrator (GSA),
launched a cloud computing portal called Apps.gov, as shown in Figure 1.4, with the purpose of
providing cloud services to federal agencies. Described under the “U.S. Federal Cloud Computing

Initiative (http://www.scribd.com/doc/17914883/US-Federal-Cloud-Computing-Initiative-RFQ-GSA),
the goal of the initiative is to make large portions of the federal govern-ment’s apparatus available
under a cloud computing model. This is a good example of a community cloud deployment, with
the government being the community.

Apps.gov is the U.S. government’s cloud computing system for its various agencies.

Apps.gov is also making available connections to free media services from its cloud, such as
Twitter and YouTube. An example of this connection in practice is the YouTube channel created
by the White House for citizens’ outreach. You can find the White House channel at http://
www.youtube.com/whitehouse and the general U.S. Government YouTube channel at
http://www.youtube.com/usgovernment. You can see YouTube in action when you visit
WhiteHouse.gov and click the video link that usually appears on that home page.

​​Service models
In the deployment model, different cloud types are an expression of the manner in which infra-
structure is deployed. You can think of the cloud as the boundary between where a client’s net-
work, management, and responsibilities ends and the cloud service provider’s begins. As cloud

http://www.scribd.com/doc/17914883/US-Federal-Cloud-Computing-Initiative-RFQ-GSA)
http://www.youtube.com/whitehouse
http://www.youtube.com/usgovernment

computing has developed, different vendors offer clouds that have different services associated with
them. The portfolio of services offered adds another set of definitions called the service model.

There are many different service models described in the literature, all of which take the
following form:

XaaS, or “<Something> as a Service”

Three service types have been universally accepted:

⚫​Infrastructure as a Service: IaaS provides virtual machines, virtual storage, virtual

infra-structure, and other hardware assets as resources that clients can provision.

The IaaS service provider manages all the infrastructure, while the client is responsible
for all other aspects of the deployment. This can include the operating system,
applications, and user interactions with the system.

⚫​Platform as a Service: PaaS provides virtual machines, operating systems,
applications, services, development frameworks, transactions, and control structures.

The client can deploy its applications on the cloud infrastructure or use applications that
were programmed using languages and tools that are supported by the PaaS service pro-
vider. The service provider manages the cloud infrastructure, the operating systems, and
the enabling software. The client is responsible for installing and managing the
application that it is deploying.

⚫​Software as a Service: SaaS is a complete operating environment with applications,
man-agement, and the user interface.

In the SaaS model, the application is provided to the client through a thin client interface
(a browser, usually), and the customer’s responsibility begins and ends with entering and
managing its data and user interaction. Everything from the application down to the infra-
structure is the vendor’s responsibility.

The three different service models taken together have come to be known as the SPI model of
cloud computing. Many other service models have been mentioned: StaaS, Storage as a Service;
IdaaS, Identity as a Service; CmaaS, Compliance as a Service; and so forth. However, the SPI
ser-vices encompass all the other possibilities.

It is useful to think of cloud computing’s service models in terms of a hardware/software stack.
One such representation called the Cloud Reference Model is shown in Figure 1.5. At the bottom
of the stack is the hardware or infrastructure that comprises the network. As you move upward in
the stack, each service model inherits the capabilities of the service model beneath it. IaaS has the
least levels of integrated functionality and the lowest levels of integration, and SaaS has the most.

Examples of IaaS service providers include:

⚫​Amazon Elastic Compute Cloud (EC2)
⚫​Eucalyptus
⚫​GoGrid

⚫​FlexiScale
⚫​Linode
⚫​RackSpace Cloud
⚫​Terremark

All these vendors offer direct access to hardware resources. On Amazon EC2, considered the clas-
sic IaaS example, a client would provision a computer in the form of a virtual machine image,
pro-vision storage, and then go on to install the operating system and applications onto that virtual
system. Amazon has a number of operating systems and some enterprise applications that they
offer on a rental basis to customers in the form of a number of canned images, but customers are
free to install whatever software they want to run. Amazon’s responsibilities as expressed in its
Service Level Agreement, which is published on Amazon’s Web site, contractually obligates
Amazon to provide a level of performance commensurate with the type of resource chosen, as
well as a cer-tain level of reliability as measured by the system’s uptime.

The Cloud Reference Model

A PaaS service adds integration features, middleware, and other orchestration and
choreography services to the IaaS model. Examples of PaaS services are:

⚫​Force.com
⚫​GoGrid CloudCenter

⚫​Google AppEngine
⚫​Windows Azure Platform

When a cloud computing vendor offers software running in the cloud with use of the application
on a pay-as-you-go model, it is referred to as SaaS. With SaaS, the customer uses the application
as needed and is not responsible for the installation of the application, its maintenance, or its
upkeep. A good example of an SaaS offering is an online accounting package, with the online
versions of Quicken and Quickbooks a prime example. Figure 1.6 shows a home page for
QuickBooks Online plus on the Intuit.com Web site.

A home page for a Quickbooks customer on the Intuit.com Web site is an example of an SaaS service.

A client using an SaaS service might—as is the case for Quickbooks online—log into the service
from his browser, create an account, and enter data into the system. Intuit.com has a service agree-
ment that not only covers the performance of the hardware and software, but extends to protecting
the data that they store for clients, and other fundamental characteristics.

Other good examples of SaaS cloud service providers are:

⚫​GoogleApps
⚫​Oracle On Demand
⚫​SalesForce.com
⚫​SQL Azure

These service model classifications start to get confusing rather quickly when you have a cloud
service provider that starts out offering services in one area and then develops services that are
classified as another type. For example, SalesForce.com started out as a Customer Relationship
Management SaaS platform that allowed clients to add their own applications. Over time
SalesForce.com opened an API called the Force API that allowed developers to create
applications based on the SalesForce.com technologies. Force.com is thus their PaaS service.

As another example, take the PaaS offering that is the Windows Azure Platform. Windows Azure
Platform allows .NET developers to stage their applications on top of Microsoft’s infrastructure
so that any application built with the .NET Framework can live locally, in Microsoft’s cloud
network, or some combination thereof. As Microsoft adds enterprise applications to its cloud
service portfo-lio, as it has in the case of SQL Azure (and many other enterprise applications to
come), these offerings fall under the rubric of being an SaaS service model.

Because a discussion of service models forms the basis for Chapter 4, I refer you to that chapter
for a more in-depth discussion of this topic.

​​Examining the Characteristics
of Cloud Computing

Cloud computing builds on so many older concepts in computer technology that it can be hard for
people newly introduced to the concept to grasp that it represents a paradigm shift in computing.
It’s an evolutionary change that enables a revolutionary new approach to how computing services
are produced and consumed.

​​Paradigm shift
When you choose a cloud service provider, you are renting or leasing part of an enormous infra-
structure of datacenters, computers, storage, and networking capacity. Many of these datacenters
are multi-million-dollar investments by the companies that run them. To give you some sense of
scale, it has been estimated that a state-of-the-art microchip fabrication facility can cost anywhere
from $2 to $5 billion. By comparison, a state of the art cloud computing datacenter can run in the
range of $100 million. Most of the large cloud computing service providers have multiple data-
centers located all over the world. An accurate count can be difficult to obtain, but in Chapter 9

the location of some 20 datacenters in Amazon Web Service’s cloud are detailed. Google’s
cloud includes perhaps some 35 datacenters worldwide.

In the 1960s, military initiative aimed at miniaturizing electronics funded many of the semicon-
ductor production lines that led to advanced microprocessors, dense memory arrays, and the
sophisticated integrated circuit technology that makes computers, mobile devices, and so much
more possible today. In the 1990s, the commercialization of the Internet gave rise to some very
large companies that were forced to build very large computing infrastructures to support their
businesses.

Amazon.com’s infrastructure was built to support elastic demand so the system could
accommo-date peak traffic on a busy shopping day such as “Black Monday.” Because much of
the capacity was idle, Amazon.com first opened its network to partners and then as Amazon
Web Services to customers.

Google’s business has also grown exponentially and required the building of datacenters world-
wide. One of its datacenters in Dalles, Oregon, built in 2006 on the banks of the Columbia River,
is shown in Figure 1.7. It is the size of an American football field.

The Google Dalles, Oregon, datacenter shown in Google Earth is an industrial-sized
information technology utility.

As these various datacenters grew in size, businesses have developed their datacenters as
“green-field” projects. Datacenters have been sited to do the following:

⚫​Have access to low cost power

⚫​Leverage renewable power source
⚫​Be near abundant water
⚫​Be sited where high-speed network backbone connections can be made
⚫​Keep land costs modest and occupation unobtrusive
⚫​Obtain tax breaks
⚫​Optimize the overall system latency

These characteristics make cloud computing networks highly efficient and capture enough margin
to make utility computing profitable.

It has been estimated that the Internet consumes roughly 10 percent of the world’s total power, so
these companies are very big energy consumers. In some cases, such as Google, these companies
may also become some of the major energy producers of the 21st century. Essentially what has
happened is that the Internet has funded the creation of the first information technology utilities.
That’s why cloud computing is such a big deal.

According to the research firm IDC, the following areas were the top five cloud applications in
use in 2010:

⚫​Collaboration applications
⚫​Web applications/Web serving
⚫​Cloud backup
⚫​Business applications
⚫​Personal productivity applications

The last five years have seen a proliferation of services and productivity applications delivered
on-line as cloud computing applications. Examples of the impact of cloud computing abound in
your everyday life, although many people do not make the connection to what was once a
straightfor-ward client/server Internet deployment. Movement of these applications to the cloud
has been transparent, and in many cases the older on-premises deployment is supported by the
same appli-cations hosted in the cloud.

For example, many people have used ChannelAdvisor.com for their auction listings and sales
man-agement. That site recently expanded its service to include a CRM connector to
Salesforce.com. One of the largest call center operations companies is a cloud-based service,
Liveops.com. Figure 1.8 shows the Liveops home page.

Cloud computing has shifted the economics of software delivery in a manner similar to the way that
music downloads have shifted the delivery of commercial music. The cost advantages of cloud

computing have enabled new software vendors to create productivity applications that they can
make available to people at a much smaller cost than would be possible for shrink-wrapped soft-
ware. Given the general demise of the big-box computer store along with many other traditional
retail models, it has become increasingly difficult for vendors to get shelf space. You can visit
your local Wal-Mart to get some sense of this issue.

In Chapter 16, “Working with Productivity Software,” some of these applications are described.
This new model of computer application delivery has allowed vendors like Google to offer
com-plete office suites to individuals for free, supported by its advertiser subscription model.
Even Google’s business offerings have had some major successes against industry leader
Microsoft Office. Last year, Los Angeles County switched to Google Docs.

Liveops.com is a cloud computing call center service.

​​Benefits of cloud computing
“The NIST Definition of Cloud Computing” by Peter Mell and Tim Grance (version 14, 10/7/2009)
described previously in this chapter (refer to Figure 1.1) that classified cloud computing into the three
SPI service models (SaaS, IaaS, and PaaS) and four cloud types (public, private, community, and
hybrid), also assigns five essential characteristics that cloud computing systems must offer:

⚫​On-demand self-service: A client can provision computer resources without the need
for interaction with cloud service provider personnel.

⚫​Broad network access: Access to resources in the cloud is available over the network
using standard methods in a manner that provides platform-independent access to clients
of all types.

This includes a mixture of heterogeneous operating systems, and thick and thin platforms
such as laptops, mobile phones, and PDA.

⚫​Resource pooling: A cloud service provider creates resources that are pooled together
in a system that supports multi-tenant usage.

Physical and virtual systems are dynamically allocated or reallocated as needed.
Intrinsic in this concept of pooling is the idea of abstraction that hides the location of
resources such as virtual machines, processing, memory, storage, and network
bandwidth and connectivity.

⚫​Rapid elasticity: Resources can be rapidly and elastically provisioned.

The system can add resources by either scaling up systems (more powerful computers)
or scaling out systems (more computers of the same kind), and scaling may be automatic
or manual. From the standpoint of the client, cloud computing resources should look
limit-less and can be purchased at any time and in any quantity.

⚫​Measured service: The use of cloud system resources is measured, audited, and
reported to the customer based on a metered system.

A client can be charged based on a known metric such as amount of storage used, number
of transactions, network I/O (Input/Output) or bandwidth, amount of processing power
used, and so forth. A client is charged based on the level of services provided.

While these five core features of cloud computing are on almost anybody’s list, you also
should consider these additional advantages:

⚫​Lower costs: Because cloud networks operate at higher efficiencies and with greater

utili-zation, significant cost reductions are often encountered.

⚫​Ease of utilization: Depending upon the type of service being offered, you may
find that you do not require hardware or software licenses to implement your
service.

⚫​Quality of Service: The Quality of Service (QoS) is something that you can
obtain under contract from your vendor.

⚫​Reliability: The scale of cloud computing networks and their ability to provide load
bal-ancing and failover makes them highly reliable, often much more reliable than what
you can achieve in a single organization.

⚫​Outsourced IT management: A cloud computing deployment lets someone else
manage your computing infrastructure while you manage your business. In most
instances, you achieve considerable reductions in IT staffing costs.

⚫​Simplified maintenance and upgrade: Because the system is centralized, you can
easily apply patches and upgrades. This means your users always have access to the
latest soft-ware versions.

⚫​Low Barrier to Entry: In particular, upfront capital expenditures are
dramatically reduced. In cloud computing, anyone can be a giant at any time.

This very long list of benefits should make it obvious why so many people are excited about
the idea of cloud computing. Cloud computing is not a panacea, however. In many instances,
cloud computing doesn’t work well for particular applications.

​​Disadvantages of cloud computing
While the benefits of cloud computing are myriad, the disadvantages are just as numerous. As a
general rule, the advantages of cloud computing present a more compelling case for small organi-
zations than for larger ones. Larger organizations can support IT staff and development efforts
that put in place custom software solutions that are crafted with their particular needs in mind.

When you use an application or service in the cloud, you are using something that isn’t necessarily
as customizable as you might want. Additionally, although many cloud computing applications are
very capable, applications deployed on-premises still have many more features than their cloud
counterparts.

All cloud computing applications suffer from the inherent latency that is intrinsic in their WAN con-
nectivity. While cloud computing applications excel at large-scale processing tasks, if your applica-tion
needs large amounts of data transfer, cloud computing may not be the best model for you.

Additionally, cloud computing is a stateless system, as is the Internet in general. In order for
com-munication to survive on a distributed system, it is necessarily unidirectional in nature. All
the requests you use in HTTP: PUTs, GETs, and so on are requests to a service provider. The
service provider then sends a response. Although it may seem that you are carrying on a
conversation between client and provider, there is an architectural disconnect between the two.
That lack of state allows messages to travel over different routes and for data to arrive out of
sequence, and many other characteristics allow the communication to succeed even when the
medium is faulty. Therefore, to impose transactional coherency upon the system, additional
overhead in the form of service brokers, transaction managers, and other middleware must be
added to the system. This can introduce a very large performance hit into some applications.

If you had to pick a single area of concern in cloud computing, that area would undoubtedly be
privacy and security. When your data travels over and rests on systems that are no longer under
your control, you have increased risk due to the interception and malfeasance of others. You
can’t count on a cloud provider maintaining your privacy in the face of government actions.

In the United States, an example is the National Security Agency’s program that ran millions of phone
calls from AT&T and Verizon through a data analyzer to extract the phone calls that matched its
security criteria. VoIP is one of the services that is heavily deployed on cloud comput-ing systems.
Another example is the case of Google’s service in China, which had been subject to a

filter that removed content to which the Chinese government objected. After five years of opera-
tion, and after Google detected that Chinese hackers were accessing Gmail accounts of Chinese cit-
izens, Google moved their servers for Google.ch to Hong Kong.

So while the cloud computing industry continues to address security concerns, if you have an
application that works with sensitive data, you need to be particularly aware of the issues involved.
Chapter 12, “Understanding Cloud Security,” expands upon these points in more detail.

These days most organizations are faced with regulatory compliance issues of various kinds. In the United
States, companies must comply with the accounting requirements of the Sarbanes-Oxley Act; health care
providers comply with the data privacy rules of HIPAA, and so on. In Europe, the European Common
Market has a raft of its own legislation for companies to deal with. Rules apply to data at rest, and
different rules may apply to data in transit. If you stage your cloud computing deployment across states
and countries, the bad news is that you may end up having to comply with multiple jurisdictions. Don’t
expect much support from the cloud system provider or from the governments involved. The laws of most
regulatory agencies place the entire burden on the cli-ent. So when it comes to compliance, cloud
computing is still the “Wild West” of computing.

​​Understanding Cloud
Architecture

Cloud computing is a natural extension of many of the design princi-ples,
protocols, plumbing, and systems that have been developed over the past
20 years. However, cloud computing describes some

new capabilities that are architected into an application stack and are respon-
sible for the programmability, scalability, and virtualization of resources.
One property that differentiates cloud computing is referred to as compos-
ability, which is the ability to build applications from component parts.

A platform is a cloud computing service that is both hardware and software.
Platforms are used to create more complex software. Virtual appliances are
an important example of a platform, and they are becoming a very important
standard cloud computing deployment object.
Cloud computing requires some standard protocols with which different lay-
ers of hardware, software, and clients can communicate with one another.
Many of these protocols are standard Internet protocols. Cloud computing
relies on a set of protocols needed to manage interprocess communications
that have been developed over the years. The most commonly used set of
protocols uses XML as the messaging format, the Simple Object Access
Protocol (SOAP) protocol as the object model, and a set of discovery and
description protocols based on the Web Services Description Language
(WSDL) to manage transactions.

Some completely new clients are under development that are specifically
meant to connect to the cloud. These clients have as their focus cloud appli-
cations and services, and are often hardened and more securely connected.
Two examples presented are Jolicloud and Google Chrome OS. They repre-
sent a new client model that is likely to have considerable impact.

​​Exploring the Cloud Computing Stack

Cloud computing builds on the architecture developed for staging large distributed network appli-
cations on the Internet over the last 20 years. To these standard networking protocols, cloud com-
puting adds the advances in system virtualization that became available over the last decade. The
cloud creates a system where resources can be pooled and partitioned as needed. Cloud architec-
ture can couple software running on virtualized hardware in multiple locations to provide an on-
demand service to user-facing hardware and software. It is this unique combination of abstraction
and metered service that separates the architectural requirements of cloud computing systems from
the general description given for an n-tiered Internet application.
Many descriptions of cloud computing describe it in terms of two architectural layers:

A client as a front end
The “cloud” as a backend

This is a very simplistic description because each of these two components is composed of
several component layers, complementary functionalities, and a mixture of standard and
proprietary pro-tocols. Cloud computing may be differentiated from older models by describing
an encapsulated information technology service that is often controlled through an Application
Programming Interface (API), thus modifying the services that are delivered over the network.

A cloud can be created within an organization’s own infrastructure or outsourced to another data-
center. While resources in a cloud can be real physical resources, more often they are virtualized
resources because virtualized resources are easier to modify and optimize. A compute cloud
requires virtualized storage to support the staging and storage of data. From a user’s perspective,
it is important that the resources appear to be infinitely scalable, that the service be measurable,
and that the pricing be metered.

​​Composability
Applications built in the cloud often have the property of being built from a collection of compo-
nents, a feature referred to as composability. A composable system uses components to assemble
services that can be tailored for a specific purpose using standard parts. A composable component
must be:

⚫​Modular: It is a self-contained and independent unit that is cooperative, reusable,

and replaceable.
⚫​Stateless: A transaction is executed without regard to other transactions or requests.

It isn’t an absolute requirement that transactions be stateless, some cloud computing applications
provide managed states through brokers, transaction monitors, and service buses. In rarer cases,
full transactional systems are deployed in the clouds, but these systems are harder to architect in a
distributed architecture.

Although cloud computing doesn’t require that hardware and software be composable, it is a
highly desirable characteristic from a developer or user’s standpoint, because it makes system
design easier to implement and solutions more portable and interoperable.

There is a tendency for cloud computing systems to become less composable for users as the ser-
vices incorporate more of the cloud computing stack. From the standpoint of an IaaS (Infrastructure
as a Service) vendor such as Amazon Web Services, GoGrid, or Rackspace, it makes no sense to
offer non-standard machine instances to customers, because those customers are almost certainly
deploying applications built on standard operating systems such as Linux, Windows, Solaris, or
some other well-known operating system.

In the next step up the cloud computing stack, PaaS (Platform as a Service) vendors such as
Windows Azure or Google AppEngine may narrow the definition of standard parts to standard
parts that work with their own platforms, but at least from the standpoint of the individual plat-
form service provider, the intent is to be modular for their own developers.

When you move to the highest degree of integration in cloud computing, which is SaaS (Software
as a Service), the notion of composability for users may completely disappear. An SaaS vendor such
as Quicken.com or Salesforce.com is delivering an application as a service to a customer, and
there’s no particular benefit from the standpoint of the service provider that the customer be able to
compose its own custom applications. A service provider reselling an SaaS may have the option to
offer one module or another, to customize the information contained in the module for a client, to
sell the service under their own brand, or to perform some other limited kind of customization, but
modifications are generally severely limited.

This idea that composability diminishes going up the cloud computing stack is from the user’s point
of view. If you are a PaaS or SaaS service provider and your task is to create the platform or service
presented to the developer, reseller, or user, the notion of working with a composable sys-tem is still
a very powerful one. A PaaS or SaaS service provider gets the same benefits from a com-posable
system that a user does—these things, among others:

⚫​Easier to assemble systems
⚫​Cheaper system development
⚫​More reliable operation
⚫​A larger pool of qualified developers
⚫​A logical design methodology

You encounter the trend toward designing composable systems in cloud computing in the wide-
spread adoption of what has come to be called the Service Oriented Architecture (SOA). The essence
of a service oriented design is that services are constructed from a set of modules using standard
communications and service interfaces. An example of a set of widely used standards describes the
services themselves in terms of the Web Services Description Language (WSDL), data exchange
between services using some form of XML, and the communications between the services using the
SOAP protocol. There are, of course, alternative sets of standards.

​​Infrastructure
Most large Infrastructure as a Service (IaaS) providers rely on virtual machine technology to
deliver servers that can run applications. Virtual servers described in terms of a machine image or
instance have characteristics that often can be described in terms of real servers delivering a
certain number of microprocessor (CPU) cycles, memory access, and network bandwidth to
customers. Virtual machines are containers that are assigned specific resources. The software that
runs in the virtual machines is what defines the utility of the cloud computing system.

Figure 3.1 shows the portion of the cloud computing stack that is defined as the “server.” In the
diagram, the API is shown shaded in gray because it is an optional component that isn’t always
delivered with the server. The VMM component is the Virtual Machine Monitor, also called a
hypervisor. This is the low-level software that allows different operating systems to run in their
own memory space and manages I/O for the virtual machines.

The notion of a virtual server presents to an application developer a new way of thinking about
and programming applications. For example, when a programmer is creating software that requires
several different tasks to be performed in parallel, he might write an application that creates addi-
tional threads of execution that must be managed by the application. When a developer creates an
application that uses a cloud service, the developer can attach to the appropriate service(s) and
allow the application itself to scale the program execution. Thus, an application such as a three-
dimensional rendering that might take a long time for a single server to accomplish can be scaled
in the cloud to many servers at once for a short period of time, accomplishing the task at a similar
or lower price but at a much faster rate.

In future applications, developers will need to balance the architectural needs of their programs so
their applications create new threads when it is appropriate or create new virtual machines.
Applications will also need to be mindful of how they use cloud resources, when it is appropriate
to scale execution to the cloud, how to monitor the instances they are running, and when not to
expand their application’s usage of the cloud. This will require a new way of thinking about appli-
cation development, and the ability to scale correctly is something that will have to be architected
into applications from the ground up.

This architectural diagram illustrates the portion of the cloud computing stack that is designated as
the server.

 cluster

Hardware Compute Network Storag
e

Facilities

HVAC

Power

Space

​​Platforms
A platform in the cloud is a software layer that is used to create higher levels of service. As you
learned in Chapter 1, many different Platform as a Service (PaaS) providers offer services meant
to provide developers with different capabilities. In Chapter 7, PaaS is explored more thoroughly,
but for now it is useful to cite three of the major examples that are provided in this book:

⚫​Salesforce.com’s Force.com Platform
⚫​Windows Azure Platform
⚫​Google Apps and the Google AppEngine

These three services offer all the hosted hardware and software needed to build and deploy Web
applications or services that are custom built by the developer within the context and range of
capabilities that the platform allows. Platforms represent nearly the full cloud software stack,
miss-ing only the presentation layer that represents the user interface. This is the same portion of
the cloud computing stack that is a virtual appliance and is shown in Figure 3.2. What separates
a platform from a virtual appliance is that the software that is installed is constructed from
compo- nents and services and controlled through the API that the platform provider publishes.

It makes sense for operating system vendors to move their development environments into the
cloud with the same technologies that have been successfully used to create Web applications.
Thus, you might find a platform based on a Sun xVM hypervisor virtual machine that includes a
NetBeans Integrated Development Environment (IDE) and that supports the Sun GlassFish

Web stack programmable using Perl or Ruby. For Windows, Microsoft would be similarly inter-ested
in providing a platform that allowed Windows developers to run on a Hyper-V VM, use the ASP.NET
application framework, support one of its enterprise applications such as SQL Server, and be
programmable within Visual Studio—which is essentially what the Azure Platform does. This
approach allows someone to develop a program in the cloud that can be used by others.

​​Note

Platforms often come replete with tools and utilities to aid in application design and deployment. Depending
upon the vendor, you may find developer tools for team collaboration, testing tools, instrumentation for
measuring program performance and attributes, versioning, database and Web service integration, and storage
tools. Most platforms begin by establishing a developer community to support the work done in the environment.

To see the entire cloud computing stack, refer to Figure 1.5 in Chapter 1. ◼

A virtual appliance is software that installs as middleware onto a virtual machine.

Applications​ Embedded Native​ Web
​​Virtual

Data​ Metadata Content​ StructuredUnstructured
appliance

Integration and middleware

Just as a virtual appliance may expose itself to users through an API, so too an application built in
the cloud using a platform service would encapsulate the service through its own API. Users
would then interact with the platform, consuming services through that API, leaving the platform
to man-age and scale the service appropriately. Many platforms offer user interface development
tools based on HTML, JavaScript, or some other technology. As the Web becomes more media-
oriented, many developers have chosen to work with rich Internet environments such as Adobe
Flash, Flex, or Air, or alternatives such as Windows Silverlight. A user interface abstracts away
the platform API, making those services managed through the UI. Figure 3.3 shows the top
portion of the cloud computing stack, which includes the API and the presentation functionality.

The top of the cloud computing interface includes the user interface and the API for the application layer.

The Application Programming Interface is one of the key differentiators separating cloud
computing from the older models of Internet applications, because it is the means for instantiating
resources needed to support applications. An API can control data flow, communications, and
other impor-tant aspects of the cloud application. Unfortunately, each cloud vendor has their own
cloud API, none of them are standard, and the best you can hope for is that eventually the major
cloud ven-dor’s APIs will interoperate and exchange data. For now, the use of proprietary APIs
results in ven-dor lock-in, which is why you are advised to choose systems that implement APIs
based on open standards.

​​Virtual Appliances
Applications such as a Web server or database server that can run on a virtual machine image are
referred to as virtual appliances. The name virtual appliance is a little misleading because it
conjures up the image of a machine that serves a narrow purpose. Virtual appliances are software
installed on virtual servers—application modules that are meant to run a particular machine
instance or image type. A virtual appliance is a platform instance. Therefore, virtual appliances
occupy the middle of the cloud computing stack (refer to Figure 3.2).

A virtual appliance is a common deployment object in the cloud, and it is one area where there is
considerable activity and innovation. One of the major advantages of a virtual appliance is that
you can use the appliances as the basis for assembling more complex services, the appliance being
one of your standardized components. Virtual appliances remove the need for application
configura-tion and maintenance from your list of system management chores.

You run across virtual appliances in IaaS systems such as Amazon’s Elastic Compute Cloud
(EC2), which is discussed in detail in Chapter 9. Amazon Machine Images are virtual appliances
that have been packaged to run on the gird of Xen nodes that comprise the Amazon Web Service’s
EC2 sys-tem. Shown in Figure 3.4, the AMI library (http://developer.amazonwebservices.com/
connect/kbcategory.jspa?categoryID=171) includes a variety of operating systems both proprietary
and open source, a set of enterprise applications such as Oracle BPM, SQL Server, and even
complete application stacks such as LAMP (Linux, Apache, MySQL, and PHP). Amazon has
negotiated licenses from these vendors that are part of your per-use pricing when you run these
applications on their servers.

Virtual appliances are far easier to install and run than an application that you must set up your-
self. However, virtual appliances are also much larger than the application themselves would be
because they are usually bundled with the operating system on which they are meant to run. An
application that is 50 or 100MB might require a virtual appliance that is 500MB to 1GB in size.
Usually, when a virtual appliance is created, the operating system is stripped of all excess
function-ality that isn’t required by the appliance, because the appliance is meant to be used as is.

​​Communication Protocols
Cloud computing arises from services available over the Internet communicating using the stan-
dard Internet protocol suite underpinned by the HTTP and HTTPS transfer protocols. The other
protocols and standards that expose compute and data resources in the cloud either format data or
communications in packets that are sent over these two transport protocols.

In order to engage in interprocess communication (IPC) processes, many client/server protocols
have been applied to distributed networking over the years. Various forms of RPC (Remote
Procedure Call) implementations (including DCOM, Java RMI, and CORBA) attempt to solve
the problem of engaging services and managing transactions over what is essentially a stateless
net-work. The first of the truly Web-centric RPC technologies was XML-RPC, which uses
platform-independent XML data to encode program calls that are transported over HTTP, the
networking transport to which nearly everyone is connected.

http://developer.amazonwebservices.com/

​​Note
You can find a full description of the common Internet protocol standards in Networking Bible by
Barrie Sosinsky, Wiley, 2009. These protocols form the basis for much of the discussion in any

good network-ing textbook. ◼

As Internet computing became more firmly entrenched over the last decade, several efforts began
to better define methods for describing and discovering services and resources. The most widely
used message-passing standard at the moment is the Simple Object Access Protocol (SOAP),
which essentially replaces XML-RPC. SOAP uses XML for its messages and uses RPC and HTTP
for message passing. SOAP forms the basis for most of the Web services stacks in use today. If
you examine the XML file used in a SOAP transaction, you find that it contains a message and the
instructions on how to use the message. The message has a set of rules that are translated into
application instances and datatypes, and it defines the methods that must be used to initiate proce-
dure calls and then return a response.

Several standards have emerged to allow the discovery and description of Web-based resources.
The most commonly used model for discovery and description used with SOAP messaging is the
Web Services Description Language (WSDL), a World Wide Web Consortium (http://www.
w3.org/2002/ws/desc/) Internet standard. WSDL lets a Web service advertise itself in terms of a
collection of endpoints or ports associated with a specific network address (URL) that can be

​​Part I: Examining the Value Proposition

http://www/

Understanding
Services and
Applications by Type

This chapter describes some of the different types of cloud computing models,

categorized as a set of service models. You may think of cloud computing
applications as being composed of a set of layers

upon which distributed applications may be built or hosted. These layers
include Infrastructure, Platform, and Software. Depending on the type and
level of service being offered, a client can build on these layers to create
cloud-based applications.

The service models described here—Infrastructure as a Service (IaaS),
Software as a Service (SaaS), and Platform as a Service (PaaS)—are useful
in categorizing not only cloud computing capabilities, but specific vendor
offer-ings, products, and services. Infrastructure as a Service allows for the
cre-ation of virtual computing systems or networks.

Software as a Service represents a hosted application that is universally
avail-able over the Internet, usually through a browser. With Software as a
Service, the user interacts directly with the hosted software. SaaS may be
seen to be an alternative model to that of shrink-wrapped software and may
replace much of the boxed software that we buy today.

Platform as a Service is a cloud computing infrastructure that creates a
devel-opment environment upon which applications may be build. PaaS
provides a model that can be used to create or augment complex applications
such as Customer Relation Management (CRM) or Enterprise Resource
Planning (ERP) systems. PaaS offers the benefits of cloud computing and is
often com-ponentized and based on a service-oriented architecture model.

As cloud computing matures, several service types are being introduced and
overlaid upon these architectures. The most fully developed of these service
types is Identity as a Service (IDaaS). Identity as a Service provides authenti-
cation and authorization services on distributed networks. Infrastructure and

supporting protocols for IDaaS are described in this chapter. Other service types such as
Compliance as a Service (CaaS), provisioning, monitoring, communications, and many vertical
services yet to be fully developed are touched upon in this chapter.

Defining Infrastructure as a Service (IaaS)
You can broadly partition cloud computing into four layers that form a cloud computing ecosys-tem, as
shown in Figure 4.1. The Application layer forms the basis for Software as a Service (SaaS), while the
Platform layer forms the basis for Platform as a Service (PaaS) models that are described in the next
two sections. Infrastructure as a Service (IaaS) creates what may be determined to be a utility
computing model, something that you can tap into and draw from as you need it without significant
limits on the scalability of your deployment. You pay only for what you need when you need it. IaaS
may be seen to be an incredibly disruptive technology, one that can help turn a small business into a
large business nearly overnight. This is a most exciting prospect; one that is fueling a number of IaaS
startups during one of the most difficult recessions of recent memory.

Infrastructure as a Service (IaaS) is a cloud computing service model in which hardware is virtual-
ized in the cloud. In this particular model, the service vendor owns the equipment: servers, stor-
age, network infrastructure, and so forth. The developer creates virtual hardware on which to
develop applications and services. Essentially, an IaaS vendor has created a hardware utility
service where the user provisions virtual resources as required.

The cloud computing ecosystem

The developer interacts with the IaaS model to create virtual private servers, virtual private
storage, virtual private networks, and so on, and then populates these virtual systems with the
applications and services it needs to complete its solution. In IaaS, the virtualized resources are
mapped to real systems. When the client interacts with an IaaS service and requests resources
from the virtual systems, those requests are redirected to the real servers that do the actual work.

​​IaaS workloads
The fundamental unit of virtualized client in an IaaS deployment is called a workload. A workload
simulates the ability of a certain type of real or physical server to do an amount of work. The work
done can be measured by the number of Transactions Per Minute (TPM) or a similar metric
against a certain type of system. In addition to throughput, a workload has certain other attributes
such as Disk I/Os measured in Input/Output Per Second IOPS, the amount of RAM consumed
under load in MB, network throughput and latency, and so forth. In a hosted application
environment, a cli-ent’s application runs on a dedicated server inside a server rack or perhaps as a
standalone server in a room full of servers. In cloud computing, a provisioned server called an
instance is reserved by a customer, and the necessary amount of computing resources needed to
achieve that type of physical server is allocated to the client’s needs.

Figure 4.2 shows how three virtual private server instances are partitioned in an IaaS stack.
The three workloads require three different sizes of computers: small, medium, and large.

A client would reserve a machine equivalent required to run each of these workloads. The IaaS
infrastructure runs these server instances in the data center that the service offers, drawing from a pool
of virtualized machines, RAID storage, and network interface capacity. These three layers are
expressions of physical systems that are partitioned as logical units. LUNs, the cloud interconnect layer,
and the virtual application software layer are logical constructs. LUNs are logical storage containers,
the cloud interconnect layer is a virtual network layer that is assigned IP addresses from the IaaS
network pool, and the virtual application software layer contains software that runs on the physical VM
instance(s) that have been partitioned from physical assets on the IaaS’ private cloud.

From an architectural standpoint, the client in an IaaS infrastructure is assigned its own private
network. The Amazon Elastic Computer Cloud (EC2), described in detail in Chapter 8, behaves as
if each server is its own separate network—unless you create your own Virtual Private Cloud (an
EC2 add-on feature), which provides a workaround to this problem. When you scale your EC2
deployment, you are adding additional networks to your infrastructure, which makes it easy to
logically scale an EC2 deployment, but imposes additional network overhead because traffic must
be routed between logical networks. Amazon Web Service’s routing limits broadcast and multicast
traffic because Layer-2 (Data Link) networking is not supported. Rackspace Cloud (http://www.
rackspacecloud.com/) follows the AWS IP assignment model.

Other IaaS infrastructures such as the one Cloudscaling.com (http://www.cloudscaling. com) offers
or a traditional VMWare cloud-assigned networks on a per-user basis, which allows for Level 2
networking options. The most prominent Level 2 protocols that you might use are tunnel-ing
options, because they enable VLANs.

http://www/

A virtual private server partition in an IaaS cloud

Consider a transactional eCommerce system, for which a typical stack contains the
following components:

⚫​Web server
⚫​Application server
⚫​File server
⚫​Database
⚫​Transaction engine

This eCommerce system has several different workloads that are operating: queries against
the database, processing of business logic, and serving up clients’ Web pages.

The classic example of an IaaS service model is Amazon.com’s Amazon Web Services (AWS).
AWS has several data centers in which servers run on top of a virtualization platform (Xen) and
may be partitioned into logical compute units of various sizes. Developers can then apply system
images containing different operating systems and applications or create their own system images.
Storage may be partitions, databases may be created, and a range of services such a messaging
and notifica-tion can be called upon to make distributed application work correctly.

​​Cross-Ref
Amazon Web Services offers a classic Service Oriented Architecture (SOA) approach to IaaS. You
learn more about AWS in Chapter 9; a description of the Service Oriented Architecture approach to

building distributed applications is described in Chapter 13. ◼

​​Pods, aggregation, and silos
Workloads support a certain number of users, at which point you exceed the load that the instance
sizing allows. When you reach the limit of the largest virtual machine instance possible, you must
make a copy or clone of the instance to support additional users. A group of users within a particu-
lar instance is called a pod. Pods are managed by a Cloud Control System (CCS). In AWS, the
CCS is the AWS Management Console.

Sizing limitations for pods need to be accounted for if you are building a large cloud-based appli-
cation. Pods are aggregated into pools within an IaaS region or site called an availability zone. In
very large cloud computing networks, when systems fail, they fail on a pod-by-pod basis, and
often on a zone-by-zone basis. For AWS’ IaaS infrastructure, the availability zones are organized
around the company’s data centers in Northern California, Northern Virginia, Ireland, and
Singapore. A failover system between zones gives IaaS private clouds a very high degree of
availability. Figure 4.3 shows how pods are aggregated and virtualized in IaaS across zones.

When a cloud computing infrastructure isolates user clouds from each other so the management
system is incapable of interoperating with other private clouds, it creates an information silo, or
simply a silo. Most often, the term silo is applied to PaaS offerings such as Force.com or
QuickBase, but silos often are an expression of the manner in which a cloud computing
infrastructure is archi-tected. Silos are the cloud computing equivalent of compute islands: They
are processing domains that are sealed off from the outside.

When you create a private virtual network within an IaaS framework, the chances are high that
you are creating a silo. Silos impose restrictions on interoperability that runs counter to the open
nature of build-componentized service-oriented applications. However, that is not always a bad
thing. A silo can be its own ecosystem; it can be protected and secured in ways that an open
sys-tem can’t be. Silos just aren’t as flexible as open systems and are subject to vendor lock-in.

Pods, aggregation, and failover in IaaS
Pod

​​Defining Platform as a Service (PaaS)

The Platform as a Service model describes a software environment in which a developer can create
customized solutions within the context of the development tools that the platform provides.
Platforms can be based on specific types of development languages, application frameworks, or
other constructs. A PaaS offering provides the tools and development environment to deploy appli-
cations on another vendor’s application. Often a PaaS tool is a fully integrated development envi-
ronment; that is, all the tools and services are part of the PaaS service. To be useful as a cloud
computing offering, PaaS systems must offer a way to create user interfaces, and thus support stan-
dards such as HTLM, JavaScript, or other rich media technologies.

In a PaaS model, customers may interact with the software to enter and retrieve data, perform
actions, get results, and to the degree that the vendor allows it, customize the platform involved.
The customer takes no responsibility for maintaining the hardware, the software, or the develop-
ment of the applications and is responsible only for his interaction with the platform. The vendor
is responsible for all the operational aspects of the service, for maintenance, and for managing
the product(s) lifecycle.

The one example that is most quoted as a PaaS offering is Google’s App Engine platform, which is
described in more detail in Chapter 8. Developers program against the App Engine using Google’s
published APIs. The tools for working within the development framework, as well as the structure of
the file system and data stores, are defined by Google. Another example of a PaaS offering is

Force.com, Salesforce.com’s developer platform for its SaaS offerings, described in the next section.
Force.com is an example of an add-on development environment.

A developer might write an application in a programming language like Python using the Google API.
The vendor of the PaaS solution is in most cases the developer, who is offering a complete solution to the

customer. Google itself also serves as a PaaS vendor within this system, because it offers many of its
Web service applications to customers as part of this service model. You can think of Google Maps,
Google Earth, Gmail, and the myriad of other PaaS offerings as conforming to the PaaS service model,
although these applications themselves are offered to customers under what is more aptly described as
the Software as a Service (SaaS) model that is described below.

The difficulty with PaaS is that it locks the developer (and the customer) into a solution that is
dependent upon the platform vendor. An application written in Python against Google’s API using
the Google App Engine is likely to work only in that environment. There is considerable vendor
lock-in associated with a PaaS solution.

​​Defining Software as a Service (SaaS)

The most complete cloud computing service model is one in which the computing hardware and
software, as well as the solution itself, are provided by a vendor as a complete service offering. It is
referred to as the Software as a Service (SaaS) model. SaaS provides the complete infrastructure,
software, and solution stack as the service offering. A good way to think about SaaS is that it is the
cloud-based equivalent of shrink-wrapped software.

Software as a Service (SaaS) may be succinctly described as software that is deployed on a hosted
service and can be accessed globally over the Internet, most often in a browser. With the exception
of the user interaction with the software, all other aspects of the service are abstracted away.

Every computer user is familiar with SaaS systems, which are either replacements or substitutes for locally
installed software. Examples of SaaS software for end-users are Google Gmail and Calendar, QuickBooks
online, Zoho Office Suite, and others that are equally well known. SaaS applications come in all shapes
and sizes, and include custom software such as billing and invoicing systems, Customer Relationship
Management (CRM) applications, Help Desk applications, Human Resource (HR) solutions, as well as
myriad online versions of familiar applications.

Many people believe that SaaS software is not customizable, and in many SaaS applications this is
indeed the case. For user-centric applications such as an office suite, that is mostly true; those suites
allow you to set only options or preferences. However, many other SaaS solutions expose
Application Programming Interfaces (API) to developers to allow them to create custom composite
applications. These APIs may alter the security model used, the data schema, workflow characteris-
tics, and other fundamental features of the service’s expression as experienced by the user. Examples
of an SaaS platformwith an exposed API are Salesforce.com and Quicken.com. So SaaS does not
necessarily mean that the software is static or monolithic.

​​SaaS characteristics
All Software as a Service (SaaS) applications share the following characteristics:

1.​ The software is available over the Internet globally through a browser on demand.
2.​ The typical license is subscription-based or usage-based and is billed on a recurring basis.

In a small number of cases a flat fee may be changed, often coupled with a
maintenance fee. Table 4.1 shows how different licensing models compare.

3.​ The software and the service are monitored and maintained by the vendor, regardless of
where all the different software components are running.

There may be executable client-side code, but the user isn’t responsible for
maintaining that code or its interaction with the service.

4.​ Reduced distribution and maintenance costs and minimal end-user system costs generally
make SaaS applications cheaper to use than their shrink-wrapped versions.

5.​ Such applications feature automated upgrades, updates, and patch management
and much faster rollout of changes.

6.​ SaaS applications often have a much lower barrier to entry than their locally
installed competitors, a known recurring cost, and they scale on demand (a property
of cloud computing in general).

7.​ All users have the same version of the software so each user’s software is compatible
with another’s.

8.​ SaaS supports multiple users and provides a shared data model through a single-instance,
multi-tenancy model.

The alternative of software virtualization of individual instances also exists, but
is less common.

​​Shrink-Wrapped versus SaaS Licensing

Licensing​ Owned​ Subscription (flat fee)​ Metered subscription
Location​ Locally installed​ Available through an​ Cloud based

application
Management​ Local IT staff​ Application Service​ Cloud vendor through a

Provider (ASP)​ Service Level
Agreement (SLA)

​​Defining Identity as a Service (IDaaS)

The establishment and proof of an identity is a central network function. An identity service is
one that stores the information associated with a digital entity in a form that can be queried and
man-aged for use in electronic transactions. Identity services have as their core functions: a data
store, a query engine, and a policy engine that maintains data integrity.

Distributed transaction systems such as internetworks or cloud computing systems magnify the diffi-
culties faced by identity management systems by exposing a much larger attack surface to an intruder
than a private network does. Whether it is network traffic protection, privileged resource access, or
some other defined right or privilege, the validated authorization of an object based on its identity is the
central tenet of secure network design. In this regard, establishing identity may be seen as the key to
obtaining trust and to anything that an object or entity wants to claim ownership of.

Services that provide digital identity management as a service have been part of internetworked
systems from Day One. Like so many concepts in cloud computing, IDentity as a Service is a
FLAVor (Four Letter Acronym) of the month, applied to services that already exist. The Domain
Name Service can run on a private network, but is at the heart of the Internet as a service that pro-
vides identity authorization and lookup. The name servers that run the various Internet domains
(.COM, .ORG, .EDU, .MIL, .TV, .RU, and so on) are IDaaS servers. DNS establishes the identity
of a domain as belonging to a set of assigned addresses, associated with an owner and that
owner’s information, and so forth. If the identification is the assigned IP number, the other
properties are its metadata.

You can categorize a myriad of services as IDaaS that run in the cloud. However, when most
experts in the area of IDaaS define an identity service, they narrow the definition so the service
must operate as a component according to the rules of a Service Oriented Architecture, as is
defined in Chapter 13. This narrower definition restricts IDaaS to newer software services,
services that interoperate, and therefore services that are standards based. It’s best to keep this
narrower definition in mind when you discuss IDaaS in a modern context.

​​What is an identity?
An identity is a set of characteristics or traits that make something recognizable or known. In
com-puter network systems, it is one’s digital identity that most concerns us. A digital identity is
those attributes and metadata of an object along with a set of relationships with other objects that
makes an object identifiable. Not all objects are unique, but by definition a digital identity must
be unique, if only trivially so, through the assignment of a unique identification attribute. An
identity must therefore have a context in which it exists.

This description of an identity as an object with attributes and relationships is one that program-
mer’s would recognize. Databases store information and relationships in tables, rows, and col-
umns, and the identity of information stored in this way conforms to the notion of an entity and a
relationship—or alternatively under the notion of an object role model (ORM)—and database
architects are always wrestling with the best way of reducing their data set to a basic set of identi-
ties. You can extend this notion to the idea of an identity having a profile and profiling services
such as Facebook as being an extension of the notion of Identity as a Service in cloud computing.

An identity can belong to a person and may include the following:

⚫​ Things you are: Biological characteristics such as age, race, gender, appearance, and
so forth

⚫​ Things you know: Biography, personal data such as social security numbers, PINs, where
you went to school, and so on

⚫​ Things you have: A pattern of blood vessels in your eye, your fingerprints, a bank account
you can access, a security key you were given, objects and possessions, and more

⚫​ Things you relate to: Your family and friends, a software license, beliefs and values,
activities and endeavors, personal selections and choices, habits and practices, an iGoogle
account, and more

To establish your identity on a network, you might be asked to provide a name and password,
which is called a single-factor authentication method. More secure authentication requires the use
of at least two-factor authentication; for example, not only name and password (things you know)
but also a transient token number provided by a hardware key (something you have). To get to
multifactor authentication, you might have a system that examines a biometric factor such as a
fingerprint or retinal blood vessel pattern—both of which are essentially unique things you are.
Multifactor authentication requires the outside use of a network security or trust service, and it is in
the deployment of trust services that our first and most common IDaaS applications are employed
in the cloud.

Of course, many things have digital identities. User and machine accounts, devices, and other
objects establish their identities in a number of ways. For user and machine accounts, identities are
created and stored in domain security databases that are the basis for any network domain, in
directory services, and in data stores in federated systems. Network interfaces are identified
uniquely by Media Access Control (MAC) addresses, which alternatively are referred to as Ethernet
Hardware Addresses (EHAs). It is the assignment of a network identity to a specific MAC address
that allows systems to be found on networks.

The manner in which Microsoft validates your installation of Windows and Office is called
Windows Product Activation and creates an identification index or profile of your system, which
is instructive. During activation, the following unique data items are retrieved:

⚫​A 25-character software product key and product ID
⚫​The uniquely assigned Global Unique Identifier or GUID
⚫​PC manufacturer
⚫​CPU type and serial number
⚫​BIOS checksum
⚫​Network adapter and its MAC address
⚫​Display adapter
⚫​SCSCI and IDE adapters
⚫​RAM amount
⚫​Hard drive and volume serial number

⚫​Optical drive
⚫​Region and language settings and user locale

From this information, a code is calculated, checked, and entered into the registration database.
Each of these uniquely identified hardware attributes is assigned a weighting factor such that an
overall sum may be calculated. If you change enough factors—NIC and CPU, display adapter,
RAM amount, and hard drive—you trigger a request for a reactivation based on system changes.
This activation profile is also required when you register for the Windows Genuine Advantage
pro-gram. Windows Product Activation and Windows Genuine Advantage are cloud computing
appli-cations, albeit proprietary ones. Whether people consider these applications to be services is
a point of contention.

​​Networked identity service classes
To validate Web sites, transactions, transaction participants, clients, and network services—
various forms of identity services—have been deployed on networks. Ticket or token providing
services, certificate servers, and other trust mechanisms all provide identity services that can be
pushed out of private networks and into the cloud.

Identity protection is one of the more expensive and complex areas of network computing. If you
think about it, requests for information on identity by personnel such as HR, managers, and oth-
ers; by systems and resources for access requests; as identification for network traffic; and the
myr-iad other requirements mean that a significant percentage of all network traffic is supporting
an identification service. Literally hundreds of messages on a network every minute are checking
identity, and every Ethernet packet contains header fields that are used to identify the information
it contains.

As systems become even more specialized, it has become increasingly difficult to find the security
experts needed to run an ID service. So Identity as a Service or the related hosted (managed) identity
services may be the most valuable and cost effective distributed service types you can subscribe to.

Identity as a Service (IDaaS) may include any of the following:

⚫​Authentication services (identity verification)
⚫​Directory services
⚫​Federated identity
⚫​Identity governance
⚫​Identity and profile management
⚫​Policies, roles, and enforcement
⚫​Provisioning (external policy administration)
⚫​Registration
⚫​Risk and event monitoring, including audits
⚫​Single sign-on services (pass-through authentication)

​​Chapter 4: Understanding Services and Applications by Type

Note

The sharing of any or all of these attributes over a network may be the subject of different govern-ment
regulations and in many cases must be protected so that only justifiable parties may have access to the minimal
amount that may be disclosed. This level of access defines what may be called an identity relationship.

The Burton Group (http://www.burtongroup.com/), a well-known computer industry analyst firm located in Midvale,
Utah, has a trademark on the term IaaS as defined as Identity as a Service for use in the publication of their
research in this area. The Burton Group is a well-known authority in the field of network infrastructure,
particularly directory services and more recently in cloud computing. In this book, I use the term IaaS as applied

to Infrastructure as a Service and use IDaaS to identify Identity as a Service. ◼

​​Identity system codes of conduct
Certain codes of conduct must be observed legally, and if not legally at the moment, then certainly
on a moral basis. Cloud computing services that don’t observe these codes do so at their peril. In
working with IDaaS software, evaluate IDaaS applications on the following basis:

⚫​User control for consent: Users control their identity and must consent to the use of

their information.

⚫​Minimal Disclosure: The minimal amount of information should be disclosed for
an intended use.

⚫​Justifiable access: Only parties who have a justified use of the information contained
in a digital identity and have a trusted identity relationship with the owner of
the information may be given access to that information.

⚫​Directional Exposure: An ID system must support bidirectional identification for a
pub-lic entity so that it is discoverable and a unidirectional identifier for private
entities, thus protecting the private ID.

⚫​Interoperability: A cloud computing ID system must interoperate with other identity
ser-vices from other identity providers.

⚫​Unambiguous human identification: An IDaaS application must provide an
unambigu-ous mechanism for allowing a human to interact with a system while
protecting that user against an identity attack.

⚫​Consistency of Service: An IDaaS service must be simple to use, consistent across all
its uses, and able to operate in different contexts using different technologies.

​​IDaaS interoperability
Identity as a Service provides an easy mechanism for integrating identity services into individual
applications with minimal development effort, by allowing the identification logic and storage of
an identity’s attributes to be maintained externally. IDaaS applications may be separated from
other distributed security systems by their compliance with SOA standards (as described in
Chapter 13, “Understanding Service Oriented Architecture”), particularly if you want to have these
services interoperate and be federated.

http://www.burtongroup.com/)

Therefore, cloud computing IDaaS applications must rely on a set of developing industry standards
to provide interoperability. The following are among the more important of these services:

⚫​ User centric authentication (usually in the form of information cards): The

OpenID and CardSpace specifications support this type of data object.

⚫​ The XACML Policy Language: This is a general-purpose authorization policy language
that allows a distributed ID system to write and enforce custom policy expressions.
XACML can work with SAML; when SAML presents a request for ID authorization,
XACML checks the ID request against its policies and either allows or denies the request.

⚫​ The SPML Provisioning Language: This is an XML request/response language that
is used to integrate and interoperate service provisioning requests. SPML is a
standard of OASIS’s Provision Services Technical Committee (PSTC) that conforms
to the SOA architecture.

⚫​ The XDAS Audit System: The Distributed Audit Service provides accountability for
users accessing a system, and the detection of security policy violations when attempts
are made to access the system by unauthorized users or by users accessing the system
in an unauthorized way.

​​User authentication
OpenID is a developing industry standard for authenticating “end users” by storing their digital
identity in a common format. When an identity is created in an OpenID system, that information is
stored in the system of any OpenID service provider and translated into a unique identifier.
Identifiers take the form of a Uniform Resource Locator (URL) or as an Extensible Resource
Identifier (XRI) that is authenticated by that OpenID service provider. Any software application
that complies with the standard accepts an OpenID that is authenticated by a trusted provider. A
very impressive group of cloud computing vendors serve as identity providers (or OpenID pro-
viders), including AOL, Facebook, Google, IBM, Microsoft, MySpace, Orange, PayPal, VeriSign,
LiveJournal, Ustream, Yahoo!, and others.

The OpenID standard applies to the unique identity of the URL; it is up to the service provider to
store the information and specify the forms of authentication required to successfully log onto the
system. Thus an OpenID authorization can include not only passwords, but smart cards, hardware
keys, tokens, and biometrics as well. OpenID is supported by the OpenID Foundation (http://
openid.net/foundation/), a not-for-profit organization that promotes the technology.

These are samples of trusted providers and their URL formats:

⚫​Blogger: <username>.blogger.com or <blogid>.blogspot.com

⚫​MySpace: myspace.com/<username>

⚫​Google: https://www.google.com/accounts/o8/id

⚫​Google Profile: google.com/profiles/<username>

⚫​Microsoft: accountservices.passport.net/

⚫​MyOpenID: <username>.myopenid.com

⚫​Orange: openid.orange.fr/username or simply orange.fr/

⚫​Verisign: <username>.pip.verisinglabs.com

⚫​WordPress: <username>.wordpress.com

http://www.google.com/accounts/o8/id

⚫​Yahoo!: openid.yahoo.com

After you have logged onto a trusted provider, that logon may provide you access to other Web sites
that support OpenID. When you request access to a site through your browser (or another
application that is referred to as a user-agent), that site serves as the “relying party” and requests of
the server or server-agent that it verify the end-user’s identifier. You won’t need to log onto these
other Web sites, if your OpenID is provided. Most trusted providers require that you indicate which
Web sites you want to share your OpenID identifier with and the information is submitted
automatically to the next site.

CardSpace is a Microsoft software client that is part of the company’s Identity Metasystem and
built into the Web Services Protocol Stack. This stack is built on the OASIS standards (WS-Trust,
WS-Security, WS-SecurityPolicy, and WS-MetadataExchange), so any application that conforms
with the OASIS WS- standards can interoperate with CardSpace. CardSpace was introduced with
.NET Frameworks 3.0 and can be installed on Windows XP, Server 2003, and later. It is
installed by default on Windows Vista and Windows 7.

CardSpace offers another way of authenticating users in the cloud. An Information Card may be
requested with an HTML <OBJECT> tag, and the trusted Identity Provider then creates an encrypted
and digitally signed token using the Security Token Service (STS) that is part of a WS-Trust request/
reply mechanism. CardSpace may be seen as an alternative mechanism to the use of OpenID and
SAML and is used to sign into those services as well as Windows Live ID accounts.

​​Defining Compliance as a Service (CaaS)

Cloud computing by its very nature spans different jurisdictions. The laws of the country of a request’s
origin may not match the laws of the country where the request is processed, and it’s possible that
neither location’s laws match the laws of the country where the service is provided. Compliance is
much more than simply providing an anonymous service token to an identity so they can obtain access
to a resource. Compliance is a complex issue that requires considerable expertise.

While Compliance as a Service (CaaS) appears in discussions, few examples of this kind of
service exist as a general product for a cloud computing architecture. A Compliance as a
Service applica-tion would need to serve as a trusted third party, because this is a man-in-
the-middle type of ser-vice. CaaS may need to be architected as its own layer of a SOA
architecture in order to be trusted. A CaaS would need to be able to manage cloud
relationships, understand security policies and pro-cedures, know how to handle
information and administer privacy, be aware of geography, provide an incidence response,
archive, and allow for the system to be queried, all to a level that can be captured in a
Service Level Agreement. That’s a tall order, but CaaS has the potential to be a great value-
added service.

In order to implement CaaS, some companies are organizing what might be referred to as
“vertical clouds,” clouds that specialize in a vertical market. Examples of vertical clouds
that advertise CaaS capabilities include the following:

⚫​athenahealth (http://www.athenahealth.com/) for the medical industry
⚫​bankserv (http://www.bankserv.com/) for the banking industry

⚫​ClearPoint PCI Compliance-as-a-Service for merchant transactions under the
Payment Card Industry Data Security Standard

⚫​FedCloud (http://www.fedcloud.com/) for government

⚫​Rackserve PCI Compliant Cloud (http://www.rackspace.com/; another PCI
CaaS service)

It’s much easier to envisage a CaaS system built inside a private cloud where the data is
under the control of a single entity, thus ensuring that the data is under that entity’s secure
control and that transactions can be audited. Indeed, most of the cloud computing
compliance systems to date have been built using private clouds.

It is easy to see how CaaS could be an incredibly valuable service. A well-implemented CaaS
ser-vice could measure the risks involved in servicing compliance and ensure or indemnify
customers against that risk. CaaS could be brought to bear as a mechanism to guarantee that an
e-mail con-formed to certain standards, something that could be a new electronic service of a
network of national postal systems—and something that could help bring an end to the scourge
of spam.

http://www.athenahealth.com/)
http://www.bankserv.com/)
http://www.fedcloud.com/)
http://www.rackspace.com/%3B

QUESTIONS

1.​ Define Cloud Computing. What is a Cloud? What are the deployment
models of cloud computing? Explain them briefly.

2.​ Explain NIST model and Cloud Cube model in cloud computing.
Explain the service models of cloud computing with examples of
services/service providers.

3.​ What are the characteristics of cloud computing? Explain the cloud
reference model.

4.​ Explain the benefits and advantages of cloud computing.

5.​ Explain the cloud computing architecture with a proper diagram.
Explain briefly the architecture of each component in cloud computing.

6.​ Compare the virtualization approach and the traditional approach in
cloud computing. Explain the virtualization model for cloud computing.

7.​ Give the basic concept of IaaS. Explain IaaS by throwing light on
workload, partitioning of virtual private server instances, pods,
aggregations and silos.

8.​ Give the basic concept of PaaS. Explain PaaS in terms of tools and
development environment with examples.

9.​ Give the basic concept of SaaS. What are the characteristics of SaaS.

10.​Explain Open SaaS, Identity as a Service (IDaaS), Compliance as a
Service (CaaS). Give some examples of SaaS platform.

Module – II

Definition of Cloud

Computing and its Basics

Understanding
Abstraction and
Virtualization

In this chapter, I discuss different technologies that create shared pools of resources.

The key to creating a pool is to provide an abstraction mecha-nism so that a logical
address can be mapped to a physical resource.

Computers use this technique for placing files on disk drives, and cloud com-
puting networks use a set of techniques to create virtual servers, virtual stor-
age, virtual networks, and perhaps one day virtual applications. Abstraction
enables the key benefit of cloud computing: shared, ubiquitous access.

In this chapter, you learn about how load balancing can be used to create high
performance cloud-based solutions. Google.com’s network is an example of this
approach. Google uses commodity servers to direct traffic appropriately.

Another technology involves creating virtual hardware systems. An example
of this type of approach is hypervisors that create virtual machine technolo-
gies. Several important cloud computing approaches use a strictly hardware-
based approach to abstraction. I describe VMware’s vSphere infrastructure
in some detail, along with some of the unique features and technologies that
VMware has developed to support this type of cloud.

Finally, I describe some approaches to making applications portable.
Application portability is a difficult proposition, and work to make applica-tions
portable is in its infancy. Two approaches are described, the Simple API and
AppZero’s Virtual Application Appliance (VAA). VAAs are contain-ers that
abstract an application from the operating system, and they offer the potential to
make an application portable from one platform to another.

​​Using Virtualization Technologies

The dictionary includes many definitions for the word “cloud.” A cloud can be a mass of water
droplets, gloom, an obscure area, or a mass of similar particles such as dust or smoke. When it
comes to cloud computing, the definition that best fits the context is “a collection of objects that
are grouped together.” It is that act of grouping or creating a resource pool that is what succinctly
differentiates cloud computing from all other types of networked systems.

Not all cloud computing applications combine their resources into pools that can be assigned on
demand to users, but the vast majority of cloud-based systems do. The benefits of pooling
resources to allocate them on demand are so compelling as to make the adoption of these technol-
ogies a priority. Without resource pooling, it is impossible to attain efficient utilization, provide
reasonable costs to users, and proactively react to demand. In this chapter, you learn about the
technologies that abstract physical resources such as processors, memory, disk, and network
capacity into virtual resources.

When you use cloud computing, you are accessing pooled resources using a technique called
virtualization. Virtualization assigns a logical name for a physical resource and then provides a
pointer to that physical resource when a request is made. Virtualization provides a means to man-
age resources efficiently because the mapping of virtual resources to physical resources can be
both dynamic and facile. Virtualization is dynamic in that the mapping can be assigned based on
rapidly changing conditions, and it is facile because changes to a mapping assignment can be
nearly instantaneous.

These are among the different types of virtualization that are characteristic of cloud computing:

⚫​Access: A client can request access to a cloud service from any location.

⚫​Application: A cloud has multiple application instances and directs requests to
an instance based on conditions.

⚫​CPU: Computers can be partitioned into a set of virtual machines with each
machine being assigned a workload. Alternatively, systems can be virtualized
through load- balanc-ing technologies.

⚫​Storage: Data is stored across storage devices and often replicated for redundancy.

To enable these characteristics, resources must be highly configurable and flexible. You can
define the features in software and hardware that enable this flexibility as conforming to one or
more of the following mobility patterns:

⚫​P2V: Physical to Virtual
⚫​V2V: Virtual to Virtual
⚫​V2P: Virtual to Physical
⚫​P2P: Physical to Physical
⚫​D2C: Datacenter to Cloud

⚫​C2C: Cloud to Cloud
⚫​C2D: Cloud to Datacenter
⚫​D2D: Datacenter to Datacenter

The techniques used to achieve these different types of virtualization are the subject of this chapter.
According to Gartner (“Server Virtualization: One Path that Leads to Cloud Computing,” by Thomas
J. Bittman, 10/29/2009, Research Note G00171730), virtualization is a key enabler of the first four
of five key attributes of cloud computing:

⚫​Service-based: A service-based architecture is where clients are abstracted from service

providers through service interfaces.

⚫​Scalable and elastic: Services can be altered to affect capacity and performance on
demand.

⚫​Shared services: Resources are pooled in order to create greater efficiencies.
⚫​Metered usage: Services are billed on a usage basis.

⚫​Internet delivery: The services provided by cloud computing are based on Internet pro-
tocols and formats.

​​Load Balancing and Virtualization

One characteristic of cloud computing is virtualized network access to a service. No matter where
you access the service, you are directed to the available resources. The technology used to distrib-
ute service requests to resources is referred to as load balancing. Load balancing can be imple-
mented in hardware, as is the case with F5’s BigIP servers, or in software, such as the Apache
mod_proxy_balancer extension, the Pound load balancer and reverse proxy software, and the Squid
proxy and cache daemon. Load balancing is an optimization technique; it can be used to increase
utilization and throughput, lower latency, reduce response time, and avoid system overload.

The following network resources can be load balanced:

⚫​Network interfaces and services such as DNS, FTP, and HTTP
⚫​Connections through intelligent switches
⚫​Processing through computer system assignment
⚫​Storage resources
⚫​Access to application instances

Without load balancing, cloud computing would very difficult to manage. Load balancing provides the
necessary redundancy to make an intrinsically unreliable system reliable through managed redi-rection.
It also provides fault tolerance when coupled with a failover mechanism. Load balancing is nearly
always a feature of server farms and computer clusters and for high availability applications.

A load-balancing system can use different mechanisms to assign service direction. In the simplest
load-balancing mechanisms, the load balancer listens to a network port for service requests. When
a request from a client or service requester arrives, the load balancer uses a scheduling algorithm
to assign where the request is sent. Typical scheduling algorithms in use today are round robin and
weighted round robin, fastest response time, least connections and weighted least connections, and
custom assignments based on other factors.

A session ticket is created by the load balancer so that subsequent related traffic from the client
that is part of that session can be properly routed to the same resource. Without this session record
or persistence, a load balancer would not be able to correctly failover a request from one resource
to another. Persistence can be enforced using session data stored in a database and replicated
across multiple load balancers. Other methods can use the client’s browser to store a client-side
cookie or through the use of a rewrite engine that modifies the URL. Of all these methods, a ses-
sion cookie stored on the client has the least amount of overhead for a load balancer because it
allows the load balancer an independent selection of resources.

The algorithm can be based on a simple round robin system where the next system in a list of
systems gets the request. Round robin DNS is a common application, where IP addresses are
assigned out of a pool of available IP addresses. Google uses round robin DNS, as described
in the next section.

​​Advanced load balancing
The more sophisticated load balancers are workload managers. They determine the current utiliza-
tion of the resources in their pool, the response time, the work queue length, connection latency
and capacity, and other factors in order to assign tasks to each resource. Among the features you
find in load balancers are polling resources for their health, the ability to bring standby servers
online (priority activation), workload weighting based on a resource’s capacity (asymmetric load-
ing), HTTP traffic compression, TCP offload and buffering, security and authentication, and
packet shaping using content filtering and priority queuing.

An Application Delivery Controller (ADC) is a combination load balancer and application server that is
a server placed between a firewall or router and a server farm providing Web services. An Application
Delivery Controller is assigned a virtual IP address (VIP) that it maps to a pool of servers based on
application specific criteria. An ADC is a combination network and application layer device. You also
may come across ADCs referred to as a content switch, multilayer switch, or Web switch.

These vendors, among others, sell ADC systems:

⚫​A10 Networks (http://www.a10networks.com/)
⚫​Barracuda Networks (http://www.barracudanetworks.com/)
⚫​Brocade Communication Systems (http://www.brocade.com/)
⚫​Cisco Systems (http://www.cisco.com/)
⚫​Citrix Systems (http://www.citrix.com/)

http://www.a10networks.com/)
http://www.barracudanetworks.com/)
http://www.brocade.com/)
http://www.cisco.com/)
http://www.citrix.com/)

⚫​F5 Networks (http://www.f5.com/)
⚫​Nortel Networks (http://www.nortel.com/)
⚫​Coyote Point Systems (http://www.coyotepoint.com/)
⚫​Radware (http://www.radware.com/)

An ADC is considered to be an advanced version of a load balancer as it not only can provide the
features described in the previous paragraph, but it conditions content in order to lower the work-
load of the Web servers. Services provided by an ADC include data compression, content caching,
server health monitoring, security, SSL offload and advanced routing based on current conditions.
An ADC is considered to be an application accelerator, and the current products in this area are
usually focused on two areas of technology: network optimization, and an application or frame-
work optimization. For example, you may find ADC’s that are tuned to accelerate ASP.NET or
AJAX applications.

An architectural layer containing ADCs is described as an Application Delivery Network (ADN), and
is considered to provide WAN optimization services. Often an ADN is comprised of a pair of
redundant ADCs. The purpose of an ADN is to distribute content to resources based on applica-tion
specific criteria. ADN provide a caching mechanism to reduce traffic, traffic prioritization and
optimization, and other techniques. ADN began to be deployed on Content Delivery Networks (CDN)
in the late 1990s, where it added the ability to optimize applications (application fluency) to those
networks. Most of the ADC vendors offer commercial ADN solutions.

In addition to the ADC vendors in the list above, these are additional ADN vendors, among others:

⚫​Akamai Technologies (http://www.akamai.com/)
⚫​Blue Coat Systems (http://www.bluecoat.com/)
⚫​CDNetworks (http://www.cdnetworks.com/)
⚫​Crescendo Networks (http://www.crescendonetworks.com/)
⚫​Expand Networks (http://www.expand.com/)
⚫​Juniper Networks (http://www.juniper.net/)

Google’s cloud is a good example of the use of load balancing, so in the next section let’s
consider how Google handles the many requests that they get on a daily basis.

​​The Google cloud
According to the Web site tracking firm Alexa (http://www.alexa.com/topsites), Google is the
single most heavily visited site on the Internet; that is, Google gets the most hits. The invest-ment
Google has made in infrastructure is enormous, and the Google cloud is one of the largest in use
today. It is estimated that Google runs over a million servers worldwide, processes a billion
search requests, and generates twenty petabytes of data per day.

http://www.f5.com/)
http://www.nortel.com/)
http://www.coyotepoint.com/)
http://www.radware.com/)
http://www.akamai.com/)
http://www.bluecoat.com/)
http://www.cdnetworks.com/)
http://www.crescendonetworks.com/)
http://www.expand.com/)
http://www.juniper.net/)
http://www.alexa.com/topsites)

Google is understandably reticent to disclose much about its network, because it believes that its
infrastructure, system response, and low latency are key to the company’s success. Google never
gives datacenter tours to journalists, doesn’t disclose where its datacenters are located, and
obfus-cates the locations of its datacenters by wrapping them in a corporate veil. Thus, the
discretely named Tetra LLC (limited liability company) owns the land for the Council Bluffs,
Iowa, site, and Lapis LLC owns the land for the Lenoir, North Carolina, site. This makes Google
infrastructure watching something akin to a sport to many people.

So what follows is what we think we know about Google’s infrastructure and the basic idea
behind how Google distributes its traffic by pooling IP addresses and performing several
layers of load balancing.

Google has many datacenters around the world. As of March 2008, Rich Miller of
DataCenterKnowledge.com wrote that Google had at least 12 major installations in the United
States and many more around the world. Google supports over 30 country specific versions of the
Google index, and each localization is supported by one or more datacenters. For example, Paris,
London, Moscow, Sao Paolo, Tokyo, Toronto, Hong Kong, Beijing and others support their
coun-tries’ locale. Germany has three centers in Berlin, Frankfurt, and Munich; the Netherlands
has two at Groningen and Eemshaven. The countries with multiple datacenters store index
replicas and support network peering relationships. Network peering helps Google have low
latency connec-tions to large Internet hubs run by different network providers.

You can find a list of sites as of 2008 from Miller’s FAQ at http://www.datacenter
knowledge.com/archives/2008/03/27/google-data-center-faq/.

Based on current locations and the company’s statements, Google’s datacenters are sited based
on the following factors (roughly in order of importance):

1.​ Availability of cheap and, if possible, renewable energy

2.​ The relative locations of other Google datacenters such that the site provides
the lowest latency response between sites

3.​ Location of nearby Internet hubs and peering sites
4.​ A source of cooling water
5.​ The ability to purchase a large area of land surrounding the site

Speculation on why Google purchases large parcels of land ranges from creating a
buffer zone between the datacenter and surrounding roads and towns or possibly
to allow for building wind farms when practical.

6.​ Tax concessions from municipalities that lower Google’s overhead

Google maintains a pool of hundreds of IP addresses, all of which eventually resolve to its Mountain
View, California, headquarters. When you initiate a Google search, your query is sent to a DNS server,
which then queries Google’s DNS servers. The Google DNS servers examine the pool of addresses to
determine which addresses are geographically closest to the query origin and uses a round robin policy
to assign an IP address to that request. The request usually goes to the nearest

datacenter, and that IP address is for a cluster of Google servers. This DNS assignment acts as
a first level of IP virtualization, a pool of network addresses have been load balanced based
on geography.

A Google cluster can contain thousands of servers. Google servers are racks of commodity (low
cost) 1U or 2U servers containing 40 to 80 servers per rack with one switch per rack. Each switch
is connected to a core gigabit switch. Google servers run a customized version of Linux with
appli-cations of several types.

When the query request arrives at its destination, a Google cluster is sent to a load balancer, which
forwards that request to a Squid proxy server and Web cache dameon. This is the second level of
IP distribution, based on a measure of the current system loading on proxy servers in the cluster.
The Squid server checks its cache, and if it finds a match to the query, that match is returned and
the query has been satisfied. If there is no match in the Squid cache, the query is sent to an indi-
vidual Google Web Server based on current Web server utilizations, which is the third level of
network load balancing, again based on utilization rates.

It is the Google Web Servers that perform the query against the Google index and then format the
results into an HTML page that is returned to the requester. This procedure then performs two
more levels of load balancing based on utilization rates.

Google’s secret sauce is its in-memory inverted index and page rank algorithm. Google’s
GoogleBot (a spider or robot) crawls the Web and collects document information. Some details of
the search and store algorithm are known. Google looks at the title and first few hundred words
and builds a word index from the result. Indexes are stored on an index server.

Some documents are stored as snapshots (PDF, DOC, XLS, and so on), but lots of information is
not addressed in the index. Each document is given a unique ID (“docid”), and the content of the
document is disassembled into segments called shards, subjected to a data compression scheme
and stored on a document server. The entire index is maintained in system memory partitioned
over each instance of the index’s replicas. A page rank is created based on the significant links to
that page.

Queries are divided into word lists, and the Google algorithm examines the words and the relation-
ships of one word to another. Those word relationships are mapped against the main index to cre-
ate a list of documents, a feature called an inverted index. In an inverted index, words are mapped
to documents, which can be done very quickly when the index is fully kept in memory.

The Web server takes the result of a query and composes the Web page from that result. Ads
included on the page are from ad servers, which provide Google’s AdSense and AdWords
services. The query also is presented to a spelling server to provide suggestions for alternative
spellings to include in the search result. Certain keywords, data input patterns, and other strings
are recog-nized as having special operational significance. For example entering “2 plus 2”
initiates Google’s calculator program, and a ten-digit number returns a reverse phone lookup
using the phonebook program. These programs are supported by special application servers.

Google doesn’t use hardware virtualization; it performs server load balancing to distribute the pro-
cessing load and to get high utilization rates. The workload management software transfers the
workload from a failed server over to a redundant server, and the failed server is taken offline.
Multiple instances of various Google applications are running on different hosts, and data is stored
on redundant storage systems.

​​Understanding Hypervisors

Load balancing virtualizes systems and resources by mapping a logical address to a physical
address. Another fundamental technology for abstraction creates virtual systems out of physical
systems. If load balancing is like playing a game of hot potato, then virtual machine
technologies is akin to playing slice and dice with the potato.

Given a computer system with a certain set of resources, you can set aside portions of those
resources to create a virtual machine. From the standpoint of applications or users, a virtual
machine has all the attributes and characteristics of a physical system but is strictly software that
emulates a physical machine. A system virtual machine (or a hardware virtual machine) has its
own address space in memory, its own processor resource allocation, and its own device I/O using
its own virtual device drivers. Some virtual machines are designed to run only a single application
or process and are referred to as process virtual machines.

A virtual machine is a computer that is walled off from the physical computer that the virtual
machine is running on. This makes virtual machine technology very useful for running old ver-
sions of operating systems, testing applications in what amounts to a sandbox, or in the case of
cloud computing, creating virtual machine instances that can be assigned a workload. Virtual
machines provide the capability of running multiple machine instances, each with their own
operating system.

From the standpoint of cloud computing, these features enable VMMs to manage application pro-
visioning, provide for machine instance cloning and replication, allow for graceful system
failover, and provide several other desirable features. The downside of virtual machine
technologies is that having resources indirectly addressed means there is some level of overhead.

​​Virtual machine types
A low-level program is required to provide system resource access to virtual machines, and this
program is referred to as the hypervisor or Virtual Machine Monitor (VMM). A hypervisor
running on bare metal is a Type 1 VM or native VM. Examples of Type 1 Virtual Machine
Monitors are LynxSecure, RTS Hypervisor, Oracle VM, Sun xVM Server, VirtualLogix VLX,
VMware ESX and ESXi, and Wind River VxWorks, among others. The operating system loaded
into a virtual machine is referred to as the guest operating system, and there is no constraint on
running the same guest on multiple VMs on a physical system. Type 1 VMs have no host
operating system because they are installed on a bare system.

An operating system running on a Type 1 VM is a full virtualization because it is a complete
simu-lation of the hardware that it is running on.

​​Note
Not all CPUs support virtual machines, and many that do require that you enable this support in the
BIOS. For example, AMD-V processors (code named Pacifica) and Intel VT-x (code named

Vanderpool) were the first of these vendor’s 64-bit offerings that added this type of support. ◼

Some hypervisors are installed over an operating system and are referred to as Type 2 or hosted
VM. Examples of Type 2 Virtual Machine Monitors are Containers, KVM, Microsoft Hyper V,
Parallels Desktop for Mac, Wind River Simics, VMWare Fusion, Virtual Server 2005 R2, Xen,
Windows Virtual PC, and VMware Workstation 6.0 and Server, among others. This is a very rich
product category. Type 2 virtual machines are installed over a host operating system; for Microsoft
Hyper-V, that operating system would be Windows Server. In the section that follows, the Xen
hypervisor (which runs on top of a Linux host OS) is more fully described. Xen is used by
Amazon Web Services to provide Amazon Machine Instances (AMIs).

Figure 5.1 shows a diagram of Type 1 and Type 2 hypervisors.

On a Type 2 VM, a software interface is created that emulates the devices with which a system
would normally interact. This abstraction is meant to place many I/O operations outside the virtual
environment, which makes it both programmatically easier and more efficient to execute device
I/O than it would be inside a virtual environment. This type of virtualization is sometimes referred
to as paravirtualization, and it is found in hypervisors such as Microsoft’s Hyper-V and Xen. It is
the host operating system that is performing the I/O through a para-API.

VMware’s vSphere cloud computing infrastructure model

​

Guest
OS

Guest OS

Guest
OS

Hyperviso

r

System Hardware

Guest OS

Guest OS

Guest OS

Hypervisor

Host Operating System

System Hardware

Type 1 Hypervisor​ Type 2 Hypervisor

Figure 5.2 shows the difference between emulation, paravirtualization, and full virtualization. In
emulation, the virtual machine simulates hardware, so it can be independent of the underlying sys-
tem hardware. A guest operating system using emulation does not need to be modified in any way.
Paravirtualization requires that the host operating system provide a virtual machine interface for
the guest operating system and that the guest access hardware through that host VM. An operating
system running as a guest on a paravirtualization system must be ported to work with the host
interface. Finally, in a full virtualization scheme, the VM is installed as a Type 1 Hypervisor
directly onto the hardware. All operating systems in full virtualization communicate directly with
the VM hypervisor, so guest operating systems do not require any modification. Guest operating
systems in full virtualization systems are generally faster than other virtualization schemes.

​​Note

The Virtual Machine Interface (VMI) open standard (http://vmi.ncsa.uiuc.edu/) that VMware has proposed is an
example of a paravirtualization API. The latest version of VMI is 2.1, and it ships as a default installation with
many versions of the Linux operating system.

Wikipedia maintains a page called “Comparison of platform virtual machines” at http://en.wikipedia.
org/wiki/Comparison_of_platform_virtual_machines. The page contains a table of features of
the most common Virtual Machine Managers. ◼

You are probably familiar with process or application virtual machines. Most folks run the Java Virtual
Machine or Microsoft’s .NET Framework VM (called the Common Language Runtime or CLR) on
their computers. A process virtual machine instantiates when a command begins a pro-cess, the VM is
created by an interpreter, the VM then executes the process, and finally the VM exits the system and is
destroyed. During the time the VM exists, it runs as a high-level abstraction.

Emulation, paravirtualization, and full virtualization types

G
 Guest Guest uest

Kernel Software Kernel Software Kernel Software

 Virtual

Environment

Host Host Boot OS

Kernel Software
VM

VM
Kernel

Software
VM

Control

Kernel
Virtual

Environment

Software
VM

Control

Emulation​ Paravirtualization​ Full Virtualization

http://vmi.ncsa.uiuc.edu/)
http://en.wikipedia/

Applications running inside an application virtual machine are generally slow, but these programs
are very popular because they provide portability, offer rich programming languages, come with
many advanced features, and allow platform independence for their programs. Although many
cloud computing applications provide process virtual machine applications, this type of abstraction
isn’t really suitable for building a large or high-performing cloud network, with one exception.

The exception is the process VMs that enable a class of parallel cluster computing applications.
These applications are high-performance systems where the virtual machine is operating one pro-
cess per cluster node, and the system maintains the necessary intra-application communications
over the network interconnect. Examples of this type of system are the Parallel Virtual Machine
(PVM; see http://www.csm.ornl.gov/pvm/pvm_home.html) and the Message Passing Interface
(MPI; see http://www.mpi-forum.org/). Some people do not consider these appli-cation VMs to be
true virtual machines, noting that these applications can still access the host operating system
services on the specific system on which they are running. The emphasis on using these process
VMs is in creating a high-performance networked supercomputer often out of heterogeneous
systems, rather than on creating a ubiquitous utility resource that characterizes a cloud network.

Some operating systems such as Sun Solaris and IBM AIX 6.1 support a feature known as
operating system virtualization. This type of virtualization creates virtual servers at the operating
system or kernel level. Each virtual server is running in its own virtual environment (VE) as a
virtual private server (VPS). Different operating systems use different names to describe these
machine instances, each of which can support its own guest OS. However, unlike true virtual
machines, VPS must all be running the same OS and the same version of that OS. Sun Solaris 10
uses VPS to create what is called Solaris Zones. With IBM AIX, the VPS is called a System
Workload Partition (WPAR). This type of virtualization allows for a dense collection of virtual
machines with relatively low overhead. Operating system virtualization provides many of the
benefits of virtualization previously noted in this section.

​​VMware vSphere
VMware vSphere is a management infrastructure framework that virtualizes system, storage, and
networking hardware to create cloud computing infrastructures. vSphere is the branding for a set
of management tools and a set of products previously labeled VMware Infrastructure. vSphere
pro-vides a set of services that applications can use to access cloud resources, including these:

⚫​VMware vCompute: A service that aggregates servers into an assignable pool
⚫​VMware vStorage: A service that aggregates storage resources into an assignable pool
⚫​VMware vNetwork: A service that creates and manages virtual network interfaces
⚫​Application services: Such as HA (High Availability) and Fault Tolerance

⚫​vCenter Server: A provisioning, management, and monitoring console for
VMware cloud infrastructures

Figure 5.3 shows an architectural diagram of a vSphere cloud infrastructure.

http://www.csm.ornl.gov/pvm/pvm_home.html)
http://www.mpi-forum.org/)

VMware’s vSphere cloud computing infrastructure model

A vSphere cloud is a pure infrastructure play. The virtualization layer that abstracts processing,
memory, and storage uses the VMware ESX or ESXi virtualization server. ESX is a Type 1
hypervi-sor; it installs over bare metal (a clean system) using a Linux kernel to boot and installs
the vmker-nel hypervisor (virtualization kernel and support files). When the system is rebooted,
the vmkernel loads first, and then the Linux kernel becomes the first guest operating system to
run as a virtual machine on the system and contains the service console.

VMware is a very highly developed infrastructure and the current leader in this industry. A number
of important add-on products are available for cloud computing applications. These are among the
more notable products:

⚫​Virtual Machine File System (VMFS): A high-performance cluster file system for

an ESX/ESXi cluster.

⚫​VMotion: A service that allows for the migration of a virtual machine from one
physical server to another physical server while the virtual server runs continuously and
without any interruption of ongoing transactions.

The ability to live migrate virtual machines is considered to be a technological tour
de force and a differentiator from other virtual machine system vendors.

⚫​Storage VMotion: A product that can migrate files from one datastore to
another datas-tore while the virtual machine that uses the datastore continues to
run.

⚫​Virtual SMP: A feature that allows a virtual machine to run on two or more physical
pro-cessors at the same time.

⚫​Distributed Resource Scheduler (DRS): A system for provisioning virtual machines and
load balancing processing resources dynamically across the different physical systems that
are in use. A part of the DRS called the distributed power management (DPM) module
can manage the power consumption of systems.

⚫​vNetwork Distributed Switch (DVS): A capability to maintain a network runtime state
for virtual machines as they are migrated from one physical system to another. DVS
also monitors network connections, provides firewall services, and enables the use of
third-party switches such as the Cisco Nexus 1000V to manage virtual networks.

You can get a better sense of how the different resources are allocated by vSphere into a virtual
set of components by examining Figure 5.4. Physical computers can be standalone hosts or a set
of clustered systems. In either case, a set of virtual machines can be created that is part of a single
physical system or spans two or more physical systems.

You can define a group of VMs as a Resource Pool (RP) and, by doing so, manage those virtual
machines as a single object with a single policy. Resource Pools can be placed into a hierarchy or
nested and can inherit properties of their parent RP. As more hosts or cluster nodes are added or
removed, vSphere can dynamically adjust the provisioning of VMs to accommodate the policy in
place. This fine tuning of pooled resources is required to accommodate the needs of cloud comput-
ing networks.

Virtual infrastructure elements

The datastore shown at the center of Figure 5.4 is a shared storage resource. These storage resources
can be either Direct Attached Storage (DAS) of a server using SCSI, SAS, or SATA con-nections,
Fibre Channel disk arrays/SANs, iSCSI disk arrays/SANs, or Network Attached Storage (NAS) disk
arrays. Although the lines drawn between the datastore and different VMs indicate a direct connection,
with the exception of DAS, the other storage types are shared storage solutions.

Storage virtualization is most commonly achieved through a mapping mechanism where a logical
storage address is translated into a physical storage address. Block-based storage such as those used

in SANs use a feature called a Logical Unit Identifier (LUN) with specific addresses stored in the
form of an offset called the Logical Block Address (LBA). The address space mapping then maps
the address of the logical or virtual disk (vdisk) to the logical unit on a storage controller. Storage
virtualization may be done in software or in hardware, and it allows requests for virtualized
storage to be redirected as needed.

Similarly, network virtualization abstracts networking hardware and software into a virtual net-
work that can be managed. A virtual network can create virtual network interfaces (VNICs) or
virtual LANs (VLANS) and can be managed by a hypervisor, operating system, or external
manage-ment console. In a virtualized infrastructure such as the one presented in this section,
internal net-work virtualization is occurring and the hypervisor interacts with networking hardware
to create a pseudo-network interface. External network virtualization can be done using network
switches and VLAN software.

The key feature that makes virtual infrastructure so appealing for organizations implementing a
cloud computing solution is flexibility. Instantiating a virtual machine is a very fast process,
typi-cally only a few seconds in length. You can make machine images of systems in the
configuration that you want to deploy or take snapshots of working virtual machines. These
images can be brought on-line as needed.

​​Understanding Machine Imaging

In the preceding sections, you have seen how the abstractions that cloud computing needs can be
achieved through redirection and virtualization. A third mechanism is commonly used to provide
system portability, instantiate applications, and provision and deploy systems in the cloud. This
third mechanism is through storing the state of a systems using a system image.

​​Cross-Ref
Backing up to the cloud often involves imaging or snapshot applications; this process is described

in Chapter 15, “Working with Cloud-Based Storage.” ◼

​​Note

A system image makes a copy or a clone of the
entire computer system inside a single container
such as a file. The system imaging program is
used to make this image and can be used later to

restore a system image. Some imaging programs
can take snapshots of systems, and most allow
you to view the files contained in the image and
do partial restores.

The one open standard for storing a system image is the Open Virtualization Format (OVF; see
http://www. dmtf.org/standards/published_documents/DSP0243_1.1.0.pdf) that is published by the Distributed
Task Format (DMTF; http://www.dmtf.org/). Some notable virtualization vendors, such as VMware,

Microsoft, Citrix, and Oracle (Sun), are supporting this effort. ◼

http://www/
http://www.dmtf.org/)

A prominent example of a system image and how it can be used in cloud computing architectures
is the Amazon Machine Image (AMI) used by Amazon Web Services to store copies of a virtual
machine. Because this is a key feature of Amazon’s Elastic Compute Cloud and is discussed in
detail in Chapter 9, I briefly mention it here. An AMI is a file system image that contains an
operating system, all appropriate device drivers, and any applications and state information that
the working virtual machine would have.

When you subscribe to AWS, you can choose to use one of its hundreds of canned AMIs or to
create a custom system and capture that system’s image to an AMI. An AMI can be for public
use under a free distribution license, for pay-per-use with operating systems such as Windows,
or shared by an EC2 user with other users who are given the privilege of access.

​​Cross-Ref
Refer to Chapter 9, “Using Amazon Web Services,” for more information about AMIs and their

uses in the EC2 service. ◼

The AMI file system is not a standard bit-for-bit image of a system that is common to many
disk imaging programs. AMI omits the kernel image and stores a pointer to a particular kernel
that is part of the AWS kernel library. Among the choices are Red Hat Linux, Ubuntu,
Microsoft Windows, Solaris, and others. Files in AMI are compressed and encrypted, and an
XML file is written that describes the AMI archive. AMIs are typically stored in your Amazon
S3 (Simple Storage System) buckets as a set of 10MB chunks.

Machine images are sometimes referred to as “virtual appliances”—systems that are meant to run
on virtualization platforms. AWS EC2 runs on the Xen hypervisor, for example. The term virtual
appliance is meant to differentiate the software image from an operating virtual machine. The sys-
tem image contains the operating system and applications that create an environment. Most virtual
appliances are used to run a single application and are configurable from a Web page. Virtual
appliances are a relatively new paradigm for application deployment, and cloud computing is the
major reason for the interest in them and for their adoption. This area of WAN application porta-
bility and deployment, and of WAN optimization of an application based on demand, is one with
many new participants. Certeon (http://www.certeon.com/), Expand Networks (http://
www.expand.com/), and Replify (http://www.replify.com/) are three vendors offering optimization
appliances for VMware’s infrastructure.

​​Porting Applications

Cloud computing applications have the ability to run on virtual systems and for these systems to
be moved as needed to respond to demand. Systems (VMs running applications), storage, and net-
work assets can all be virtualized and have sufficient flexibility to give acceptable distributed
WAN application performance. Developers who write software to run in the cloud will
undoubtedly want the ability to port their applications from one cloud vendor to another, but that
is a much more difficult proposition. Cloud computing is a relatively new area of technology, and
the major vendors have technologies that don’t interoperate with one another.

http://www.certeon.com/)
http://www.expand.com/)
http://www.replify.com/)

​​The Simple Cloud API
If you build an application on a platform such as Microsoft Azure, porting that application to
Amazon Web Services or GoogleApps may be difficult, if not impossible. In an effort to create an
interoperability standard, Zend Technologies has started an open source initiative to create a com-
mon application program interface that will allow applications to be portable. The initiative is called
the Simple API for Cloud Application Services (http://www.simplecloud.org/), and the effort has
drawn interest from several major cloud computing companies. Among the founding supporters are
IBM, Microsoft, Nivanix, Rackspace, and GoGrid.

Simple Cloud API has as its goal a set of common interfaces for:

⚫​File Storage Services: Currently Amazon S3, Windows Azure Blob Storage, Nirvanix,

and Local storage is supported by the Storage API. There are plans to extend this API
to Rackspace Cloud Files and GoGrid Cloud Storage.

⚫​Document Storage Services: Amazon SimpleDB and Windows Azure Table Storage are
currently supported. Local document storage is planned.

⚫​Simple Queue Services: Amazon SQS, Windows Azure Queue Storage, and Local queue
services are supported.

Zend intends to add the interface to their open source PHP Framework (http://www.frame work.zend.com)
as the Zend_Cloud framework component. Vendors such as Microsoft and IBM are supplying adapters
that will use part of the Simple Cloud API for their cloud application services.

​​AppZero Virtual Application Appliance
Applications that run in datacenters are captive to the operating systems and hardware platforms that
they run on. Many datacenters are a veritable Noah’s Ark of computing. So moving an applica-tion
from one platform to another isn’t nearly as simple as moving a machine image from one sys-tem to
another.

The situation is further complicated by the fact that applications are tightly coupled with the oper-
ating systems on which they run. An application running on Windows, for example, isn’t isolated
from other applications. When the application loads, it often loads or uses different Dynamic Link
Libraries (DLL), and it is through the sharing or modification of DLLs that Windows applications
get themselves in trouble. Further modifications include modifying the registry during installation.
These factors make it difficult to port applications from one platform to another without lots of
careful work. If you are a Platform as a Service (PaaS) application developer, you are packaging a
complete software stack that includes not only your application, but the operating system and
application logic and rules as well. Vendor lock-in for you application is assured.

The ability to run an application from whatever platform you want is not one of the characteristics
of cloud computing, but you can imagine that it is a very attractive proposition. While the Simple
Cloud API is useful for applications written in PHP, other methods may be needed to make appli-
cations easily portable. One company working on this problem is AppZero (http://www.
appzero.com/), and its solution is called the Virtual Application Appliance (VAA).

http://www.simplecloud.org/)
http://www/

The AppZero solution creates a virtual application appliance as an architectural layer between the
Windows or the UNIX operating system and applications. The virtualization layer serves as the
mediator for file I/O, memory I/O, and application calls and response to DLLs, which has the
effect of sandboxing the application. The running application in AppZero changes none of the
registry entries or any of the files on the Windows Server.

​​Note

VAA creates a container that encapsulates the application and all the application’s dependencies within a set of
files; it is essentially an Application Image for a specific OS. Dependencies include DLL, service settings,
necessary configuration files, registry entries, and machine and network settings. This container forms an
installable server-side application stack that can be run after installation, but has no impact on the underlying
operating system. VAAs are created using the AppZero Creator wizard, managed with the AppZero Admin
tool, and may be installed using the AppZero Director, which creates a VAA runtime application. If desired, an
application called AppZero Dissolve removes the VAA virtualization layer from the encapsulated application
and installs that application directly into the operating system.

Microsoft App-V (http://www.microsoft.com/windows/enterprise/products/mdop/app-v. aspx) and VMware
ThinApp (http://www.vmware.com/products/thinapp/) are two application deliv-ery platforms, but their main

focus is on desktop installations and not on server deployment in the cloud. ◼

Installations can be done over the network after the AppZero application appliance is installed.
Therefore, with this system, you could run applications on the same Windows Server and elimi-
nate one application from interfering with another; applications would be much more easily ported
from one Windows system to another. AppZero’s approach provides the necessary abstraction
layer that frees an application from its platform dependence.

An interesting use of VAAs involves segmenting an application into several VAAs, some of
which are read-only runtime components, while others can be modified. When backing up or
replicating VAAs in a cloud, you would need to synchronize only those VAAs that are modified.
In many instances, the portion of an application that changes is only a very small component of
large appli-cations, which means that this technique can greatly reduce the amount of data
required to repli-cate a VM in the cloud.

AppZero envisages using VAAs to create what it calls a stateless cloud. In a stateless cloud, the
appli-cation’s state information is stored on a network share where it is available to run on
different cloud systems as needed. This approach allows the cloud system to run with a VM
containing a clean operating system (like AWS does now) and provisioned by the VAA. This
approach should greatly reduce the number of complete system images that cloud vendors and
cloud users should need to store to support their work; it also should make the running of
applications on secure, well-performing VEs easier to achieve.

http://www.microsoft.com/windows/enterprise/products/mdop/app-v
http://www.vmware.com/products/thinapp/)

​​Summary

In this chapter, you learned about some of the more important characteristics of cloud computing
networks and applications, including ubiquitousness and on-demand service. To enable a cloud
service, you need to create a pool of resources you can call on. The key techniques for enabling
this are abstraction and virtualization. Abstraction maps a logical identity or address to a physical
identity or address. Changes to the underlying systems, therefore, do not affect the client request-
ing a service.

Several different methods for abstraction have been considered. A widely used technique is load
balancing. With load balancing, system requests are directed to appropriate systems on demand.
All large cloud networks use some form of load balancing. You learned about some of the details
of Google’s load balancing for queries.

Another technology virtualizes hardware. You learned about the different types of hypervisors—
software that can serve as a virtualization layer for operating systems accessing the underlying
hardware. As an example of hardware virtualization VMware’s vSphere infrastructure was consid-
ered. vSphere can create virtual machines, virtual datastores, and virtual networks, and move these
resources about while the system is active. vSphere is a potent cloud-building technology.

System imaging also can be useful in creating and instantiating machine instances. A brief
explana-tion of Amazon Machine Instances was given.

Finally, the topic of application portability was considered. Applications are hard to move
from platform to platform, because they are bound up with the operating system on which they
run. Eventually, applications will be as portable as virtual machines. A cloud programming
interface was described, as was an application delivery appliance.

In Chapter 6, “Capacity Planning,” the idea of system workloads is described. Understanding this
concept allows you to scale your systems correctly, choose the right type of infrastructure, and
do availability planning. Some of the key performance metrics for cloud computing “right
sizing” are described.

​​Exploring Platform
as a Service

The Platform as a Service model provides the tools within an environ-ment
needed to create applications that can run in a Software as a Service model.
For this reason, some overlap between vendors has

created Software as a Service products, and those vendors have broadened their
services to make their Web applications more customizable. Salesforce. com,
the largest CRM application service company in the world, is an exam-ple, with
Force.com being its PaaS (Platform as a Service) offering.

Applications developed in PaaS systems can be composite business applica-
tions, data portals, or mashups with data derived from multiple sources.
PaaS environments can offer integrated lifecycle management or anchored
lifecycle applications. An integrated system provides a broad range of tools
for customization, whereas an anchored system is based on already
established software.

Application frameworks are a particularly powerful tool for creating cloud
computing applications. For this reason, many vendor products are based on
this model. In other chapters, you learn about Google AppEngine and
Windows Azure Platform. This chapter presents several examples of PaaS
systems that can create captive hosted applications, portable applications,
extended blogs or content management systems, or rich Internet data appli-
cations. Some of the sites you learn about in this chapter with PaaS tools
include Drupal, Eccentex AppBase, LongJump, SquareSpace, and
WaveMaker.

Each of these systems or tools presents a very different aspect of cloud
appli-cation development. What all these tools have in common is that they
are standards-based.

​​Defining Services

In many ways, the Platform as a Service model is the most interesting of all the hosted services in
cloud computing. IaaS offers a service that is akin to installing an application on a computer.
That computer is virtual, of course, but it is still a computer. By the time you are using an SaaS
model, the software is pretty well mapped out for you. You can do some modest customization,
some branding perhaps, but the software’s capabilities and design has largely been worked out.

With Platform as a Service systems, you are given a toolkit to work with, a virtual machine to
run your software on, and it is up to you to design the software and its user-facing interface in a
way that is appropriate to your needs. So PaaS systems range from full-blown developer
platforms like Windows Azure Platform to systems like Drupal, Squarespace, Wolf, and others
where the tools are modules that are very well developed and require almost no coding. Many
Content Management Systems (CMS) are essentially PaaS services where you get standard parts
and can build Web sites and other software like Tinker Toys.

Thus you find that PaaS models span a broad range of services, including these, among others:

⚫​Application development: A PaaS platform either provides the means to use programs

you create in a supported language or offers a visual development environment that writes
the code for you.

⚫​Collaboration: Many PaaS systems are set up to allow multiple individuals to work on
the same projects.

⚫​Data management: Tools are provided for accessing and using data in a data store.

⚫​Instrumentation, performance, and testing: Tools are available for measuring
your applications and optimizing their performance.

⚫​Storage: Data can be stored in either the PaaS vendor’s service or accessed from a
third-party storage service.

⚫​Transaction management: Many PaaS systems provide services such as transaction
man-agers or brokerage service for maintaining transaction integrity.

PaaS systems exist to allow you to create software that can be hosted as SaaS systems or to
allow for the modification of existing SaaS applications. You’ve seen many examples of PaaS
systems already, and whole chapters are dedicated to vendor-specific PaaS platforms. The next
chapter describes the Google AppEngine, which is a system for deploying Web applications on
Google infrastructure. Chapter 10 describes the Windows Azure Platform with its emphasis on
creating Windows applications using the .NET Framework on Microsoft infrastructure.

A good PaaS system has certain desirable characteristics that are important in developing robust,
scalable, and hopefully portable applications. On this list would be the following attributes:

⚫​Separate of data management from the user interface
⚫​Reliance on cloud computing standards

⚫​An integrated development environment (IDE)
⚫​Lifecycle management tools
⚫​Multi-tenant architecture support, security, and scalability
⚫​Performance monitoring, testing, and optimization tools

The more vibrant the associated market of a PaaS’s third-party add-ons, applications, tools, and
services, the better they are. These extras allow you to extend your application by buying
function-ality, which is almost always cheaper than having to roll your own.

Salesforce.com versus Force.com: SaaS versus PaaS
There can be no better example illustrating the difference between a SaaS and PaaS system
than that of Salesforce.com and Force.com. Salesforce.com is a Web application suite that is
an SaaS. Force.com is Salesforce.com’s PaaS platform for building your own services.

Salesforce.com was formed by several Oracle employees in 1999 to create a hosted Customer
Relationship Management (CRM) system. CRM has long been one of Oracle’s core database ser-vices.
The Salesforce.com team created hosted software based on a cloud computing model: pay as you go,
simple to use, and multifunctional. The Salesforce.com platform looks like a typical Web site such as
Amazon.com, with a multi-tabbed interface—each tab being an individual application.

Shown in Figure 7.1 is a Salesforce.com portal with the multi-tabbed interface exposing the
differ-ent applications.

In Salesforce.com, each tab is an application, and data is shared. Shown here is a dashboard view.

Some of the applications included in the site are:

⚫​Accounts and Contact
⚫​Analytics and Forecasting
⚫​Approvals and Workflow
⚫​Chatter (Instant Messaging/Collaboration)
⚫​Content Library
⚫​E-mail and Productivity
⚫​Jigsaw Business Data
⚫​Marketing and Leads
⚫​Opportunities and Quotes
⚫​Partner Relationship
⚫​Sales
⚫​Service and Support

Which tabs you see, and how capable each hosted application is, depends on the level of service
you purchase from Salesforce.com, as well as the particular type of bundle you buy.
Salesforce.com tailors its SaaS for individual industries.

As Salesforce.com developed its SaaS production, it became obvious that many customers wanted to
extend their Salesforce.com applications beyond what an SaaS offering would allow. Salesforce.com
developed a PaaS platform known as Force.com, which allows developers to create applications that
could be added to Salesforce.com’s offerings and hosted on Salesforce.com’s infrastructure.

Figure 7.2 shows the Force.com platform page at Salesforce.com.

Force.com uses a Java-based programming language called Apex for its application building, and
it has an interface builder called Visualforce that allows a developer to create interfaces using
HTML, Flex, and AJAX. Visualforce uses an XML-type language in its visual interface builder.
Using the Force.com platform, more than 1,000 applications have been created and are offered for
sale on Salesforce.com’s AppExchange, which has greatly enhanced its PaaS offerings. These
applications can show up as customizable tabs for different functions in customer applications or
as a set of S-controls that are JavaScript widgets.

Because Salesforce.com is browser-based, it is platform-independent. However, the company
has extended its audience to mobile devices, such as the Android, Blackberry, iPhone, and
Windows Mobile Devices. It also has a server product that supports Salesforce.com applications
in-house called the Resin Application Server.

Force.com has been a major hit and has served as the model from many of the PaaS systems of
today. The company Salesforce.com is a recognized thought leader in the field of cloud
computing. It is a $1.3 billion company as of 2009, with over 2 million subscribers.

Force.com’s Web site (http://www.salesforce.com/platform/) leads to a set of developer tools as well as
a gallery of sites built on this PaaS.

​​Application development
A PaaS provides the tools needed to construct different types of applications that can work
together in the same environment. These are among the common application types:

⚫​Composite business applications
⚫​Data portals
⚫​Mashups of multiple data sources

A mashup is a Web page that displays data from two or more data sources. The various
landmarks and overlays you find in Google Earth, or annotated maps, are examples of mashups.

These applications must be able to share data and to run in a multi-tenant environment. To make
applications work together more easily, a common development language such as Java or Python is
usually offered. The more commonly used the language is, the more developers and developer ser-vices
are going to be available to help users of platform applications. The use of application frame-works
such as Ruby on Rails is useful in making application building easier and more powerful.

http://www.salesforce.com/platform/)

Most of the application building tools in this chapter create their own frameworks. Many are based
on visual tools, and often these tools allow developers to extend applications using a common lan-
guage for Web application development. These applications almost always adopt a Service
Oriented Architecture model and use SOAP/REST with XML data exchange.

All PaaS application development must take into account lifecycle management. As an
application ages, it must be upgraded, migrated, grown, and eventually phased out or ported.
Many PaaS ven- dors offer systems that are integrated lifecycle development platforms. That is,
the vendor provides a full software development stack for the programmer to use, and it isn’t
expected that the devel-oper will need to go outside of the service to create his application.

An integrated lifecycle platform includes the following:

⚫​The virtual machine and operating system (often offered by an IaaS)
⚫​Data design and storage
⚫​A development environment with defined Application Programming Interfaces
⚫​Middleware
⚫​Testing and optimization tools
⚫​Additional tools and services

Google AppEngine, Microsoft Windows Azure Platform, Eccentex AppBase, LongJump, and Wolf
are examples of integrated lifecycle platforms. The latter three services are described in this chap-ter.
Refer to Chapter 8 to read about AppEngine, and see Chapter 10 to learn about Azure.

Some PaaS services allow developers to modify existing software. These services are referred to
as anchored lifecycle platforms. Examples of an anchored lifecycle platform are
QuickBooks.com and Salesforce.com. The applications in these two services are fixed, but
developers can customize which applications the users see, how those applications are branded,
and a number of features associated with the different applications. An anchored service offers
less customization, but has a faster development cycle and may be less prone to software errors.

​​Using PaaS Application Frameworks

Application frameworks provide a means for creating SaaS hosted applications using a unified
development environment or an integrated development environment (IDE). PaaS IDEs run the gamut
from a tool that requires a dedicated programming staff to create and run to point-and-click graphical
interfaces that any knowledgeable computer user can navigate and create something useful with.

In selecting the six different examples of Web sites and application building PaaS systems, a full
range of user experience is considered. Many Web sites are based on the notion of information
management and organization; they are referred to as content management systems (CMS). A data-
base is a content management system, but the notion of a Web site as a CMS adds a number of

special features to the concept that includes rich user interaction, multiple data sources, and exten-
sive customization and extensibility. The Drupal CMS was chosen as an example of this type of
PaaS because it is so extensively used and has broad industry impact, and it is a full-strength
devel-oper tool.

Whereas Drupal is used in major Web sites and organizes vast amounts of information, the site
Squarespace.com was chosen to illustrate a point-and-click CMS system aimed at supporting individ-
uals, small businesses, and other small organizations. Squarespace is often associated with blogging
tools (as is Drupal), but it is more than that. Squarespace works with photos, imports information from
other social tools, and allows very attractive Web sites to be created by average users.

​​Caution
The portability of the applications you create in a PaaS is an extremely valuable feature. If your
service goes out of business, being able to port an application by simply redeploying that application

to another IaaS can be a lifesaver. ◼

Eccentex AppBase, LongJump, and Wolf were chosen as examples of developer-oriented
services aimed at users and developers who want to create Web-based applications based on
Service Oriented Architecture protocols and services. These services vary in some details, but
they have these common characteristics:

⚫​They separate data-handling from presentation (user interface).

⚫​They offer tools for establishing business objects or entities and
the relationships between them.

⚫​They support the incorporation of business rules, logic, and actions.
⚫​They provide tools for creating data entry controls (forms), views, and reports.
⚫​They provide instrumentation, tools for measuring application performance.
⚫​They support packaging and deployment of applications.

These services differ in which language they use, support for different rendering technologies, and
in other features. For the most part, they provide point-and-click tools where snippets of code pro-
vide exception programming. These services are extensible and customizable through application
code. The goal of these services is to create portable applications, although each service includes
a hosting platform for developed applications. Some cloud application platforms such as WorkXpress
(http://www.workxpress.com) describe their environment as a 5GL PaaS (Fifth Generation) as opposed
to something like Force.com, which they call a 3GL/4GL PaaS because 5GL environments have no
programming requirement and you can host your application anywhere.

A 5GL programming language solves problems by acting on constraints and inputs and then uses
intelligence to solve the problem. By comparison a 4GL programming language requires the pro-
grammer to build modules to solve specific problems. For a description of early programming lan-
guage generations you may want to read the following reference: http://en.wikipedia.org/
wiki/Programming_language_generations.

http://en.wikipedia.org/

Drupal
Drupal (http://drupal.org/) is a content management system (CMS) that is used as the backend to a
large number of Web sites worldwide. The software is an open-source project that was created in
the PHP programming language. Drupal is really a programming environment for managing
content, and it has elements of blogging and collaboration software as part of its distri-bution.
Drupal is offered to the public under the GNU General Public License version 2 and is used by
many prominent Web sites. The Drupal core is the standard distribution, with the current version
being 6.19; version 7.0 is in preview.

Drupal is in this section because it is a highly extensible way to create Web sites with rich
features. Druplas has a large developer community that has created nearly 6,000 third-party add-
ons called contrib modules. Several thousand Drupal developers worldwide come together twice a
year at the DrupalCon convention. It’s a vibrant community of users and developers.

The number of Web sites that use Drupal is really quite remarkable, and many of them are very
well known. Drupal is very popular with government agencies and with media companies, but its
reach extends into nearly any industry, organization, and business type you can think of. Some of
these sites are beautifully constructed. A short list of sites includes att.com, data.gov.uk, gouverne-
ment.fr, intel.com, lucasfilms.com, mattel.com, thenation.com, whitehouse.gov, and ubuntu.com.
Drupal has a gallery of screenshots of sites and features on its Web site, but for a better look at
some of the more attractive sites, go to the Showcase of Popular Web sites Developed Using
Drupal CMS (http://artatm.com/2010/02/showcase-of-popular-website-developed-using-drupal/),
shown in Figure 7.3.

You find Drupal applications running on any Web server that can run PHP 4.4.0 and later. The
most common deployments are on Apache, but you also can find Drupal on Microsoft IIS and
other Unix Web servers. To store content, Drupal must be used with a database. Because
LAMP installations are a standard Web deployment platform, the database most often used is
MySQL. Other SQL databases work equally well.

The Drupal core by itself contains a number of modules that provide for the following:

⚫​Auto-updates
⚫​Blogs, forums, polls, and RSS feeds
⚫​Multiple site management
⚫​OpenID authentication
⚫​Performance optimization through caching and throttling
⚫​Search
⚫​User interface creation tools
⚫​User-level access controls and profiles
⚫​Themes
⚫​Traffic management
⚫​Workflow control with events and triggers

Artatm.com has a gallery of some of the more attractive and well-known sites built with Drupal.

http://drupal.org/)
http://artatm.com/2010/02/showcase-of-popular-website-developed-using-drupal/)

Drupal is modular and exposes its functionality through a set of published APIs. The contrib
mod-ules can be added to Drupal to replace other modules, enhance capabilities, or provide
entirely new features. Third-party modules include messaging systems, visual editors, a content
construc-tion kit (CCK) for database schema extension, views, and panels. CCK Fields API is in
the latest version of Drupal, version 7.0.

Drupal is reputed to be somewhat difficult to learn, and new versions often break old features. It
is much more widely used than its competitor Joomla! (http://www.joomla.org/), and Drupal
seems to have better performance than Joomla! as well. Another open source competitor in the
content management space is eZ Publish (http://ez.no/).

​​Eccentex AppBase 3.0
Eccentex is a Culver City, California, company founded in 2005 that has a PaaS development plat-
form for Web applications based on SOA component architecture to create what it calls Cloudware
applications using its AppBase architecture. Figure 7.4 shows the AppBase platform page.

http://www.joomla.org/)
http://ez.no/)

The Eccentex AppBase (http://www.eccentex.com/platform/platform.html) PaaS application delivery
platform creates SOA applications that work on several different IaaS vendors.

AppBase includes a set of different tools for building these applications, including the following:

⚫​ Business Objects Build: This object database has the ability to create rich
data objects and create relationships between them.

⚫​ Presentation Builder: This user interface (UI) builder allows you to drag and drop
visual controls for creating Web forms and data entry screens and to include the logic
necessary to automate what the user sees.

⚫​ Business Process Designer: This tool is used to create business logic for your application.
With it, you can manage workflow, integrate modules, create rules, and validate data.

⚫​ Dashboard Designer: This instrumentation tool displays the real-time parameters of
your application in a visual form.

⚫​ Report Builder: This output design tool lets you sort, aggregate, display, and
format report information based on the data in your application.

⚫​ Security Roles Management: This allows you to assign access rights to different objects
in the system, to data sets, fields, desktop tabs, and reports. Security roles can be assigned
in groups without users, and users can be added later as the application is deployed.

Figure 7.5 shows the AppBase architecture with the various tools identified. You can view a set

http://www.eccentex.com/platform/platform.html)

of screenshots that illustrate the different tools and some features in the build process at http://
www.eccentex.com/platform/screenshots.html.

http://www.eccentex.com/platform/screenshots.html

AppBase’s architecture with the different tools and modules shown

Desktop Application Studio

Web service APIs

Portals

Business data​

Document

Content​ Business​ Business rules

Security​ Analytics
and

management​ capture management​ process​ management services​ reporting
services​ services services​ management​ services services

Eccentex
data

Eccentex content Legacy data Third-party
data

repository repository repository repository

Applications that you create are deployed with the AppBase Application Revision
Management console. The applications you create in AppBase, according to the company,
may be integrated with Amazon S3 Web Services (storage), Google AppEngine (PaaS),
Microsoft Windows Azure (PaaS), Facebook, and Twitter.

​​LongJump
LongJump (http://www.longjump.com/) is a Sunnyvale, California, company hosting service
created in 2003 with a PaaS application development suite. Its development environment is based
on Java and uses REST/SOAP APIs. Figure 7.6 shows the LongJump platform page.

http://www.longjump.com/)

LongJump’s PaaS (http://www.longjump.com/index.php?option=com_content&view=artic
le&id=8&Itemid=57) is based on standard Java/JavaScript, SOAP, and REST.

LongJump creates browser-based Web applications that are database-enabled. Like other products
mentioned in this section, LongJump comes with an Object Model Viewer, forms, reports, layout
tools, dashboards, and site management tools. Access control is based on role- and rule-based
access, and it allows for data-sharing between teams and between tenants. LongJump comes with
a security policy engine that has user and group privileges, authentication, IP range blocking,
SSO, and LDAP interoperability. Applications are packaged using a packaging framework that
can sup-port a catalog system, XML package file descriptions, and a distribution engine.

LongJump extends Java and uses a Model-View-Controller architecture (MVC) for its framework
in the Developer Suite. The platform uses Java Server Pages (JSP), Java, and JavaScript for its
various components and its actions with objects built with Java classes. Objects created in custom
classes are referenced using POJO (Plain Old Java Object). Localization is supported using a
module called the Translation Workbench that includes specified labels, errors, text, controls, and
messaging text files (and header files) that allow them to be modified by a translation service to
support additional languages. The development environment supports the Eclipse
(http://www.eclipse.org/) plug-in for creating widgets using Java standard edition.

http://www.longjump.com/index.php?option=com_content&view=artic
http://www.eclipse.org/)

​​Squarespace
Squarespace (http://www.squarespace.com/), shown in Figure 7.7, is an example of a next-
generation Web site builder and deployment tool that has elements of a PaaS development
environment. The applications are built using visual tools and deployed on hosted infrastructure.

Squarespace presents itself, among other things, as:

⚫​A blogging tool
⚫​A social media integration tool
⚫​A photo gallery
⚫​A form builder and data collector
⚫​An item list manager
⚫​A traffic and site management and analysis tool

The platform has more than 20 core modules that you can add to your Web site. Squarespace sites
can be managed on the company’s iPhone app.

Squarespace lets you create beautiful hosted Web sites with a variety of capabilities with visual
tools alone.

http://www.squarespace.com/)

With Squarespace, users have created some very visually beautiful sites. Users tend to fall into
these categories: personal Web sites, portfolios, and business brand identification. Although
Squarespace positions itself as a competitor to blogging sites such as Wordpress (http://
wordpress.org/), Tumblr (http://www.tumblr.com/), Posterous (https:// posterous.com/), and other
sites of their ilk, the site borders on a full content management system with a variety of useful
and eclectic features.

​​WaveMaker
WaveMaker (http://www.wavemaker.com/) is a visual rapid application development envi-ronment
for creating Java-based Web and cloud Ajax applications. The software is open-source and offered
under the Apache license. WaveMaker is a WYSIWYG (What You See is What You Get) drag-
and-drop environment that runs inside a browser. The metaphor used to build applica-tions is
described as the Model-View-Controller system of application architecture. In this regard,
WaveMaker has some similarities to PowerBuilder (http://www.sybase.com/products/
internetappdevttools/powerbuilder).

Figure 7.8 shows the WaveMaker home page. A gallery of features is accessible from that page.

WaveMaker is a visual development environment for creating Java-based cloud applications.

http://www.tumblr.com/)
http://www.wavemaker.com/)
http://www.sybase.com/products/

WaveMaker is a framework that creates applications that can interoperate with other Java frame-
works and LDAP systems, including the following:

⚫​Dojo Toolkit 1.0 (http://dojotoolkit.org/), a JavaScript library or toolbox
⚫​LDAP directories
⚫​Microsoft Active Directory
⚫​POJO (Plain Old Java Object)

⚫​Spring Framework (http://www.springsource.org/), an open-source application framework
for Java that now also includes ACEGI

The visual builder tool is called Visual Ajax Studio, and the development server is called the
WaveMaker Rapid Deployment Server for Java applications. When you develop within the Visual
Ajax Studio, a feature called LiveLayout allows you to create applications while viewing live data.
The data schema is prepared within a part of the tool called LiveForms. Mashups can be created
using the Mashup Tool, which integrates applications using Java Services, SOAP, REST, and RSS
to access databases.

Applications developed in WaveMaker run on standard Java servers such as Tomcat, DojoToolkit,
Spring, and Hibernate. A 4GL version of WaveMaker also runs on Amazon EC2, and the develop-ment
environment can be loaded on an EC2 instance as one of its machine images.

​​Wolf Frameworks
Many application frameworks like Google AppEngine and the Windows Azure Platform are tied to the
platform on which they run. You can’t build an AppEngine application and port it to Windows Azure
without completely rewriting the application. There isn’t any particular necessity to build an application
framework in this way, but it suits the purpose of these particular vendors: for Google to have a universe
of Google applications that build on the Google infrastructure, and for Microsoft to provide another
platform on which to extend .NET Framework applications for their developers.

If you are building an application on top of an IaaS vendor such as AWS, GoGrid, or RackSpace,
what you really want are application development frameworks that are open, standards-based, and
portable. Wolf Frameworks is an example of a PaaS vendor offering a platform on which you can
build an SaaS solution that is open and cross-platform. Wolf Frameworks (http://www.
wolfframeworks.com/) was founded in Bangalore, India, in 2006, and it has offices in the United
States.

Wolf Frameworks is based on the three core Windows SOA standard technologies of cloud
computing:

⚫​AJAX, asynchronous Java
⚫​XML
⚫​.NET Framework

http://dojotoolkit.org/)
http://www.springsource.org/)
http://www/

Wolf Frameworks uses a C# engine and supports both Microsoft SQL Server and MySQL
database. Applications that you build in Wolf are 100-percent browser-based and support
mashable and multisource overlaid content. Figure 7.9 shows the Wolf Frameworks home page.

The Wolf platform is interesting in a number of ways. Wolf has architected its platform so
applica-tions can be built without the need to write technical code. It also allows application data
to be written to the client’s database server of choice, and data can be imported or exported from a
vari-ety of data formats. In Wolf, you can view your Business Design of the software application
that you build in XML.

Wolf supports forms, search, business logic and rules, charts, reports, dashboards, and both cus-
tom and external Web pages. After you create entities and assign their properties, you create busi-
ness rules with a rules designer. You can automate tasks via business rules. There are tools for
building the various site features such as forms, reports, dashboards, and so on. Connections to the
datacenter are over a 128-bit encrypted SSL connection, with authentication, access control, and a
transaction history and audit trail. Security to multiple modules can be made available through a
Single Sign-On (SSO) mechanism.

Wolf Frameworks offers an open platform based on SOA standards for building portable SaaS solutions.

In Wolf, the data and transaction management conforms to the business rules you create. The
data and UI rendering are separate systems. Thus, you can change the UI as you need to without
affecting your stored data. Wolf lets you work with Adobe Flash or Flex or with Microsoft
Silverlight. You can also use third-party on- or off-premises applications with your SaaS
applica-tion. A backup system lets you back up data with a single click. Figure 7.10 shows the
WOLF platform architecture.

These features enable Wolf developers to create a classic multitenant SOA application without
the need for high-level developer skills. These applications are interoperable, portable from one
Windows virtual machine to another, and support embedded business applications. You can store
your Wolf applications on a private server or in the Wolf cloud.

The Wolf platform architecture; source: http://www.wolfframeworks.com/platform.asp.
WOLF Designer​ WOLF Runtime

User-role
management

Multi-tenancy Security and
authentication

Provisioning Billing Integration

http://www.wolfframeworks.com/platform.asp

​​Summary

In this chapter, you learned about one of the core service models in cloud computing: Platform as a
Service. With PaaS, the goal is to create hosted scalable applications that are used in a Software as
a Service model. For this reason, some vendors start out offering SaaS systems and then broaden
them to make them more customizable and programmable as PaaS systems.

Applications built using PaaS tools need to be standards-based. They often are constructed using
similar sets of tools: data object and relationship builders; process and business logic systems;
forms, views, and reporting tools; and more. This chapter looked at some of the better-known PaaS
systems and considered what those tools have in common. You learned about a number of tools in
this chapter, including Drupal, Eccentex AppBase, Force.com, LongJump, Squarespace, Wolf, and
some others.

Chapter 8 continues the discussion of PaaS by describing one of the largest PaaS systems in
use today: Google’s AppEngine.

​​Using Google Web
Services

Google is the prototypical cloud computing services company, and it supports
some of the largest Web sites and services in the world. In this chapter, you
learn about Google’s applications and services for

users and the various developer tools that Google makes available.

At the center of Google’s core business is the company’s search technology.
Google uses automated technology to index the Web. It makes its search
ser-vice available to users as a standard search engine and to developers as a
col-lection of special search tools limited to various areas of content. The
application of Google’s searches to content aggregation has led to enormous
societal changes and to a growing trend of disintermediation.

The most important commercial part of Google’s activities is its targeting
advertising business: AdWords and AdSense. Google has developed a
range of services including Google Analytics that supports its targeted
advertising business.

Google applications are cloud-based applications. The range of application
types offered by Google spans a variety of types: productivity applications,
mobile applications, media delivery, social interactions, and many more.
The different applications are listed in this chapter. Google has begun to
com-mercialize some of these applications as cloud-based enterprise
application suites that are being widely adopted.

Google has a very large program for developers that spans its entire range of
applications and services. Among the services highlighted are Google’s
AJAX APIs, the Google Web Toolkit, and in particular Google’s relatively
new Google Apps Engine hosting service. Using Google App Engine, you
can cre-ate Web applications in Java and Python that can be deployed on
Google’s infrastructure and scaled to a large size.

o

Exploring Google Applications

Few companies have had as much impact on their industries as Google has had on the computer
industry and on the Internet in particular. Some companies may have more Internet users
(Microsoft comes to mind) or have a stock valuation higher than Google (Apple currently fits that
description), but Google remains both a technology and thought leader for all things Internet. For
a company whose motto is “Don’t be evil,” the impact of consumer tracking and targeted
advertis-ing, free sourcing applications, and the relentless assault on one knowledge domain after
another has had a profound impact on the lives of many people. I call it the Google Effect.

The bulk of Google’s income comes from the sales of target advertising based on information that
Google gathers from your activities associated with your Google account or through cookies placed on
your system using its AdWords system. In 2009, Google’s revenue was $23.6 billion, and it controlled
roughly 65 percent of the search market through its various sites and services. The com-pany is highly
profitable, and that has allowed Google to create a huge infrastructure as well as launch many free
cloud-based applications and services that this chapter details. These applica-tions are offered mostly
on a free usage model that represents Google’s Software as a Service port-folio. A business model that
offers cloud-based services for free that are “good enough” is very compelling. While Google is slowly
growing a subscription business selling these applications to enterprises, its revenue represents only a
small but growing part of Google’s current income.

Google’s cloud computing services falls under two umbrellas. The first and best-known
offerings are an extensive set of very popular applications that Google offers to the general
public. These applications include Google Docs, Google Health, Picasa, Google Mail, Google
Earth, and many more. You can access a jump table of Google’s cloud-based user applications
by following the “More” and “Even More” links on Google’s home page to the More Google
Products page at http://www.google.com/intl/en/options/ shown in Figure 8.1; these features are
described in Table 8.1.

Because I cover many of these products in other chapters in this book, the focus in this chapter is
to survey the applications that Google offers, to understand why Google offers them as services,
and to gain some insight into their potential future role. Google’s cloud-based applications have
put many other vendors’ products—such as office suites, mapping applications, image-manage-
ment programs, and many other categories of traditional shrink-wrapped software—under consid-
erable pressure.

The second of Google’s cloud offerings is its Platform as a Service developer tools. In April 2008,
Google introduced a development platform for hosted Web applications using Google’s infrastruc-
ture called the Google App Engine (GAE). The goal of GAE is to allow developers to create and
deploy Web applications without worrying about managing the infrastructure necessary to have
their applications run. GAE applications may be written using many high-level programming lan-
guages (most prominently Java and Python) and the Google App Engine Framework, which
lowers the amount of development effort required to get an application up and running. Goggle
also allows a certain free level of service so that the application must exceed a certain level of
processor load, storage usage, and network bandwidth (Input/Output) before charges are assessed.

http://www.google.com/intl/en/options/

More Google Products equals fewer commercial products.

Google App Engine applications must be written to comply with Google’s infrastructure. This
nar-rows the range of application types that can be run on GAE; it also makes it very hard to port
applications to GAE. After an application is deployed on GAE, it is also difficult to port that
appli-cation to another platform. Even with all these limitations, the Google App Engine provides
devel-opers a low-cost option on which to create an application that can run on a world-class
cloud infrastructure—with all the attendant benefits that this type of deployment can bestow.

Surveying the Google Application Portfolio
It is fair to say that nearly all the products in Google’s application and service portfolio are cloud
computing services in that they all rely on systems staged worldwide on Google’s one million plus
servers in nearly 30 datacenters. Roughly 17 of the 48 services listed leverage Google’s search
engine in some specific way. Some of these search-related sites search through selected content
such as Books, Images, Scholar, Trends, and more. Other sites such as Blog Search, Finance,
News, and some others take the search results and format them into an Aggregation page. Figure

​​shows one of these aggregation pages: Google Finance.

Google’s Finance page at http://www.google.com/finance/ is an example of an aggregation page
provided by results from Google’s search engine.

Indexed search
Google’s search technology is based on automated page indexing and information retrieval by
Web crawlers, also called spiders or robots. Content on pages is scanned up to a certain number of
words and placed into an index. Google also caches copies of certain Web pages and stores copies
of documents it finds such as DOC or PDF files in its cache.

Google uses a patented algorithm to determine the importance of a particular page based on the
number of quality links to that page from other sites, along with other factors such as the use of
keywords, how long the site has been available, and traffic to the site or page. That factor is called
the PageRank, and the algorithm used to determine PageRank is a trade secret. Google is always
tweaking the algorithm to prevent Search Engine Optimization (SEO) strategies from gaming the
system. Based on this algorithm, Google returns what is called a Search Engine Results Page
(SERP) for a query that is parsed for its keywords.

It is really important to understand what Google (and other search engines) offers and what it
doesn’t offer. Google does not search all sites. If a site doesn’t register with the search engine or

http://www.google.com/finance/

​​Note

isn’t the target of a prominent link at another site, that site may remain undiscovered. Any site can place
directions in their ROBOTS.TXT file indicating whether the site can be searched or not, and if so what pages can
be searched. Google developed something called the Sitemaps protocol, which lets a Web site list in an XML file
information about how the Google robot can work with the site. Sitemaps can be useful in allowing content that
isn’t browsable to be crawled; they also can be use-ful as guides to finding media information that isn’t normally
considered, such as AJAX, Flash, or Silverlight media. The Sitemaps protocol has been widely adopted in the
industry.

While dynamic content presented in AJAX isn’t normally indexed, Google now has a procedure
that helps the Google engine crawl this information. You can read about it at:

http://code.google.com/web/ ajaxcrawling/. ◼

​​The dark Web
Online content that isn’t indexed by search engines belongs to what has come to be called the
“Deep Web”—that is, content on the World Wide Web that is hidden. Any site that suppresses
Web crawlers from indexing it is part of the Deep Web. You need go no further than the world’s
number two Web site, Facebook, for a prominent example of a site that isn’t indexed in search
engines.

Entire networks exist that aren’t searchable, particularly peer-to-peer networks. Ian Clarke’s
Freenet, which is a P2P network, supports both “darknet” and “opennet” connections. Freenet
(http://freenetproject.org/) has been downloaded by millions of people.

The Deep Web includes:

⚫​Database generated Web pages or dynamic content
⚫​Pages without links
⚫​Private or limited access Web pages and sites
⚫​Information contained in sources available through executable code such as JavaScript

⚫​Documents and files that aren’t in a form that can be searched, which includes not
only media files, but information in non-standard file formats

Although efforts are underway to enable information on the Deep Web to be searchable, the
amount of information stored that is not accessible is many times larger than the amount of infor-
mation that can currently be accessed. Some estimates at the size of the Dark Web suggest that it
could be an order of magnitude larger than the content contained in the world’s search engines.

It is always a good idea to keep these search engine limitations in mind when you work with
this technology.

http://code.google.com/web/
http://freenetproject.org/)

​​Aggregation and disintermediation
Aggregation pages are a great user service, but they are very controversial—as are a number of
Google’s search applications and services. It has long been argued that Google’s display of
informa-tion from various sites violates copyright laws and damages content providers. In several
lawsuits, Google successfully defended its right to display capsule information under the Digital
Millennium Copyright Act, while in other instances Google responds to requests from interested
parties to remove information from its site.

The Authors Guild’s filed a class action suit in 2005 regarding unauthorized scanning and copying
of books for the creation of the Google Books feature. Google reached a negotiated agreement
with the Authors Guild that specified Google’s obligations under the fair use exemption. Google
argues that the publicity associated with searchable content adds value to that content, and it is
clear that this is an argument that will continue into the future.

What is clear is that Google has been a major factor in a trend referred to as disintermediation.
Disintermediation is the removal of intermediaries such as a distributor, agent, broker, or some
similar functionary from a supply chain. This connects producers directly with consumers, which
in many cases is a very good thing. However, disintermediation also has the unfortunate side
effect of impacting organizations such as news collection agencies (newspapers, for example),
publishers, many different types of retail outlets, and many other businesses, some of which
played a positive role in the transactions they were involved in.

​​Note

Google began to introduce productivity applications starting in 2004 with Gmail. The expansion of these services
has continued unabated ever since. Some of these applications are homegrown, but many of them were acquired by
acquisition. An example of an acquired product is Writely, the online word processor that is now at the heart of
Google Docs and is described in Chapter 14.

​​Productivity applications and services
These products store your information online in a form that Google can use to build a profile of your activities,
and it is unclear how the company uses the information it stores. Google states that your information is never
viewed individually by humans, and the company lists its policies
in the Privacy Center, which you can find at http://www.google.com/privacypolicy.html. Google has been vigilant
in protecting its privacy reputation, but the collection of such a large amount of personal data must give any
thoughtful person reason for pause.

Space considerations preclude a more complete description of Google applications and services. Several books

treat this topic in detail, including Google Apps For Dummies by Ryan Teeter and Karl Barksdale, Wiley, 2008. ◼

Table 8.1 lists the current Google “products” listed on its Even More page.

http://www.google.com/privacypolicy.html

​​Google Products

Alerts​ http://www.google.com/ alerts?hl=en

http://www.google.com/

Sends a periodic e-mail alert to you based on your search term. Search news, blogs, discussions,
video, or everything.

Blog Search​ http://www.google.com/​ Displays an aggregation page from
blogsearch?hl=en​ blogs.

Blogger​ http://www.blogger.com/​ A blogging site for personal blogs. See
start?hl=en​ Chapter 18 for a description of blogging

services.

Books​ http://books.google.com/​ A vast library of book content in the
books?hl=en​ public domain and previews of copy-

righted material.

Calendar​ http://www.google.com/calendar/​ Calendar service for managing sched-
render?hl=en​ ules and events and sharing them with

others.

Chrome​ http://www.google.com/​ Google’s browser and operating system
chrome?hl=en&brand=CHMI​ wannabe.

Checkout​ http://checkout.google.com/​ A payment processing system.

Code​ http://code.google.com/intl/en/​ Developer tools and resources.
Described more fully later in this
chapter.

Custom Search​ http://www.google.com/coop/​ Creates a custom search utility for a
cse/?hl=en​ particular Web site.

Desktop​ http://desktop.google.com/​ Indexes content on your local drive
en/?ignua=1​ for fast searches. Adds a sidebar with

gadgets.

Directory​ http://www.google.com/​ Search the Web by topics, a la Yahoo!
dirhp?hl=en

Docs​ http://docs.google.com/​ Online productivity applications.
Described in Chapter 16.

Earth​ http://earth.google.com/intl/en/​ An online atlas and mapping service
with mashups.

Finance​ http://www.google.com/finance​ A financial news aggregation service
and site.

GOOG-411​ http://www.google.com/goog-411/​ Mobile phone search.

Google Health​ http://www.google.com/health/​ Health information management
system.

(continued)

TABLE 8.1 (continued)

Product Name URL Google Description

Groups http://www.google.com/
grphp?hl=en

Discussion groups on specific topics.

iGoogle http://www.google.com/
ig?hl=en&source=mpes

AJAX customized home page.

Images http://images.google.com/
imghp?hl=en

Web image search.

http://www.google.com/
http://www.blogger.com/
http://books.google.com/
http://www.google.com/calendar/
http://www.google.com/
http://checkout.google.com/
http://code.google.com/intl/en/
http://www.google.com/coop/
http://desktop.google.com/
http://www.google.com/
http://docs.google.com/
http://earth.google.com/intl/en/
http://www.google.com/finance
http://www.google.com/goog-411/
http://www.google.com/health/
http://www.google.com/
http://www.google.com/
http://images.google.com/

Knol http://knol.google.com/k?hl=en Short articles submitted by users.

Labs http://labs.google.com/ A collection of applications and utilities
under development and testing.

Orkut https://www.orkut.com/ Social media service with instant
messaging. Described in Chapter 18.

Maps http://maps.google.com/?hl=en Mapping and direction service.
Maps for http://www.google.com/mobile/ Mapping and direction service. Works
Mobile default/maps.html with GPS on mobile devices.
Mobile http://www.google.com/mobile/ Mobile search using voice and location.

News http://news.google.com/
news?ned=en

News aggregation service and Web site.

Pack http://pack.google.com/?hl=en Free Windows-based software selected
by Google, including Chrome, apps,
Desktop, Earth, Picasa, Adobe Reader,
Talk, RealPlayer, Skype, and others.

Patent Search http://www.google.com/
patents?hl=en

Patent and trademark search of the
United States Patents and Trademark
Office.

Picasa http://picasa.google.com/intl/
en/

Photo-editing and management
software.

Product Search http://www.google.com/products Shopping search function.

Reader http://www.google.com/reader/
view/?hl=en&source=mmm-en

An RSS reader.

Scholar http://www.google.com/
schhp?hl=en

Search site for research and scholarly
work from many disciplines.

Search for http://www.google.com/mobile/ Google’s search application optimized
Mobile default/search.html for mobile devices.

Sites http://sites.google.com/ Web site and wiki creation and staging
tool.

SketchUp http://sketchup.google.com/intl/
en/

Allows users to create 3D models and
share them with others.

http://knol.google.com/k?hl=en
http://labs.google.com/
http://www.orkut.com/
http://maps.google.com/?hl=en
http://www.google.com/mobile/
http://www.google.com/mobile/
http://news.google.com/
http://pack.google.com/?hl=en
http://www.google.com/
http://picasa.google.com/intl/
http://www.google.com/products
http://www.google.com/reader/
http://www.google.com/
http://www.google.com/mobile/
http://sites.google.com/
http://sketchup.google.com/intl/

Product Name URL Google Description

Talk http://www.google.com/talk/ Instant messaging and chat utility.
Can be integrated in Gmail.

Toolbar http://toolbar.google.com/
intl/en/

Provides search features inside different
browsers.

Translate http://translate.google.
com/?hl=en

Language translation utility.

Trends http://www.google.com/trends Statistical information on different
search terms.

Videos http://video.google.com/?hl=en Searches for videos on the Web.

Voice http://voice.google.com/ Free phone service, formerly called
Grand Central. Described in Chapter 19.

Web Search http://www.google.com/
webhp?hl=en

Google’s core Web search engine of
indexed pages sorted with page rank.

Web Search http://www.google.com/intl/en/ A help page for special Web searches in
Features help/features.html Google.
YouTube http://www.youtube.com/ Flash video sharing site. Described in

Chapter 19.

Source: http://www.google.com/intl/en/options/.

​​Enterprise offerings
As Google has built out its portfolio, it has released special versions of its products for the
enter-prise. The following are among Google’s products aimed at the enterprise market:

⚫​ Google Commerce Search (http://www.google.com/commercesearch/): This is a search

service for online retailers that markets their products in their site searches with a number
of navigation, filtering, promotion, and analytical functions.

⚫​ Google Site Search (http://www.google.com/sitesearch/): Google sells its search engine
customized for enterprises under the Google Site Search service banner. The user enters a
search string in the site’s search, and Google returns the results from that site.

⚫​ Google Search Appliance (http://www.google.com/enterprise/gsa): This server can be
deployed within an organization to speed up both local (Intranet) and Internet searching.
The three versions of the Google Search Appliance can store an index of up to 300,000
(GB- 1001), 10 million (GB-5005), or 30 million (GB-8008) documents. Beyond indexing,
these appliances have document management features, perform custom searches, cache
content, and give local support to Google Analytics and Google Sitemaps.

⚫​ Google Mini (http://www.google.com/enterprise/mini/): The Mini is the smaller
version of the GSA that stores 300,000 indexed documents.

http://www.google.com/talk/
http://toolbar.google.com/
http://translate.google/
http://www.google.com/trends
http://video.google.com/?hl=en
http://voice.google.com/
http://www.google.com/
http://www.google.com/intl/en/
http://www.youtube.com/
http://www.google.com/intl/en/options/
http://www.google.com/commercesearch/)
http://www.google.com/sitesearch/)
http://www.google.com/enterprise/gsa)
http://www.google.com/enterprise/mini/)

Google also has some success in marketing its productivity applications as office suites to
organiza-tions. Google uses different names for the different bundles under a branded program
called Google Apps for Business (http://www.google.com/apps/intl/en/business/index. html). Figure
​​shows the home page for Google’s various office suite bundles. The company has packages for
governments, schools, non-profits, and ISPs (a reseller program). Google claims that some 8
million students now use Google Apps, and Google Apps has had some large govern-ment
purchases, such as the City of Los Angeles.

For business and other organizations such as governmental agencies, the company has a branded
Google Apps Premier Edition, which is a paid service. The different versions offer Gmail, Docs, and
Calendar as core applications. The Premier Edition adds 25GB of Gmail storage, e-mail server
synchronization, Groups, Sites, Talk, Video, enhanced security, directory services, authentication and
authorization services, and the customer’s own supported domain—all hosted in the cloud. Premium
Edition also adds access to Google APIs and a 24/7 support service with a 99.9-percent uptime
guarantee Service Level Agreement. The cost per use is $50 per user account/per year.

Google Apps for Business is the commercial versions of the company’s productivity suites.

http://www.google.com/apps/intl/en/business/index

To support Google’s Premier and Education Editions’ Gmail, Google purchased the Postini
archiving and discovery service. Google Postini Services (http://www.google.com/ postini/) provides
security services such as threat assessment, proactive link blocking and Web policy enforcement, e-
mail message encryption, message archiving, and message discovery services. These are paid
services that add from $12 to $45 per user/per year, based on the options chosen. Postini allows e-
mail to be retained for up to 10 years and can be used to demonstrate regulatory compliance.

Many of Google’s productivity applications are quite capable, but none is a state-of-the-art client
you might expect to find in a locally installed office suite. When compared one-on-one to
Microsoft Office applications, Google’s online offerings give users the essential features for a
frac-tion of the Microsoft Office price.

Most sophisticated users prefer Microsoft Office, but for the average user (that is most people)
Google App bundles are good enough. When that low price is coupled with the collaborative tools
and features Google offers, the value of Google Apps will be increasingly more appealing. We can
reasonably expect that cloud-based productivity apps will put their shrink-wrapped competitors
under great pressure. Microsoft’s current strategy of putting crippled Office applications on the Web
in Windows Live isn’t going to be competitive.

​​AdWords
AdWords (http://www.google.com/AdWords) is a targeted ad service based on matching advertisers
and their keywords to users and their search profiles. This service transformed Google from a
competent search engine into an industry giant and is responsible for the majority of Google’s
revenue stream. AdWords’ two largest competitors are Microsoft adcenter (http://
adcenter.microsoft.com/) and Yahoo! Search Marketing (http://searchmarketing. yahoo.com/).

Ads are displayed as text, banners, or media and can be tailored based on geographical location,
frequency, IP addresses, and other factors. AdWords ads can appear not only on Google.com, but on
AOL search, Ask.com, and Netscape, along with other partners. Other partners belonging to the
Google Display Network can also display AdSense ads. In all these cases, the AdWords system
determines which ads to match to the user searches.

Here’s how the system works: Advertisers bid on keywords that are used to match a user to their
product or service. If a user searches for a term such as “develop abdominal muscles,” Google
returns products based on those terms. You might see an ad with Chuck Norris selling a modern-
day version of a torture rack that, if it doesn’t give you a six-pack, at least makes your wallet
lighter. Up to 12 ads per search can be returned.

Google gets paid for the ad whenever a user clicks it. The system is referred to as pay-per-click
advertising, and the success of the ad is measured by what is called the click-through rate (CTR).
Google calculates a quality score for ads based on the CTR, the strength of the connection between
the ad and the keywords, and the advertiser’s history with Google. This quality score is a Google
trade secret and is used to price the minimum bid of a keyword.

http://www.google.com/
http://www.google.com/AdWords)
http://searchmarketing/

In 2007, Google purchased DoubleClick, an Internet advertising services company. DoubleClick
helps clients create ads, provides hosting services, and tracks results for analysis. DoubleClick ads
leave browser cookies on systems that collect information from users that determine the number of
times a user has been exposed to a particular ad, as well as various system characteristics. Some
spyware trackers flag DoubleClick cookies as spyware. Both AdWords and DoubleClick are sold
as packages to large clients.

​​Google Analytics
Google Analytics (GA; http://google.com/analytics) is a statistical tool that measures the number
and types of visitors to a Web site and how the Web site is used. It is offered as a free ser-vice and
has been adopted by many Web sites. GA is built on the Urchin 5 analytical package that Google
acquired in 2006. Figure 8.4 shows the Google Analytics home page.

According to Builtwith.com (http://trends.builtwith.com/analytics/Google-Analytics), Google
Analytics was in use on 54 percent of the top 10,000 and 100,000, and 35 percent of the top one
million of the world’s Web sites. Builtwith.com speculates that Google Analytics JavaScript tag is
the most widely used URL in the world today. The service BackendBattles.com
(http://www.backendbattles.com/backend/Google_Analytics) sets GA’s market share at 57 percent for
the top 10,000 sites.

Google Analytics is the most widely used Web traffic analysis tool on the Internet.

http://google.com/analytics)
http://trends.builtwith.com/analytics/Google-Analytics)
http://www.backendbattles.com/backend/Google_Analytics)

Analytics works by using a JavaScript snippet called the Google Analytics Tracking Code (GATC) on
individual pages to implement a page tag. When the page loads, the JavaScript runs and creates a first-
party browser cookie that can be used to manage return visitors, perform tracking, test browser
characteristics, and request tracking code that identifies the location of the visitor. GATC requests and
stores information from the user’s account. The code stored on the user’s system acts like a beacon and
collects visitor data that it sends back to GA servers for processing.

Among the visitors that can be tracked are those that land from search engines; referral links in e-
mail, documents, and Web pages; display ads; PPC networks; and some other sources. GA aggre-
gates the data and presents the information in a visual form. GA also is connected to the AdWords
system so it can track the performance of particular ads in different contexts. You can view referral
location statistics and time spent on a page, and you can filter by visitor site. GA lets you save and
store up to 50 individual site profiles, provided the site has less than 5 million pageviews per month.
This restriction is lifted for an AdWords subscription.

GA cookies are blocked by a number of technologies, such as Firefox Adblock and NoScript or by
turning off JavaScript execution in other browsers. You also can delete GA cookies manually or
block them, which also defeats the system.

​​Google Translate
Of all the Google applications, the one that might have significant immediate impact is Google
Translate. Computer technology is very close to having the necessary hardware and software to
realize the dream of a “universal translator” that the TV show Star Trek proposed some 45 years
ago. The current version of Google Translate performs machine translation as a cloud service
between two of your choice of 35 different languages. That’s not truly universal, but until aliens
appear, it will do for most people.

Google Translate was introduced in 2007 and replaced the SYSTRAN system that many other com-
puter services utilize. The translation method uses a statistical approach that was first developed by
Franz-Joseph Och in 2003. Och now heads the Translate effort at Google.

Translate uses what is referred to as a corpus linguistics approach to translation. You start off
building a translation system for a language pair by collecting a database of words and then match-
ing that database to two bilingual text corpuses. A text corpus or parallel collection is a database of
word- and phrase-usage taken from the language in everyday use obtained by examining docu-ments
translated by professionals to software analysis. Among the documents that are analyzed are the
translations of the United Nations and European Parliament, among others.

Google Translate can be accessed directly at http://translate.google.com/ translate_t?hl=en#,
where you can select the language pair to be translated. You can do the following:

⚫​ Enter text directly into the text box, and click the Translate button to have the text translated.

If you select the Detect Language option, Translate tries to determine the language auto-
matically and translate it into English.

⚫​ Enter a URL for a Web page to have Google display a copy of the translated Web page.

http://translate.google.com/

⚫​Enter a phonetic equivalent for script languages.
⚫​Upload a document to the page to have it translated.

Translate parses the document into words and phrases and applies its statistical algorithm to make
the translation. As the service ages, the translations are getting more accurate, and the engine is
being added to browsers such as Google Chrome and through extension into Mozilla Firefox. The
Google Toolbar offers page translation as one of its options, selectable in the Tools settings.

The Google Translator Toolkit (http://translate.google.com/toolkit) shown in Figure 8.5 provides a
means for using the Translate to perform translations that you can edit. Shown in the figure is the
translation of an article from the English version of Wikipedia into Spanish. The toolkit provides
access to tools to aid you in editing the translation.

Translation services have been in development for many years. IBM has had a large effort in this area,
and the Microsoft Bing search engine also has a translation engine. There are many other translation
engines, and some of them are even cloud-based like Google Translate. What makes Google’s efforts
potentially unique is the company’s work in language transcription—that is, the conversion of voice to
text. As part of Google Voice and its work with Android-based cell phones, Google is sampling and
converting millions and millions of conversations. Combining these two Web services together could
create a translation device based on a cloud service that would have great utility.

The Google Translator Toolkit lets you translate documents, Web pages, and other material from
one language to another and provides tools to improve on the translation.

http://translate.google.com/toolkit)

Exploring the Google Toolkit

Google has an extensive program that supports developers who want to leverage Google’s cloud-
based applications and services. These APIs reach into every corner of Google’s business.
Google’s Code Home page for developers may be found at http://code.google.com and is shown in
Figure 8.6. From this site, you can access developer tools, information on how to use its various
APIs to include Google services in your own work, and technical resources.

Google’s Code page at http://code.google.com/intl/en/

Google has a number of areas in which it offers development services, including the following:

⚫​AJAX APIs (http://code.google.com/intl/en/apis/ajax/) are used to build widgets and other
applets commonly found in places like iGoogle. AJAX provides access to dynamic
information using JavaScript and HTML.

⚫​Android (http://developer.android.com/index.html) is a phone operating system
development.

http://code.google.com/
http://code.google.com/intl/en/
http://code.google.com/intl/en/apis/ajax/)
http://developer.android.com/index.html)

⚫​Google App Engine (http://appengine.google.com/) is Google’s Platform as a Service
(PaaS) development and deployment system for cloud computing applications.

⚫​Google Apps Marketplace (http://code.google.com/intl/en/googleapps/ marketplace/)
offers application development tools and a distribution channel for cloud-based
applications.

⚫​Google Gears (http://gears.google.com/) is a service that provides offline access to online
data.

Google Gears includes a database engine installed on the client that caches data and syn-
chronizes it. Gears allows cloud-based applications to be available to a client even when a
network connection to the Internet isn’t available. Using Gears, you could work on your
mail in Gmail offline, for example.

⚫​Google Web Toolkit (GWT; http://code.google.com/webtoolkit) is a set of development
tools for browser-based applications.

GWT is an open-source platform that has been used to create Google Wave and Google
AdWords. GWT allows developers to create AJAX applications using Java or with the
GWT compiler using JavaScript.

⚫​Project Hosting (http://code.google.com/intl/en/projecthosting/) is a project management
tool for managing source code.

​​The Google APIs
Most Google services are exposed by an API, which is why you find a version of Google’s
search engine, Google Maps, YouTube videos, Google Earth, AdWords, AdSense, and even
elements of Google Apps exposed in many other Web sites. You can get to the listing of the
Google APIs by clicking the More Products link on the Code page (refer to Figure 8.6). The
page you see is http://code.google.com/intl/en/more/, which is shown in Figure 8.7.

Google’s APIs can be categorized as belonging to the following categories:

⚫​ Ads and AdSense: These APIs allow Google’s advertising services to be integrated

into Web applications. The most commonly used services in this category are
AdWords, AdSense, and Google Analytics.

⚫​ AJAX: The Google AJAX APIs provide a means to add content such as RSS feeds,
maps, search boxes, and other information sources by including a snippet of JavaScript
into your code.

⚫​ Browser: Google has several APIs related to building browser-based applications,
includ-ing four for the Chrome browser. This category includes the Google Cloud Print
API, the Installable Web Apps API for creating installation packages, the Google Web
Toolkit for building AJAX applications using Java, and V8, which is a high-performance
JavaScript engine.

⚫​ Data: The Data APIs are those that exchange data with a variety of Google services. The
list of Google Data APIs includes Google Apps, Google Analytics, Blogger, Base, Book,

http://appengine.google.com/)
http://code.google.com/intl/en/googleapps/
http://gears.google.com/)
http://code.google.com/webtoolkit)
http://code.google.com/intl/en/projecthosting/)
http://code.google.com/intl/en/more/

Calendar, Code Search, Google Earth, Google Spreadsheets, Google Notebook, and
Picasa Web Albums.

⚫​ Geo: A number of APIs exist to give location-specific information hooking into
maps and geo-specific databases. Some of the more popular APIs in this category
include Google Earth, Directions, JavaScripts Maps, Maps API for Flash, and Static
Maps.

⚫​ Search: The search APIs leverage Google’s core competency and its central service. APIs
such as Google AJAX Search, Book Search, Code Search, Custom Search, and
Webmaster Tools Data APIs allow developers to include Google searches in their
applications and web sites.

⚫​ Social: Many Google APIs are used for information exchange and communication
tools. They support applications such as Gmail, Calendar, and others, and they provide a
set of foundation services. The popular social APIs are Blogger Data, Calendar,
Contacts, OpenSocial, Picasa, and YouTube.

​​Summary

In this chapter, you learned about all things Google. The range of applications and services that
Google offers is truly impressive; the company is essentially a self-contained ecosystem. Google’s
empire is built on its highly regarded search engine. The company monetized search technology by
attaching target advertising to searches that its users perform. This revenue has allowed Google to
create a range of applications and services on the Web that are having real impact in society.

In this chapter, the applications and services were listed, as were the APIs that are built on these
applications and services. Google makes nearly all the products accessible through its APIs. That
is why you find Google’s services on so many of the world’s Web sites.

This chapter ended by describing Google App Engine, a Platform as a Service Web-hosting offering that
allows you to create Web applications and deploy them on Google’s own infrastructure. Development
and deployment of these applications are free, as is some basic usage of the applica-tion. You can scale
your applications on a pay-per-use basis to whatever size you need.

In Chapter 9, I examine the approach of Amazon Web Services in cloud computing. AWS offers
a very different service model, operating as an Infrastructure as a Service (IaaS) provider.

​​Using Amazon Web
Services

Amazon.com is one of the most important and heavily trafficked Web sites in
the world. It provides a vast selection of products using an infrastructure
based on Web services. As Amazon.com has grown, it

has dramatically grown its infrastructure to accommodate peak traffic times.
Over time the company has made its network resources available to partners
and affiliates, which also has improved its range of products.

Starting in 2006, Amazon.com made its Web service platform available to
developers on a usage-basis model. The technologies described in this chap-
ter represent perhaps the best example of Web services achieved through the
Service Oriented Architecture of components that you learn about in
Chapter 13. Through hardware virtualization on Xen hypervisors, Amazon.
com has made it possible to create private virtual servers that you can run
worldwide. These servers can be provisioned with almost any kind of appli-
cation software you might envisage, and they tap into a range of support ser-
vices that not only make distributed cloud computing applications possible,
but make them robust. Some very large Web sites are running on Amazon.
com’s infrastructure without their client audience being any the wiser.

Amazon Web Services is based on SOA standards, including HTTP, REST,
and SOAP transfer protocols, open source and commercial operating
systems, application servers, and browser-based access. Virtual private
servers can provision virtual private clouds connected through virtual private
networks providing for reasonable security and control by the system
administrator.

AWS has a great value proposition: You pay for what you use. While you
may not save a great deal of money over time using AWS for enterprise
class Web applications, you encounter very little barrier to entry in terms of
get-ting your site or application up and running quickly and robustly. AWS
has much to teach us about the future of cloud computing and how virtual
infra-structure can be best leveraged as a business asset.

​​Understanding Amazon Web Services

The Amazon is the world’s largest river. Amazon.com is the world’s largest online retailer with
net sales in $24.51 billion, according to their 2009 annual report. The company is a long way past
sell-ing books and records. While Amazon.com is not the earth’s biggest retailer (that spot is
reserved for Wal-Mart), Amazon.com offers the largest number of retail product SKUs through a
large eco-system of partnerships. By any measure, Amazon.com is a huge business. To support
this business, Amazon.com has built an enormous network of IT systems to support not only
average, but peak customer demands. Amazon Web Services (AWS) takes what is essentially
unused infrastructure capacity on Amazon.com’s network and turns it into a very profitable
business. Figure 9.1 shows the Amazon Web Services home page (http://aws.amazon.com/).

AWS is having enormous impact in cloud computing. Indeed, Amazon.com’s services represent
the largest pure Infrastructure as a Service (IAAS) play in the marketplace today. It is also one of
the best examples of what is possible using a Service Oriented Architecture (SOA), which is
described in Chapter 13. The structure of Amazon.com’s Amazon Web Services (AWS) is
therefore highly educational in understanding just how disruptive cloud computing can be to
traditional fixed asset IT deployments, how virtualization enables a flexible approach to system
rightsizing, and how dispersed systems can impart reliability to mission critical systems.

Amazon Web Services home page

For these reasons, even though Amazon.com’s IaaS services are described in other chapters
indi-vidually, this chapter provides background to the entire portfolio and shows why Amazon

http://aws.amazon.com/)

Web Services is a $500 million business that hosts eight of the top ten Facebook games (http://
gigaom.com/2010/08/02/amazon-web-services-revenues/; and http://
venturebeat.com/2010/08/03/amazon-web-services-generating-an-estimated-500m-in-revenue-thanks-
in-part-to-growth-of-social-games/). In 2008 AWS claimed 330,000 unique accounts, although the
press release for that claim has now disappeared.

​​Cross-Ref
In Chapter 4, “Understanding Services and Applications by Type,” this form of cloud computing is defined as one
that provides computer infrastructure usually in the form of a virtualized operating system environment. IaaS is
characterized by virtual private servers running operating system and networked application instances, virtual

storage, virtual data centers, and networks sold on a per-use or utility basis. ◼

Amazon Web Services represents only a small fraction of Amazon’s overall business sales at the
moment, but it is a rapidly growing component. Amazon doesn’t break down its sales by individ-
ual areas in its annual report, but according to Randy Bias who blogs on the site Cloudscaling.com
(http://cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-annually) the largest
component of Amazon’s offerings is Amazon’s Elastic Compute Cloud (EC2), which generates in
excess of $220 million annually as of October 2009. EC2 is esti-mated to run on over 40,000+
servers worldwide divided into six availability zones. (You learn about EC2 later in this chapter.)
EC2 is an Infrastructure as a Service (IaaS) play, a market that was pegged to be around $400-
$600 M/year and growing 10%-20%/year even in the face of a dramatic market slowdown.
Rackspace Cloud (http://www.rackspacecloud.com/), EC2’s nearest competitor, is pegged to be
around 10% the size of EC2 by Bias.

​​Amazon Web Service
Components and Services
Amazon Web Services is comprised of the following components, listed roughly in their order
of importance:

⚫ Amazon Elastic Compute Cloud (EC2; http://aws.amazon.com/ec2/), is the central

application in the AWS portfolio. It enables the creation, use, and management of virtual
private servers running the Linux or Windows operating system over a Xen hyper-visor.
Amazon Machine Instances are sized at various levels and rented on a computing/ hour
basis. Spread over data centers worldwide, EC2 applications may be created that are
highly scalable, redundant, and fault tolerant. EC2 is described more fully the next
section. A number of tools are used to support EC2 services:

Amazon Simple Queue Service (SQS; http://aws.amazon.com/sqs/) is a message
queue or transaction system for distributed Internet-based applications. See
“Examining the Simple Queue Service (SQS)” later in this chapter for a description
of this AWS feature. In a loosely coupled SOA system, a transaction manager is
required to ensure that messages are not lost when a component isn’t available.

http://cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-annually)
http://www.rackspacecloud.com/)
http://aws.amazon.com/ec2/)
http://aws.amazon.com/sqs/)

Amazon Simple Notification Service (SNS; http://aws.amazon.com/sns/) is a Web
service that can publish messages from an application and deliver them to other
applications or to subscribers. SNS provides a method for triggering actions,
allowing clients or applications to subscribe to information (like RSS), or polling for
new or changed information or perform updates.
EC2 can be monitored by Amazon CloudWatch (http://aws.amazon.com/
cloudwatch/), which provides a console or command line view of resource utiliza-
tion, site Key Performance Indexes (performance metrics), and operational indicators
for factors such as processor demand, disk utilization, and network I/O. The metrics
obtained by CloudWatch may be used to enable a feature called Auto Scaling
(http://aws.amazon.com/autoscaling/) that can automatically scale an EC2
site based on a set of rules that you create. Autoscaling is part of Amazon Cloudwatch
and available at no additional charge.

Amazon Machine Instances (AMIs) in EC2 can be load balanced using the Elastic
Load Balancing (http://aws.amazon.com/elasticloadbalancing/) fea-ture. The Load
Balancing feature can detect when an instance is failing and reroute traffic to a
healthy instance, even an instance in other AWS zones. The Amazon CloudWatch
metrics request count and request latency that show up in the AWS con-sole are used
to support Elastic Load Balancing.

⚫​Amazon Simple Storage System (S3; http://aws.amazon.com/s3/) is an online backup
and storage system, which is described in “Working with Amazon Simple Storage
System (S3)” later in this chapter.

A high speed data transfer feature called AWS Import/Export (http://aws.amazon.
com/importexport/) can transfer data to and from AWS using Amazon’s own internal
network to portable storage devices.

⚫​Amazon Elastic Block Store (EBS; http://aws.amazon.com/ebs/) is a system for creating
virtual disks (volume) or block level storage devices that can be used for Amazon
Machine Instances in EC2.

⚫​Amazon SimpleDB (http://aws.amazon.com/simpledb/) is a structured data store that
supports indexing and data queries to both EC2 and S3. SimpleDB isn’t a full database
implementation, as you learn in “Exploring SimpleDB (S3)” later in this chapter; it
stores data in “buckets” and without requiring the creation of a database schema. This
design allows SimpleDB to scale easily. SimpleDB interoperates with both Amazon EC2
and Amazon S3.

⚫​Amazon Relational Database Service (RDS; http://aws.amazon.com/rds/) allows you to
create instances of the MySQL database to support your Web sites and the many
applications that rely on data-driven services. MySQL is the “M” in the ubiquitous LAMP
Web services platform (for Linux, APACHE, MySQL, and PERL), and the inclusion of
this service allows developers to port applications, their source code, and databases
directly over to AWS, preserving their previous investment in these technologies. RDS
provides features such as automated software patching, database backups, and automated
database scaling via an API call.

http://aws.amazon.com/sns/)
http://aws.amazon.com/
http://aws.amazon.com/autoscaling/)
http://aws.amazon.com/elasticloadbalancing/)
http://aws.amazon.com/s3/)
http://aws.amazon/
http://aws.amazon.com/ebs/)
http://aws.amazon.com/simpledb/)
http://aws.amazon.com/rds/)

⚫ Amazon Cloudfront (http://aws.amazon.com/cloudfront/) is an edge-storage or content-
delivery system that caches data in different physical locations so that user access to data
is enhanced through faster data transfer speeds and lower latency. Cloudfront is similar
to systems such as Akamai.com, but is proprietary to Amazon.com and is set up to work
with Amazon Simple Storage System (Amazon S3). Cloudfront is currently in beta, but
has been well received in the trade press. See “Defining Cloudfront” later in this chapter
for more details.

​​Cross-Ref
The importance of a message queue system for distributed applications is described in

Chapter 13, “Understanding Service Oriented Architecture.” ◼

While the list above represents the most important of the AWS offerings, it is only a partial list—
a list that is continually growing and very dynamic. A number of services and utilities support
Amazon partners or the AWS infrastructure itself. These are the ones you may encounter:

⚫​Alexa Web Information Service (http://aws.amazon.com/awis/) and Alexa Top Sites

(http://aws.amazon.com/alexatopsites/) are two services that collect and expose information
about the structure and traffic patterns of Web sites. This infor-mation can be used to
build or structure Web sites, access related sites, analyze historical patterns for growth
and relationships, and perform data analysis on site information. Alexa Top Sites can
rank sites based on their usage and be used to structure awareness of site popularity into
the structure of Web service you build.

⚫​Amazon Associates Web Services (A2S) is the machinery for interacting with Amazon’s
vast product data and eCommerce catalog function. This service, which was called
Amazon E-Commerce Service (ECS), is the means for vendors to add their products to
the Amazon.com site and take orders and payments.

⚫​Amazon DevPay (http://aws.amazon.com/devpay/) is a billing and account man-agement
service that can be used by businesses that run applications on top of AWS. DevPay
provides a developer API that eliminates the need for application developers to build
order pipelines, because Amazon does the billing based on your prices and then uses
Amazon Payments to collect the payments.

⚫​Amazon Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/) is an interactive
data analysis tool for performing indexing, data mining, file analysis, log file analysis,
machine learning, financial analysis, and scientific and bioinformatics research.
Elastic MapReduce is built on top of a Hadoop framework using the
Elastic Compute Cloud (EC2) and Simple Storage Service (S3).

⚫​Amazon Mechanical Turk (http://aws.amazon.com/mturk/) is a means for accessing
human researchers or consultants to help solve problems on a contractual or
temporary basis. Problems solved by this human workforce have included object
identifi-cation, video or audio recording, data duplication, and data research.
Amazon.com calls this type of work Human Intelligence Tasks (HITs). The
Mechanical Turk is currently in beta.

http://aws.amazon.com/cloudfront/)
http://aws.amazon.com/awis/)
http://aws.amazon.com/alexatopsites/)
http://aws.amazon.com/devpay/)
http://aws.amazon.com/elasticmapreduce/)
http://aws.amazon.com/mturk/)

⚫​AWS Multi-Factor Authentication (AWS MFA; http://aws.amazon.com/mfa/) is a
special feature that uses an authentication device you have in your possession to provide
access to your AWS account settings. This hardware key generates a pseudo-random six-
digit number when you press a button that you enter into your logon. This gives you two
layers of protection: your user id and password (things you know) and the code from
your hardware key (something you have). This multifactor security feature can be
extended
to Cloudfront and Amazon S3. The Enzio Time Token from Gemalto (http://online
noram.gemalto.com/) is available for use with Amazon Web Service; the key
costs $12.99.

Secure access to your EC2 AMIs is controlled by passwords, Kerberos, and
509 Certificates.

⚫​Amazon Flexible Payments Service (FPS; http://aws.amazon.com/fps/) is a pay-ments-
transfer infrastructure that provides access for developers to charge Amazon’s cus-tomers
for their purchases. Using FPS, goods, services, donations, money transfers, and recurring
payments can be fulfilled. FPS is exposed as an API that sorts transactions into packages
called Quick Starts that make this service easy to implement.

⚫​Amazon Fulfillment Web Services (FWS; http://aws.amazon.com/fws/) allows
merchants to fill orders through Amazon.com fulfillment service, with Amazon
handling the physical delivery of items on the merchant’s behalf. Merchant inventory is
preposi-tioned in Amazon’s fulfillment centers, and Amazon packs and ships the items.
There is no charge for using Amazon FWS; fees for the Fulfillment by Amazon (FBA;
http:// www.amazon.com/gp/seller/fba/fulfillment-by-amazon.html) service apply. Between
FBA and FWS, you can create a nearly virtual store on Amazon.com.

⚫​Amazon Virtual Private Cloud (VPC; http://aws.amazon.com/vpc/) provides a bridge
between a company’s existing network and the AWS cloud. VPC connects your network
resources to a set of AWS systems over a Virtual Private Network (VPN) connec-tion
and extends security systems, firewalls, and management systems to include their
provisioned AWS servers. Amazon VPC is integrated with Amazon EC2, but Amazon
plans to extend the capabilities of VPC to integrate with other systems in the Amazon
cloud computing portfolio.

⚫​AWS Premium Support (http://aws.amazon.com/premiumsupport/) is Amazon’s
technical support and consulting business. Through AWS Premium Support, subscribers
to AWS can get help building or supporting applications that use EC2, S3, Cloudfront,
VPC, SQS, SNS, SimpleDB, RDS, and the other services listed above. Service plans
are available on a per-incidence, monthly, or unlimited basis at different levels
of service.

With this overview of AWS components complete, let’s look at the central part of Amazon Web
Service’s value proposition, the creation and deployment of virtual private servers using the
Elastic Compute Cloud (EC2) service.

http://aws.amazon.com/mfa/)
http://online/
http://aws.amazon.com/fps/)
http://aws.amazon.com/fws/)
http://www.amazon.com/gp/seller/fba/fulfillment-by-amazon.html)
http://aws.amazon.com/vpc/)
http://aws.amazon.com/premiumsupport/)

​​Working with the Elastic
Compute Cloud (EC2)

Amazon Elastic Compute Cloud (EC2) is a virtual server platform that allows users to create and
run virtual machines on Amazon’s server farm. With EC2, you can launch and run server
instances called Amazon Machine Images (AMIs) running different operating systems such as
Red Hat Linux and Windows on servers that have different performance profiles. You can add or
subtract virtual servers elastically as needed; cluster, replicate, and load balance servers; and
locate your different servers in different data centers or “zones” throughout the world to provide
fault tolerance. The term elastic refers to the ability to size your capacity quickly as needed.

The difference between an instance and a machine image is that an instance is the emulation of a
hardware platform such as X86, IA64, and so on running on the Xen hypervisor. A machine
image is the software and operating system running on top of the instance. A machine image may
be thought of as the contents of a boot drive, something that you could package up with a
program such as Ghost, Acronis, or TrueImage to create a single file containing the exact contents
of a vol- ume. A machine image should be composed of a hardened operating system with as few
features and capabilities as possible and locked down as much as possible.

Consider a situation where you want to create an Internet platform that provides the following:

⚫​A high transaction level for a Web application
⚫​A system that optimizes performance between servers in your system
⚫​Data driver information services
⚫​Network security
⚫​The ability to grow your service on demand

Implementing that type of service might require a rack of components that included the following:

⚫​An application server with access to a large RAM allocation
⚫​A load balancer, usually in the form of a hardware appliance such as F5’s BIG-IP
⚫​A database server
⚫​Firewalls and network switches
⚫​Additional rack capacity at the ISP

A physical implementation of these components might cost you something in the neighborhood of
$25,000 depending upon the scale of your application. With AWS, you might be able to have an
equivalent service for as little as $1,000 and have a high level of availability and reliability to
boot. This difference may surprise you, but it is understandable when you consider that AWS can
run its services with a much greater efficiency than your company would alone and therefore
amortize its investment in hardware over several customers. That is the promise and the potential
of cloud computing realized and why large Web sites such as Recovery.gov have moved to AWS.

​​Amazon Machine Images
AMIs are operating systems running on the Xen virtualization hypervisor. Each virtual private
server is accorded a size rating called its EC2 Compute Unit, which is pegged to the equivalent
of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor. Table 9.1 shows the current set of
Instance types, which broadly fall into the following three classes:

1.​ Standard Instances: The standard instances are deemed to be suitable for

standard server applications.

2.​ High Memory Instances: High memory instances are useful for large data
throughput applications such as SQL Server databases and data caching and retrieval.

3.​ High CPU Instances: The high CPU instance category is best used for applications
that are processor- or compute-intensive. Applications of this type include rendering,
encod-ing, data analysis, and others.

​​Amazon Machine Image Instance Types

Type
Compute
Engine

RAM
(GB)

Storage
(GB)1

Platform

I/O
Performance

API Name

Micro instance Up to 2 EC2 0.613 EBS (Elastic 32-bit or Low T1.micro
 Compute Units Block 64-bit
 (1 virtual core) Storage)

 in short bursts storage only
Standard 1 EC2 1.7 160 32-bit Moderate m1.small
instance – Compute Unit

small (default) (1 virtual core)
Standard 4 EC2 7.5 850 64-bit High m1.large
instance – large Compute Units

 (2 virtual cores

 X 2 EC2 Units)
Standard 8 EC2 15 1,690 64-bit High m1.xlarge
instance – extra Compute Units
large (4 virtual cores

 X 2 EC2 Units)
High Memory 13 EC2 34.2 850 64-bit High m2.2xlarge
Double Extra Compute Units
Large Instance (4 virtual cores

 X 3.25 EC2

 Units)

 Compute RAM Storage I/O

Type Engine (GB) (GB)1 Platform Performance
​

API Name
High Memory
Quadruple
Extra Large

26 EC2
Compute Units
(8 virtual cores

68.4 1,690 64-bit High m2.4xlarge

Instance X 3.25 EC2
 Units)

High CPU 5 EC2 1.7 350 32-bit Moderate c1.medium
Medium Compute Units
Instance (2 virtual cores

 X 2.5 EC2
 Units)

High CPU Extra 20 EC2 7 1,690 64-bit High c1.xlarge
Large Instance Compute Units

 (8 virtual cores
 X 2.5 EC2
 Units)

1.​ Storage is not persistent. All assigned storage is lost upon rebooting. To store data on AWS, you need to
create a Simple Storage Service (S3) bucket or an Elastic Block Storage (EBS) volume.

​​Pricing models
The pricing of these different AMI types depends on the operating system used, which data center
the AMI is located in (you can select its location), and the amount of time that the AMI runs.
Rates are quoted based on an hourly rate. Additional charges are applied for:

⚫​the amount of data transferred
⚫​whether Elastic IP Addresses are assigned
⚫​your virtual private server’s use of Amazon Elastic Block Storage (EBS)
⚫​whether you use Elastic Load Balancing for two or more servers
⚫​other features

AMIs that have been saved and shut down incur a small one-time fee, but do not incur additional
hourly fees.

The three different pricing models for EC2 AMIs are as follows:

⚫​On-Demand Instance: This is the hourly rate with no long-term commitment.

⚫​Reserved Instances: This is a purchase of a contract for each instance you use with
a sig-nificantly lower hourly usage charge after you have paid for the reservation.

⚫​Spot Instance: This is a method for bidding on unused EC2 capacity based on the current
spot price. This feature offers a significantly lower price, but it varies over time or may
not be available when there is no excess capacity.

Pricing varies by zone, instance, and pricing model. A chart of the different current prices may
be found at http://aws.amazon.com/ec2/. This page also includes current Amazon Elastic Block
Store volume and snapshot charges to Amazon S3, as well as data transfer rates. Figure 9.2
shows the AWS Simple Monthly Calculator that you can find at http://calculator.s3.
amazonaws.com/calc5.html to help you estimate your monthly charges.

The Amazon Web Services Simple Monthly Calculator for determining system costs on AWS

​​System images and software
You can choose to use a template AMI system image with the operating system of your choice or
create your own system image that contains your custom applications, code libraries, settings,
and data. Security can be set through passwords, Kerberos tickets, or certificates.

These operating systems are offered:

⚫​Red Hat Enterprise Linux
⚫​OpenSuse Linux
⚫​Ubuntu Linux

http://aws.amazon.com/ec2/
http://calculator.s3/

⚫​Sun OpenSolaris
⚫​Fedora
⚫​Gentoo Linux
⚫​Oracle Enterprise Linux
⚫​Windows Server 2003/2008 32-bit and 64-bit up to Data Center Edition
⚫​Debian

Most of the system image templates that Amazon AWS offers are based on Red Hat Linux,
Windows Server, Oracle Enterprise Linux, and OpenSolaris from the list above. Table 9.2 lists
some of the more common enterprise applications that are available from AWS either as part of
its canned templates or for use in building your own AMI system image. Hundreds of free and
paid AMIs can be found on AWS.

​​EC2 Enterprise Software Types

Application Development​ IBM sMash, JBoss Enterprise Application Platform, and Ruby on Rails
Environments

Application Servers​ IBM WebSphere Application Server, Java Application Server, and Oracle
WebLogic Server

Batch Processing​ Condor, Hadoop, and Open MPI
Databases​ IBM DB2, IBM Informix Dynamic Server, Microsoft SQL Server Standard

2005, MySQL Enterprise, and Oracle Database 11g

Video Encoding and​ Windows Media Server and Wowza Media Server Pro
Streaming

Web Hosting​ Apache HTTP, IIS/ASP.Net, IBM Lotus Web Content Management, and IBM
WebSphere Portal Server

When you create a virtual private server, you can use the Elastic IP Address feature to create what
amounts to a static IP v4 address to your server. This address can be mapped to any of your AMIs and is
associated with your AWS account. You retain this IP address until you specifically release it from your
AWS account. Should a machine instance fail, you can map your Elastic IP Address to fail over to a
different AMI. You don’t need to wait until a DNS server updates the IP record assign-ment, and you
can use a form to configure the reverse DNS record of the Elastic IP address change.

There are currently four different EC2 service zones or regions:

⚫​US East (Northern Virginia)
⚫​US West (Northern California)
⚫​EU (Ireland)
⚫​Asia Pacific (Singapore)

​​Working with Amazon Storage Systems

When you create an Amazon Machine Instance you provision it with a certain amount of storage.
That storage is temporal, it only exists for as long as your instance is running. All of the data con-
tained in that storage is lost when the instance is suspended or terminated, as the storage is reas-
signed to the pool for other AWS users to use. For this and other reasons you need to have access
to persistent storage. The Amazon Simple Storage System provides block storage, but is set up in
a way that is somewhat unique from other storage systems you may have worked with in the past.

​​Amazon Simple Storage System (S3)
Amazon S3’s cloud-based storage system allows you to store data objects ranging in size from 1
byte up to 5GB in a flat namespace. In S3, storage containers are referred to as buckets, and buck-
ets serve the function of a directory, although there is no object hierarchy to a bucket, and you
save objects and not files to it. It is important that you do not associate the concept of a filesystem
with S3, because files are not supported; only objects are stored. Additionally, you do not
“mount” a bucket as you do a filesystem.

The S3 system allows you to assign a name to a bucket, but that name must be unique in the S3
namespace across all AWS customers. Access to an S3 bucket is through the S3 Web API (either with
SOAP or REST) and is slow relative to a real-world disk storage system. S3’s performance limits its
use to non-operational functions such as data archiving and retrieval or disk backup. The REST API is
preferred to the SOAP API, because it is easier to work with large binary objects with REST.

You can do the following with S3 buckets through the APIs:

⚫​Create, edit, or delete existing buckets
⚫​Upload new objects to a bucket and download them
⚫​Search for and find objects and buckets
⚫​Find metadata associate with objects and buckets
⚫​Specify where a bucket should be stored
⚫​Make buckets and objects available for public access

One tool commonly used to manage data for Amazon S3 is the s3cmd command line client
(http://s3tools.org/s3cmd).

The S3 service is used by many people as the third level backup component in a 3-2-1 backup
strategy. That is, you have your original data (1), a copy of your data (2), and an off-site copy of

your data (3); the latter of these may be S3. In this regard, S3 acts as a direct competitor to
Carbonite’s backup system. One of the options available to you is versioning for Amazon S3.
With versioning, every version of an object stored in an S3 bucket is retained, provided you
enable the versioning feature. Any HTTP or REST operation such as PUT, POST, COPY, or
DELETE creates a new object that is stored along with the older version. A GET operation
retrieves the newest ver-sion of the object, but the ability to recover and undo actions is available.
Versioning also can be used for preserving data and for archiving purposes.

Amazon S3 provides large quantities of reliable storage that is highly protected but to which you
have low bandwidth access. S3 excels in applications where storage is archival in nature. For
example, you find S3 in use by large photo sharing sites. In the next section you’ll see Amazon’s

http://s3tools.org/s3cmd)

Elastic Block Storage or EBS. In EBS you create virtual drives that you can use with your
machine instances in the same way that you would use a hard drive with a physical system. EBS
tends to be used in transactional systems where high-speed data access is required.

​​Caution
Keep in mind that while Amazon S3 is highly reliable, it is not highly available. You can definitely get your
data back from S3 at some point with guaranteed 100% fidelity, but the service is not always connected and
experi-ences service outages. By comparison, an EBS volume is offered with an annual failure rate of 0.1%

to 0.5%, about a factor of 10 better than typical disk drives you use in your own physical servers. ◼

​​Amazon Elastic Block Store (EBS)
The third of Amazon’s data storage systems are devoted to Amazon Elastic Block Storage (EBS),
which is a persistent storage service with a high operational performance. Advantages of EBS are
that it can store file system information and its performance is higher and much more reliable than
Amazon S3. That makes EBS valuable as an operational data storage medium for AWS. The cost
of creating an EBS volume is also greater than creating a similarly sized S3 bucket.

An EBS volume can be used as an instance boot partition. The advantages of an EBS boot
partition are that you can have a volume up to 1TB, retain your boot partition separately from
your EC2 instance, and use a boot partition volume as a means for bundling an AMI into a single
package. EBS boot partitions can be stopped and started, and they offer fast AMI boot times.

EBS is similar in concept to a Storage Area Network or SAN; you create block storage volumes
varying in size from 1GB to 1TB and make those volumes available to your machine instances.
The performance of a volume is dependent upon the network I/O and therefore varies as a
function of the size of your instance (see Table 9.3), as well as the type of disk I/O operations
(random, sequential, request size, and READS or WRITE) that are in progress.

When you create volumes, they appear first as raw block storage devices that must be formatted
for use. A volume is mounted on a particular instance and is available to that instance alone; that
is, volumes may not be shared between instances. Volumes may be located in the same zone as
the AMI to which they are attached. Volumes appear as if they are devices (physical drives) when
attached to an instance. You can mount multiple volumes on a single instance, if desired, and cre-
ate striped RAID volumes for faster performance. The filesystem for mounted volumes appears
when you open the volume, and you can install applications or copy data to mounted volumes as
you would any physical disk.

EBS supports volume replication within the same availability zone, which can add an extra level
of fault tolerance to the data set. The use of replication means that mirroring a volume won’t add
much additional fault tolerance. Snapshots are the recommended approach to improving your vol-
ume’s reliability.

You can make an instance image or snapshot of your AMI, and these point-in-time snapshots are
then copied out to Amazon S3. You can use these snapshots as system images to create new
AMIs or to restore a volume (and instance) to that point-in-time snapshot when needed. You can
share snapshots with other authorized users by using a volume’s context menu in the AWS
Management Console and selecting the Snapshot Permissions command.

When you create a new volume from an S3 snapshot, the data is slowly copied to the new volume.
As you start working on the new volume, any missing data is downloaded preferentially as needed.

​​Tip

Each snapshot you take adds incremental
changes to the previous snapshot, which
means that while the first snapshot takes a
fair amount of time, subsequent snapshots
are usually executed quickly and with only
a modest amount of extra storage space
required.

EBS supports a special feature of AWS called a Public Data Set, which is a data repository that is made
avail-able at no extra charge to AWS customers; only the data transfer and compute fees are paid for
working with the data set. Examples of Public Data Sets in use are the Annotated Human Genome map,
U.S. Census Databases (1980, 1990, and 2000), UniGene transcript sequences, and Freebase.com data

dump, among oth-ers. To learn more about Public Data Sets, see http://aws.amazon.com/publicdatasets/. ◼

EBS is a service priced on the amount of storage space used, how long you use it, and the number of
I/O requests made to the volume. You can use a utility like IOSTAT to measure I/O of your systems to
estimate these transaction costs, which vary greatly by operating system and application. Amazon
quotes an example of a medium-sized database of 100GB with 100 I/O per sec costing about $10 per
month for the allocated storage and $26 per month for the I/O (there are 2.6 million seconds in a
month). Snapshots are priced on the storage blocks used, not on the size of the volume being stored.
Amazon also charges for the amount of data transferred to Amazon S3 during a snapshot.

Table 9.3 summarizes the various properties of the three different forms of EC2 data storage devices.

​​EC2 Storage Type Properties

Property

AMI Instance
Amazon Simple
Storage Service (S3)

Amazon Elastic Block
Storage (EBS)

Amazon
CloudFront

Adaptability Medium Low High Medium
Best usage Transient data

storage
Persistent or archival
storage

Operational data stor-
age

Data sharing and
large data object
streaming

http://aws.amazon.com/publicdatasets/

Property

AMI Instance
Amazon Simple
Storage Service (S3)

Amazon Elastic Block
Storage (EBS)

Amazon
CloudFront

Cost Low Medium High Low
Ease of use Low High High High

Data protection Very Low Very High High Low

Latency Medium Low High High
Least best
used as

Persistent
storage

Operational
storage

For small I/O transfers Operational data

Reliability High Medium High Medium

Throughput Variable Slow High High

CloudFront
Amazon CloudFront is referred to as a content delivery network (CDN), and sometimes called
edge computing. In edge computing, content is pushed out geographically so the data is more
readily available to network clients and has a lower latency when requested. You enable
CloudFront through a selection in the AWS Management Console.

You can think of a CDN as a distributed caching system. CloudFront servers are located through-
out the world—in Europe, Asia, and the United States. As such, CloudFront represents yet another
level of Amazon cloud storage. A user requesting data from a CloudFront site is referred to the
nearest geographical location. CloudFront supports “geo-caching” data by performing static data
transfers and streaming content from one CloudFront location to another.

At the time this chapter was written CloudFront was in beta, but it has been well received. Direct
competitors for CloudFront include Akamai Technologies (http://www.akamai.com/), Edgecast
Networks (http://www.edgecast.com/), and Limelight Networks (http://www.
limelightnetworks.com/). CloudFront’s aggressive pricing model is expected to put pressure on
these other services over time. Pricing for CloudFront is based on how much data is transferred to
clients, and it doesn’t require a service contract. You can estimate CloudFront’s costs using the
AWS Simple Monthly Calculator (refer to Figure 9.3); costs vary by region.

When you create a CloudFront implementation, a CloudFront domain name is registered for your
domain name in the form <domainname>.cloudfront.net, and objects in the CloudFront domain can
be mapped to your own domain. You store your source files on CloudNet servers in Amazon S3
buckets and then use the CloudFront API to register the S3 bucket with the CloudNet distribution.
Then in your applications, Web pages, and links, you reference the distribution location.

CloudFront represents the last of the Amazon Web Services that store and serve objects and files.
To store data in a way that makes it searchable and organizes it, Amazon offers two different
data-base services that are covered in the next section.

http://www.akamai.com/)
http://www.edgecast.com/)
http://www/

Understanding Amazon Database Services
Amazon offers two different types of database services: Amazon SimpleDB, which is non-
relational, and Amazon Relational Database Service (Amazon RDS), both of which were in beta at
the time of this writing. Dynamic data access is a central element of Web services, particularly
“Web 2.0” ser-vices, so although AMIs support several of the major databases, it isn’t surprising
that they would create their own databases as part of the AWS Service Oriented Architecture.

​​Amazon SimpleDB
Amazon SimpleDB is an attempt to create a high performance data store with many database fea-
tures but without the overhead. This is analogous to the goals used to create the Amazon Simple
Storage System (S3). The service is meant to be low touch, in that it abstracts many of the
common concerns of database administrators for hardware requirements, software maintenance,
indexing, and performance optimization.

To create a high performance “simple” database, the data store created is flat; that is, it is non-rela-
tional and joins are not supported. Data stored in SimpleDB domains doesn’t require maintenances
of a schema and is therefore easily scalable and highly available because replication is built into
the system. Data is stored as collections of items with attribute-value pairs, and the system is akin
to using the database function within a spreadsheet. To support replication, a set of two
consistency functions are part of SimpleDB that check data across the different copies.
Transactions are per-formed as a set of conditional PUTS and DELETES, and you can INSERT,
REPLACE, or DELETE values for item attributes. These transaction capabilities do not enable
features like ROLLBACK, but they allow you to create solutions that maintain optimistic
concurrency control and will perform an INSERT based on the value of a counter or timestamp.

You grow a SimpleDB database by scaling out and creating additional data domains, and SimpleDB
integrates with EC2 instances and S3 storage. Data objects stored in S3 can be queried in
SimpleDB, returning information about the objects’ metadata and pointers to the objects’ location.

Data in SimpleDB is automatically indexed and may be queried as needed. The API is relatively
simple, consisting of domain creation, put and get attributes, and SELECT statements. According
to Amazon, query performance is near the level you would see for a database on a LAN, as
access through a browser. Although a SimpleDB database is replicated and therefore made
highly avail-able and fault tolerant, the service lacks many of the speed enhancements available
to relational systems. A data domain may be located geographically in any of AWS’s regions.

The design goal was to remove as much of the database system maintenance as possible. In a
Web services architecture, many applications don’t require the performance level of a relational
data-base. Among the featured uses of SimpleDB are data logging, online gaming, and metadata
index-ing. SimpleDB would not be the best choice for a high-volume transaction system. Data
transfers within regions between SimpleDB and other AWS services are free. Service charges
accrue based on SimpleDB Machine Hours and inter-regional data transfers.

The three areas of use for SimpleDB that Amazon Web Services highlights are: logging (http://
aws.amazon.com/simpledb/usecases_logging/), online gaming (http://aws.
amazon.com/simpledb/usecases_online_gaming/), and metadata indexing (http://
aws.amazon.com/simpledb/usecases_metadata_indexing/).

​​Amazon Relational Database Service (RDS)
Amazon Relational Database Service is a variant of the MySQL5.1 database system, but one that
is somewhat simplified. The purpose of RDS is to allow database applications that already exist
to be ported to RDS and placed in an environment that is relatively automated and easy to use.
RDS automatically performs functions such as backups and is deployable throughout AWS zones
using the AWS infrastructure.

In RDS, you start by launching a database instance in the AWS Management Console and
assigning the DB Instance class and size of the data store. The DB Instance is then connected to
your MySQL database. Any database tool that works with MySQL 5.1 will work with RDS.
Additionally, you can monitor your database usage as part of Amazon CloudWatch. Table 9.4
shows the different Instance Classes for an Amazon RDS database. Pricing is based on machine
hour rates by class, by amount of storage per month, and per million requests.

​​Amazon Relational Database Service Instance Class

Type1 Compute Engine (GB) Platform Price2

Small DB Instance (default) 1 EC2 Compute Unit (1 virtual core) 1.7 64-bit $0.11
Large DB Instance 2 EC2 Compute Units (2 virtual cores

X 2 EC2 Units)
7.5 64-bit $0.44

Extra Large DB Instance 8 EC2 Compute Units (4 virtual cores
X 2 EC2 Units)

15 64-bit $0.88

Double Extra Large DB
Instance

13 EC2 Compute Units (4 virtual
cores X 3.25 EC2 Units)

34 64-bit $1.55

Quadruple Extra Large DB
Instance

26 EC2 Compute Units (8 virtual
cores X 3.25 EC2 Units)

68 64-bit $3.10

1.​Storage available is from 5GB to 1TB.

2.​ Price for U.S. N. Virginia deployment for database machine; storage price is $0.10 per GB-month; and
I/O rate price is $0.10 per 1 million requests for the same location. Data transfer rates also apply.

http://aws/

Among the important features of RDS is the automated point-in-time backup system for data in the
database as well as for the MySQL transaction logs. Backups can be saved for up to eight days. In
addition to backup, RDS supports database snapshots. A DB Snapshot is stored as a full database
backup and is retained until you specifically delete it from your storage container. Snapshots may
be scheduled or may be manually initiated by an administrator.

The deployment of RDS databases can be spread among multiple availability zones for increased
fault tolerance and data availability. These so-called “Multi-AZ Deployments” can be
automatically replicated and maintain a standby replica in another availability zone, with automatic
failover when a database disruption is detected. The conversion of a single location RDS database
to a Multi-DB deployment may be accomplished with a single API call. Other API calls support
instance creation and maintenance, snapshots, and restores.

​​Choosing a database for AWS
In choosing a database solution for your AWS solutions, consider the following factors in
making your selection:

⚫​Choose SimpleDB when index and query functions do not require

relational database support.
⚫​Use SimpleDB for the lowest administrative overhead.
⚫​Select SimpleDB if you want a solution that autoscales on demand.
⚫​Choose SimpleDB for a solution that has a very high availability.

⚫​Use RDS when you have an existing MySQL database that could be ported and you
want to minimize the amount of infrastructure and administrative management required.

⚫​Use RDS when your database queries require relation between data objects.

⚫​Chose RDS when you want a database that scales based on an API call and has a pay-
as-you-use-it pricing model.

⚫​Select Amazon EC2/Relational Database AMI when you want access to an
enterprise rela-tional database or have an existing investment in that particular
application.

⚫​Use Amazon EC2/Relational Database AMI to retain complete administrative
control over your database server.

​​Summary

In this chapter, Amazon Web Services (AWS) were described. AWS is the most successful example of
a Service Oriented Architecture (SOA) that provides an Infrastructure as a Service (IaaS) cloud
computing solution. With AWS, you can create virtual private servers using the Elastic Cloud Compute
(EC2) service, dynamically size your servers and distribute them throughout the world, and create an
application infrastructure that allows for very sophisticated and scalable applications.

The process for creating an Amazon Machine Instance (AMI) was described, as was the provision-ing of
various resources such as storage and databases for those instances. The range of services that AWS
supports is wide and includes Content Delivery Networks (CDNs), messaging and notifi-cation systems,
load balancing and replication, and many other services as well. AWS is among the most important
developer platforms for building cloud computing applications, and the range of services and their point of
development was described here.

Chapter 10, “Using Microsoft Web Services,” describes the range of developer and user tools based in
large part on Microsoft proprietary technologies such as .NET Framework, ASP.NET, and the Azure
platform. Microsoft’s cloud computing effort is considerable and falls midway between the approach taken
by Google, which delivers applications that impact users, and Amazon.com, which delivers services that
provide cloud computing infrastructure. In short, Amazon Web Services pro-vide something for everyone.

​​Using Microsoft
Cloud Services

Microsoft has a very extensive cloud computing portfolio under​ active development. Efforts to extend
Microsoft products and third-party applications into the cloud are centered around adding

more capabilities to existing Microsoft tools. Microsoft’s approach is to view cloud applications as software plus
service. In this model, the cloud is another platform and applications can run locally and access cloud services or
run entirely in the cloud and be accessed by browsers using standard Service Oriented Architecture (SOA)
protocols.

Microsoft calls their cloud operating system the Windows Azure Platform. You can think of Azure as a
combination of virtualized infrastructure to which the .NET Framework has been added as a set of .NET Services.
The Windows Azure service itself is a hosted environment of virtual machines enabled by a fabric called Windows
Azure AppFabric. You can host your application on Azure and provision it with storage, growing it as you need it.
Windows Azure service is an Infrastructure as a Service offering.

A number of services interoperate with Windows Azure, including SQL Azure (a version of SQL Server), SharePoint
Services, Azure Dynamic CRM, and many of Windows Live Services comprising what is the Windows Azure Platform,
which is a Platform as a Service cloud computing model. Eventually, many more services will be added, encompassing
the whole range of Microsoft’s offerings. This architecture positions Microsoft to either extend its product into the Web
or to license its products, whichever way the cloud computing marketplace develops. From Microsoft’s position and that
of its developers, Windows Azure has lots of advantages.

Windows Live Services is a collection of applications and services that run on the Web. Some of these applications

Live Services are standalone Web applications viewable in a browser. An important subset of these
Windows Live Services is available to Windows Azure applications through the Windows Live Messenger
Connect API. A set of Windows Live for Mobile applications also exists. These applica-tions and services
are more fully described in this chapter.

​​Exploring Microsoft Cloud Services

Microsoft CEO Steve Balmer recently said at a University of Washington speech that Microsoft
was “betting our company” on the cloud. Balmer also claimed that about 70 percent of Microsoft
employees were currently working on cloud-related projects and that the number was expected to
rise to about 90 percent within a year. Plans to integrate cloud-based applications and services into
the Microsoft product portfolio dominates the thinking at Microsoft and is playing a central role in
the company’s ongoing product development. The starting place for Microsoft’s cloud computing
efforts may be found at Microsoft.com/cloud, shown in Figure 10.1.

Microsoft has a vast array of cloud computing products and initiatives, and a number of industry-
leading Web applications. Although services like America Online Instant Messenger (AIM) may
garner mindshare in the United States, surprisingly Microsoft Messenger is the market leader in
many other countries. Product by product in any category you can name—calendars, event manag-
ers, photo galleries, image editors, movie making, and so on—Microsoft has a Web application for
it. Some of these products are also-rans, some are good, some are category leaders, and a few of
them are really unique. What is also true is that Web apps are under very active development.
Microsoft sees its on-line application portfolio as a way of extending its desktop applications to
make the company pervasive and to extend its products’ lives well into the future.

Going forward, Microsoft sees its future as providing the best Web experience for any type of
device, which means that it structures its development environment so the application alters its
behavior depending upon the device. For a mobile device, that would mean adjusting the user
interface to accommodate the small screen, while for a PC the Web application would take advan-
tage of the PC hardware to accelerate the application and add richer graphics and other features.
That means Microsoft is pushing cloud development in terms of applications serving as both a ser-
vice and an application. This duality—like light, both a particle and a wave—manifests itself in
the way Microsoft is currently structuring its Windows Live Web products. Eventually, the
company intends to create a Microsoft app store to sell cloud applications to users.

Microsoft Live is only one part of the Microsoft cloud strategy. The second part of the strategy is
the extension of the .NET Framework and related development tools to the cloud. To enable .NET
developers to extend their applications into the cloud, or to build .NET style applications that run
completely in the cloud, Microsoft has created a set of .NET services, which it now refers to as
the Windows Azure Platform. .NET Services itself had as its origin the work Microsoft did to
create its BizTalk products.

Microsoft maintains a home page for cloud computing at http://www.microsoft.com/cloud.

Azure and its related services were built to allow developers to extend their applications into the
cloud. Azure is a virtualized infrastructure to which a set of additional enterprise services has
been layered on top, including:

⚫​A virtualization service called Azure AppFabric that creates an application hosting

envi-ronment. AppFabric (formerly .NET Services) is a cloud-enabled version of the
.NET Framework.

⚫​A high capacity non-relational storage facility called Storage.
⚫​A set of virtual machine instances called Compute.
⚫​A cloud-enabled version of SQL Server called SQL Azure Database.
⚫​A database marketplace based on SQL Azure Database code-named “Dallas.”

⚫​An xRM (Anything Relations Management) service called Dynamics CRM
based on Microsoft Dynamics.

⚫​A document and collaboration service based on SharePoint called SharePoint Services.

⚫​Windows Live Services, a collection of services that runs on Windows Live, which can
be used in applications that run in the Azure cloud.

http://www.microsoft.com/cloud

Eventually the entire Microsoft server portfolio will be available as a cloud-based application or
service, including Exchange. So the Windows Azure Platform can be viewed in a sense as the next
Microsoft operating system, the first one that is a cloud OS. The Microsoft vision for the Windows
Azure Platform is shown in Figure 10.2, where the company sees applications developed in Visual
Studio or through PHP and other languages deployed to the cloud, existing local (on-premises)
applications interacting with Azure with standard SOA protocols (SOAP, REST, and XML), all
run-ning on the Windows Azure virtualized infrastructure.

The end result is pervasive computing available to users on the device of their choice. Just
how Microsoft intends to integrate all these technologies into a unified offering is the story
of this chapter.

The integrated vision for application development and deployment with Azure is illustrated in this
over-view page of the Azure platform (http://www.microsoft.com/windowsazure/products/).

​​Defining the Windows Azure Platform

http://www.microsoft.com/windowsazure/products/)

Azure is Microsoft’s Infrastructure as a Service (IaaS) Web hosting service. Azure is a deep blue
color, the color of the clear sky onto which you can paint clouds. Taken together as a unit,
Windows Azure Platform becomes a Platform as a Service (PaaS) offering. Hence, you may run
into some people calling Azure an infrastructure service and others calling it a platform; in
context, both are correct. Compared to Amazon’s and Google’s cloud services, Azure (the service)
is a com-petitor to AWS. Windows Azure Platform is a competitor to Google’s App Engine.

Figure 10.3 shows the home page of the Windows Azure Platform found at http://www.
microsoft.com/windowsazure.

A developer creates an Azure application by first logging onto the Azure portal from the Sign up
now button shown in Figure 10.3, supplying a Windows Live ID, creating a hosted account, and
provisioning a storage account. The completed application can then be made available to users
as a hosted application or service.

Window Azure Platform’s home page may be found at http://www.microsoft.com/
windowsazure, and is shown in this figure.

http://www/
http://www.microsoft.com/

​​The software plus services approach
Microsoft has a very different vision for cloud services than either Amazon or Google does. In
Amazon’s case, AWS is a pure infrastructure play. AWS essentially rents you a (virtual) computer on
which to run your application. An Amazon Machine Image can be provisioned with an operating sys-
tem, an enterprise application, or application stack, but that provisioning is not a prerequisite. An AMI
is your machine, and you can configure it as you choose. AWS is a deployment enabler.

Google’s approach with its Google App Engine (GAE) is to offer a cloud-based development plat-
form on which you can add your program, provided that the program speaks the Google App
Engine API and uses objects and properties from the App Engine framework. Google makes it
pos-sible to program in a number of languages, but you must write your applications to conform to
Google’s infrastructure. Google Apps lets you create a saleable cloud-based application, but that
application can only work within the Google infrastructure, and the application is not easily ported
to other environments.

Microsoft sees the cloud as being a complimentary platform to its other platforms. The company
envisages a scenario where a Microsoft developer with an investment in an application wants to
extend that application’s availability to the cloud. Perhaps the application runs on a server,
desktop, or mobile device running some form of Windows. Microsoft calls this approach
software plus services.

The Windows Azure Platform allows a developer to modify his application so it can run in the
cloud on virtual machines hosted in Microsoft datacenters. Windows Azure serves as a cloud
oper-ating system, and the suitably modified application can be hosted on Azure as a runtime
applica-tion where it can make use of the various Azure Services. Additionally, local applications
running on a server, desktop, or mobile device can access Windows Azure Services through the
Windows Services Platform API.

Given that Microsoft owns the Office application market as well as the desktop OS market, this
approach makes lots of sense. It is also quite possible that a hybrid application that can reside
either locally or in the cloud will have lots of appeal not only to developers but to users who would
prefer more control over their data and more security than the cloud might offer.

​​The Azure Platform
With Azure’s architecture (shown in Figure 10.4), an application can run locally, run in the cloud,
or some combination of both. Applications on Azure can be run as applications, as background
pro-cesses or services, or as both. The Windows Azure service itself is shown as the oval in
Figure 10.4 and is a cloud-based operating system with a fabric infrastructure of virtual machines
hosted in Microsoft datacenters.

The Azure Windows Services Platform API uses the industry standard REST, HTTP, and XML pro-
tocols that are part of any Service Oriented Architecture cloud infrastructure to allow applications to
talk to Azure. Developers can install a client-side managed class library that contains functions that can
make calls to the Azure Windows Services Platform API as part of their applications. These

Chapter 10: Using Microsoft Cloud Services

API functions have been added to Microsoft Visual Studio as part of Microsoft’s Integrated
Development Environment (IDE). There are plans to add IPsec connectivity to Azure in the near
future. IPsec refers to the Internet Protocol Security protocol suite for creating a secure Internet
connection between two endpoints. IPsec provides for authenticated communication using session-
based negotiation and the exchange of cryptographic keys to enable encrypted communication to
be sent and decrypted. IPsec is an IETF standard that is in wide use.

The Azure Service Platform hosts runtime versions of .NET Framework applications written in
any of the languages in common use, such as Visual Basic, C++, C#, Java, and any application that
has been compiled for .NET’s Common Language Runtime (CLR). Azure also can deploy Web-
based applications built with ASP.NET, the Windows Communication Foundation (WCF), and
PHP, and it supports Microsoft’s automated deployment technologies. Microsoft also has released
SDKs for both Java and Ruby to allow applications written in those languages to place calls to the
Azure Service Platform API to the AppFabric Service.

​​The Windows Azure service
Windows Azure is a virtualized Windows infrastructure run by Microsoft on a set of
datacenters around the world. In Figure 10.4, the dashed oval encloses the portion of the
Windows Azure Platform that is Azure itself—that is, the portion of the platform that is the
IaaS part, which is shown in more detail in Figure 10.5.

Six main elements are part of Windows Azure:

⚫​Application: This is the runtime of the application that is running in the cloud.

⚫​Compute: This is the load-balanced Windows server computation and policy engine that
allows you to create and manage virtual machines that serve either in a Web role and a
Worker role.

A Web role is a virtual machine instance running Microsoft IIS Web server that can
accept and respond to HTTP or HTTPS requests. A Worker role can accept and respond
to requests, but doesn’t run IIS in that virtual machine. Worker roles can communicate
with Azure Storage or through direct connections to clients.

⚫​Storage: This is a non-relational storage system for large-scale storage.

Azure Storage Service lets you create drives, manage queues, and store BLOBs (Binary
Large Objects). You manipulate content in Azure Storage using the REST API, which is
based on standard HTTP requests and is therefore platform-independent. Stored data can
be read using GETs, written with PUTs, modified with POSTs, and removed with
DELETE requests.
Azure Storage plays the same role in Azure that Amazon Simple Storage Service (S3) plays in
Amazon Web Services. For relational database services, SQL Azure may be used.

⚫​Fabric: This is the Windows Azure Hypervisor, which is a version of Hyper-V that
runs on Windows Server 2008.

⚫​Config: This is a management service.

⚫​Virtual machines: These are instances of Windows that run the applications and
services that are part of a particular deployment.

​​Windows Azure AppFabric
Azure AppFabric (http://msdn.microsoft.com/en-us/windowsazure/netservices. aspx) is a Service Bus
and Access Control facility based on .NET technology for client requests to Web services on
Azure. Previously, these services were called Microsoft .NET Services. Azure AppFabric supports
the standard Service Oriented Architecture (SOA) protocols such as REST and SOAP and the WS-
protocols.

The function of a service bus in an SOA is to expose distributed services as an endpoint with a
spe-cific URI that clients can request services from, as shown in Figure 10.6. A particular set of
end-points and its associated Access Control rules for an application is referred to as the service
namespace. Each namespace is assigned a management key that is part of the security mechanism.
The Service Bus service registry makes endpoints discoverable, if so configured.

Azure AppFabric manages requests by locating the service, communicating the request, and
mak-ing the necessary connection possible by performing network address translation, opening
appro-priate ports in any intervening firewalls. AppFabric manages the transaction to ensure that
it is completed and that a response is sent to the client. A service bus also can serve to negotiate
the exchange of information between a client and the service.

Azure AppFabric acts as an SOA service bus, as shown in Figure 10.6. AppFabric can provide a
negotiated traversal of services through firewalls and NATs as a relay service using the Service
Bus’ rendezvous address. A rendezvous address not only includes the service URI, but also
includes the namespace of the service bus. Alternatively, if both applications comply to .NET
Services a direct connection between the applications can be used instead with the required NAT
traversal informa-tion for the direct connection provided by the relay service of the Service Bus.
NAT (Network Address Traversal) is a system for creating and maintaining Internet connections
for TCP or UDP traffic where the connection point is hidden behind a router or a firewall and
routing is performed by one of several possible mechanisms.

​​Cross-Ref
In Chapter 13, “Understanding Service Oriented Architecture,” the role of a service bus in a Service

Oriented Architecture is more fully explored. ◼

The Access Control portion of Azure AppFabric is a claims access control system that provides a
token-based trust mechanism for identity management. An application or user, as shown on the
right of Figure 10.7, presents a claim for a service from an application on the left. The Access
Control examines the request, and if it finds it to be valid, it grants a security token to the client.

http://msdn.microsoft.com/en-us/windowsazure/netservices

Azure AppFabric service pathways

Application 1​ Application 2

These steps are associated with Access Control:

1.​ The client requests authentication from Access Control.
2.​ Access Control creates a token based on the stored rules for server application.
3.​ A token is signed and returned to the client application.
4.​ The client presents the token to the service application.

5.​ The server application verifies the signature and uses the token to decide what the client
application is allowed to do.

​​Note

Access Control allows one application to trust the identity of another application. This mechanism can federate
with identity providers such as Active Directory Federation Services (ADFS v2) to cre-ate distributed systems
based on SOA.

“AppFabric” is also used by Microsoft for the name of its local server deployment technology called
Windows Server AppFabric (http://msdn.microsoft.com/en-us/windowsserver/ee695849.aspx).
Windows Server AppFabric enables Web data caching for application data and provides managed
services using WindowsWorkflow Foundation and the Windows Communication Foundation. There

are plans to inte-grate Windows Server AppFabric into the Azure platform AppFabic. ◼

http://msdn.microsoft.com/en-us/windowsserver/ee695849.aspx)

Azure AppFabric Access Control enables secure application requests through a token mechanism.

4..Presentt ttoken

Application

Data

5. Verify, then service request

W
i n d o w s

A
z u r e P
l a t f o r m

Azure AppFabric Access Control

2. Create a token if service rules allow

1. Valid Claim Presented​ Client
3.​Security Token Granted

User

Microsoft likes to refer to the Azure AppFabric as an “Internet Service Bus” to differentiate it from the
standard Enterprise Service Bus (ESB) that you find in SOA architectures. AppFabric has all the same
components of an ESB, namely service orchestration, federated identity, access control, a namespace,
service registry, and a messaging fabric, but it locates these components in the cloud. Often ESBs are
located on LANs. According to Microsoft, this approach abstracts away from appli-cation developers
the challenges related to NAT traversal, DDNS (Dynamic DNS), and UPnP. ESBs are described in
Chapter 13; please refer to that chapter for further discussion on this topic.

​​Azure Content Delivery Network
The Windows Azure Content Delivery Network (CDN) is a worldwide content caching and deliv-
ery system for Windows Azure blob content. Currently, more than 18 Microsoft datacenters are
hosting this service in Australia, Asia, Europe, South America, and the United States, referred to
as endpoints. CDN is an edge network service that lowers latency and maximizes bandwidth by
deliv-ering content to users who are nearby.

Any storage account can be enabled for CDN. In order to share information stored in an Azure
blob, you need to place the blob in a public blob container that is accessible to anyone using an
anonymous sign-in. The Azure portal lists the domain name of the blob container in the form
http://<guid>.vo.msecnd.net/. You also can register a custom domain name for a Windows Azure
CDN endpoint.

For content in a public container named “Box” in the storage account named “MyAccount,” a
user would access the content with one of the following URLs:

⚫​Windows Azure Blob services URL: http://<MyAccount>.blob.core.windows.

net/<Box>/

⚫​Windows Azure CDN URL: http://<guid>.vo.msecnd.net/<Box>/

When the Blob service URL is used, the request is redirected to the closest CDN endpoint to the
client. The CDN service searches that location and serves the content; if the content isn’t found,
the CDN retrieves the Blob from the Blob service, caches the content, and then serves it to the
user. Parameters can be set that determine how long content is cached (Time-To-Live, TTL), with
the default being 72 hours.

​​SQL Azure
SQL Azure is a cloud-based relational database service that is based on Microsoft SQL Server.
Initially, this service was called SQL Server Data Service. An application that uses SQL Azure
Database can run locally on a server, PC, or mobile device, in a datacenter, or on Windows
Azure. Data stored in an SQL Azure database is accessed using the Tabular Data Stream (TDS)
protocol, the same protocol used for a local SQL Server database. SQL Azure Database supports
Transact-SQL statements.

Azure data is replicated three times for data protection and writes are checked for consistency.
SQL Azure eventually will support the Microsoft Sync Framework providing a facility for SQL
Azure Databases to synchronize their data with local databases.

​​Note

There is a current limit of 10GB for each SQL Azure Database. Queries against a single database are unified.
However, if the storage size exceeds the limit, then data must be partitioned into logical sets and queries need to
be structured to account for this partitioning. For example, names in a database might have to be partitioned A-K,
L-R, and S-Z. SQL Azure Database is a shared database environment, and limitations are placed on how long a
query can run or how many resources a query can use.

Microsoft hopes to create a cloud-based global data marketplace using SQL Azure for stored
information, a project that it has codenamed “Dallas.” Applications will then be able to access both
private and public domain data such as imagery, census data, statistical data, and other premium
content using REST protocols. You can read about Microsoft’s plans for Dallas at
http://www.microsoft.com/windowsazure/ dallas/. ◼

From the standpoint of any application, an SQL Azure Database looks like and behaves like a
local database with a few exceptions. The current exceptions are that the SQL Common
Language Runtime (CLR) and support for spatial data were not included, although support will
be added later for them. The biggest difference is that because SQL Azure is managed in the
cloud, there are no administrative controls over the SQL engine. You can’t shut the system down,
nor can you directly interact with the SQL Servers.

http://www.microsoft.com/windowsazure/

​​Windows Azure pricing
Prices for working with the Windows Azure Platform are based either on a “consumption” (pay-
as-you-go) model or through various contracts for levels of monthly service that Microsoft calls
“com-mitments.” When you exceed the subscription level of your commitment, the additional
usage is charged on the consumption model.

Current pricing for Windows Azure is as follows:

⚫​Compute: $0.12 / hour
⚫​Storage: $0.15 / GB stored / month
⚫​Storage transactions: $0.01 / 10K

⚫​Data transfers (excluding CDN): $0.10 in / $0.15 out / GB ($0.30 in / $0.45 out /
GB in Asia)

⚫​CDN data transfers: $0.15 GB for North America and Europe ($0.20 GB elsewhere)
⚫​CDN transactions: $0.01 / 10K

A transaction is an application request.

In the Windows Azure Service Level Agreement, Microsoft states that it guarantees an external
con-nectivity between two or more role instances that are located in different Azure domains of at
least 99.95 percent uptime. The connection between storage and Microsoft’s Content Delivery
Network (CDN, described below) is stated to be at least 99.9 percent uptime.

SQL Azure charges are based on two different programs:

​​Note

⚫​Web Editions: Up to 1GB database = $9.99 / month; up to 5GB database = $49.95 / month

⚫​ Business Edition: Up to 10GB database = $99.99 / month; up to 20GB database =
$199.98 / month; up to 30GB database = $299.97 / month; up to 40GB database =

$399.96 / month; up to 50GB database = $499.95 / month
⚫​Data transfers: $0.10 in / $0.15 out / GB ($0.30 in / $0.45 out / GB in Asia)
The various consumption and subscription offers for the Windows Azure platform are summarized on the

Pricing page at http://www.microsoft.com/windowsazure/pricing/. ◼

These are the charges for Windows Azure Platform AppFabric:

⚫​Access Control transactions of $1.99 / 100K transactions

⚫​Service Bus connections: $3.99 per connection on a “pay-as-you-go” basis, $9.95 for
a pack of 5 connections, $49.75 for a pack of 25 connections, $199 for a pack of 100
connections, and $995 for a pack of 500 connections

⚫​Data transfers: $0.10 in / $0.15 out / GB ($0.30 in / $0.45 out / GB in Asia)

Given that Windows Azure is a relatively new service and that IaaS likely will become a very
com-petitive market, pricing is sure to change over time. You should definitely check the pricing
page for current pricing if you are thinking of deploying on Azure.

Microsoft offers a TCO calculator for the Windows Azure Platform that you may find useful in
determining your costs and savings. To access the calculator use the following link: http://
www.microsoft.com/windowsazure/economics/#tcoCompare-LB. The calculator was described in
brief in Chapter 2, “Computing the Total Cost of Ownership.”

http://www.microsoft.com/windowsazure/pricing/
http://www.microsoft.com/windowsazure/economics/#tcoCompare-LB

​​Windows Live services
Windows Live is a collection of cloud-based applications and services, some of which can be
used inside applications that run on Windows Azure Platform. Some Windows Live applications
run as standalone applications and are available to users directly through a browser. Others are
services that add capabilities to the Windows Azure Platform as part of Microsoft’s software plus
services strategy.

Microsoft has rolled out Windows Live in sets of releases they describe as four waves. The first
wave was a rebranding of several Microsoft MSN applications and services in late 2005. More
applications including Windows Mail, Windows Photo Gallery, and Windows Movie Maker
were unbundled from Vista and rolled into a downloadable software suite called Windows Live
Essentials. There has been continuous development, branding, marketing, and rebranding of the
Windows Live portfolio that has had many people scratching their heads. Many Windows Live
applications have been rolled into other services or discontinued entirely.

Here’s what I believe the current situation is with Windows Live. If an application is bundled as
part of an additional download for desktop users, it is part of the Windows Live Essentials pack-
age. Some applications that are part of Windows Live are standalone products, while others are
extensions of existing Microsoft commercial software. An example of a standalone product
would be Windows Live Calendar. An example of a cloud-based line extension is Windows
Live Office, described more fully in Chapter 16.

​​Note

Some parts of the Windows Live portfolio are shared applications and services that are accessible to developers,
and those services are the Windows Live Services that are one component of the Windows Azure Platform.
Developers access the services for Windows Live Services through a col-lection of APIs and controls called
Windows Live Messenger Connect (previously called Live Services and Windows Live Dev). Using these APIs
and controls, developers can add Windows Live Services capabilities and data to their application.

To learn more about Windows Live Messenger Connect, visit the MSDN site’s documentation found at

http://msdn.microsoft.com/en-us/library/ff749458.aspx. ◼

Messenger Connect was released as part of the Windows Live Wave 4 at the end of June 2010, and
it unites APIs such as Windows Live ID, Windows Live Contacts, and Windows Live Messenger
Web Toolkit into a single API. Messenger Connect works with ASP.NET, Windows Presentation
Foundation (WPF), Java, Adobe Flash, PHP, and Microsoft’s Silverlight graphics rendering
technol-ogy through four different methods:

⚫​Messenger Connect REST API Service
⚫​Messenger Connect .NET and Silverlight Libraries
⚫​Messenger Connection JavaScript Libraries and Controls
⚫​Web activity feeds, either RSS 2.0 or ATOM

http://msdn.microsoft.com/en-us/library/ff749458.aspx

​​Part II: Using Platforms

Using Windows Live

Windows Live includes several popular cloud-based services. The two best known and most
widely used are Windows Live Hotmail and Windows Live Messenger, with more than 300
million users worldwide. Windows Live is based around five core services:

⚫​E-mail
⚫​Instant Messaging
⚫​Photos
⚫​Social Networking
⚫​Online Storage

A user or application can consume Windows Live in a number of ways. Some Windows Live appli-
cations are entirely cloud-based Web services, so users can use these applications from within any
browser. The Office Live applications described more fully in Chapter 16, “Microsoft Office Web
Apps,” is an example of this sort of service. Some of these services are aimed at mobile devices and are
referred to as Windows Live for Mobile (described below), and they are consumed on conform-ing
mobile devices. Some of these applications are client-side applications that you download from
Windows Live for use on your desktop, of which Windows Live Essentials is the primary example.

You can access Windows Live services in one of the following ways:

⚫​By navigating to the service from the command on the navigation bar at the
top of Windows Live

⚫​By directly entering the URL of the service
⚫​By selecting the application from the Windows Live Essentials folder on the Start menu

​​Summary

In this chapter, I described Microsoft cloud computing strategy. Microsoft seeks to extend its prod-
ucts into the cloud using a software plus service approach. In this model, the cloud is yet another
platform, and applications can run locally and access cloud services, run in the cloud and be made
available through SOA standard protocols, or some combination of both.

Microsoft’s cloud operating system is called Windows Azure. Windows Azure is a hosted
environ-ment of virtualized systems tied together in a fabric using a service called AppFabric.
This is offered to developers in the form of an Infrastructure as a Service model similar to Amazon
Web Services. To Windows Azure is added a cloud-enabled version of the .NET Framework
originally called .NET Services, which are now part of Azure AppFabric. This approach lets
developers extend their applications into the cloud using development tools that they already
possess with the minimum amount of reconfiguration. Microsoft has added a number of additional
services and the entire offering is now a Platform as a Service cloud model that Microsoft calls the
Windows Azure Platform.

The other major component of Microsoft’s cloud computing strategy is a collection of user
applica-tions and related services called Windows Live. Some Windows Live applications are
client-side applications, many others are Web-based applications, some are mobile apps, and an
important subset of these services is available to developers through the Windows Live Messenger
Connect APIs. The various offering in Windows Live were discussed in this chapter.

In Chapter 11, “Managing the Cloud,” you learn about some of the management tools used to
work with cloud applications and methods used for application deployment.

​​Questions

1.​ Explain Abstraction and Virtualization. Explain the types of virtualization.
Give the basic concept of load balancing.

2.​ Explain the network resources for load balancing. Give the classifications of
virtualization environment.

3.​ Briefly explain the different types of virtualization environment.

4.​ Explain the virtual machine technology and its types. Write short notes on
VMware, vSphere and Machine imaging.

5.​ Explain the porting of applications in the cloud by throwing light on simple
Cloud API and AppZero Virtual Application appliance.

6.​ Define the services as used in PaaS. Compare between SaaS and PaaS. What
are the uses of PaaS Application frameworks?

7.​ Explain the Google Applications Portfolio in terms of Indexed search, Dark
Web, Aggregation and disintermediation, Productivity applications and
service, Adwords, Google Analytics, Google Translate.

8.​ Briefly discuss the Google Toolkit. Give the major features of Google App
Engine service.

9.​ Explain the Amazon Web Services by throwing light on Amazon Elastic
Cloud, Amazon Simple Storage system, Amazon Elastic Block Store,
Amazon SimpleDB and Relational Database Service.

10.​Explain the Microsoft Cloud Services in terms of Microsoft’s approach,
architecture, and main elements, overview of Windows Azure AppFabric,
Content Delivery Network, SQL Azure, and Windows Live services.

Module – III

Cloud Infrastructure

Managing the Cloud

Cloud computing deployments must be monitored and managed in order to be
optimized for best performance. To the problems associ-ated with analyzing
distributed network applications, the cloud adds

the complexity of virtual infrastructure. This is one of the most active
areas of product development in the entire cloud computing industry, and
this chapter introduces you to the different products in this nascent area.

Cloud management software provides capabilities for managing faults,
configuration, accounting, performance, and security; this is referred to
as FCAPS. Many products address one or more of these areas, and through
network frameworks, you can access all five areas. Framework products are
being repositioned to work with cloud systems.

Your management responsibilities depend on the particular service model for
your cloud deployment. Cloud management includes not only managing
resources in the cloud, but managing resources on-premises. The manage-
ment of resources in the cloud requires new technology, but management of
resources on-premises allows vendors to use well-established network man-
agement technologies.

The lifecycle of a cloud application includes six defined parts, and each must be
managed. In this chapter, the tasks associated with each stage are described.

Efforts are underway to develop cloud management interoperability stan-
dards. One effort you learn about in this chapter is the DMTF’s (Distributed
Management Task Force) Open Cloud Standards Incubator. The goal of
these efforts is to develop management tools that work with any cloud type.
Another group called the Cloud Commons is developing a technology
called the Service Measurement Index (SMI). SMI aims to deploy methods
for mea-suring various aspects of cloud performance in a standard way.

​​Administrating the Clouds

The explosive growth in cloud computing services has led many vendors to rename their products
and reposition them to get in on the gold rush in the clouds. What was once a network manage-
ment product is now a cloud management product. Nevertheless, this is one area of technology
that is very actively funded, comes replete with interesting startups, has been the focus of several
recent strategic acquisitions, and has resulted in some interesting product alliances. Let’s join the
party and see what all the fuss is about.

These fundamental features are offered by traditional network management systems:

⚫​Administration of resources
⚫​Configuring resources
⚫​Enforcing security
⚫​Monitoring operations
⚫​Optimizing performance
⚫​Policy management
⚫​Performing maintenance
⚫​Provisioning of resources

Network management systems are often described in terms of the acronym FCAPS, which
stands for these features:

⚫​Fault
⚫​Configuration
⚫​Accounting
⚫​Performance
⚫​Security

Most network management packages have one or more of these characteristics; no single
package provides all five elements of FCAPS.

To get the complete set of all five of these management areas from a single vendor, you would need to
adopt a network management framework. These large network management frameworks were industry
leaders several years back: BMC PATROL, CA Unicenter, IBM Tivoli, HP OpenView, and Microsoft
System Center. Network framework products have been sliced and diced in many differ-ent ways over
the years, and they are rebranded from time to time. Today, for example, BMC PATROL is now part of
BMC ProactiveNet Performance Management (http://www.bmc.com/
products/product-listing/ProactiveNet-Performance-Management.html), HP OpenView has been
split (https://h10078.www1.hp.com/cda/hpms/display/main/ hpms_content.jsp?zn=bto&cp=1-
10^36657_4000_100) into a set of HP Manager products.

The impact that cloud computing is having on network frameworks is profound. These five ven-
dors have (or soon will have) products for cloud management. Computer Associates, for
example, has completely repositioned its network management portfolio as an IT Management

http://www.bmc.com/

Software as a Service. Find the cloud products for these five large cloud vendors at the following
URLs:

⚫​BMC Cloud Computing (http://www.bmc.com/solutions/esm-initiative/ cloud-

computing.html)

⚫​Computer Associates Cloud Solutions (http://www.ca.com/us/cloud-
computing.aspx)

⚫​HP Cloud Computing (http://h20338.www2.hp.com/enterprise/w1/en/
technologies/cloud-computing-overview.html)

⚫​IBM Cloud Computing (http://www.ibm.com/ibm/cloud/)
⚫​Microsoft Cloud Services (http://www.microsoft.com/cloud/)

Figure 11.1 shows IBM Tivoli Service Automation Manager, a framework tool for managing
cloud infrastructure.

Tivoli Service Automation Manager lets you create and stage cloud-based servers.

http://www.bmc.com/solutions/esm-initiative/
http://www.ca.com/us/cloud-
http://h20338.www2.hp.com/enterprise/w1/en/
http://www.ibm.com/ibm/cloud/)
http://www.microsoft.com/cloud/)

​​Management responsibilities
What separates a network management package from a cloud computing management package is
the “cloudly” characteristics that cloud management service must have:

⚫​Billing is on a pay-as-you-go basis.
⚫​The management service is extremely scalable.
⚫​The management service is ubiquitous.
⚫​ Communication between the cloud and other systems uses cloud networking

standards. To monitor an entire cloud computing deployment stack, you monitor six different

categories:

1.​ End-user services such as HTTP, TCP, POP3/SMTP, and others
2.​ Browser performance on the client
3.​ Application monitoring in the cloud, such as Apache, MySQL, and so on

4.​ Cloud infrastructure monitoring of services such as Amazon Web Services,
GoGrid, Rackspace, and others

5.​ Machine instance monitoring where the service measures processor utilization,
memory usage, disk consumption, queue lengths, and other important
parameters

6.​ Network monitoring and discovery using standard protocols like the Simple Network
Management Protocol (SNMP), Configuration Management Database (CMDB),
Windows Management Instrumentation (WMI), and the like

It’s important to note that there are really two aspects to cloud management:

Managing resources in the cloud

Using the cloud to manage resources on-premises

When you move to a cloud computing architecture from a traditional networked model like client/
server or a three-tier architecture, many of the old management tasks for processes going on in the
cloud become irrelevant or nearly impossible to manage because the tools to effectively manage
resources of various kinds fall outside of your own purview. In the cloud, the particular service
model you are using directly affects the type of monitoring you are responsible for.

Consider the case of an Infrastructure as a Service vendor such as Amazon Web Services or
Rackspace. You can monitor your usage of resources either through their native monitoring tools
like Amazon CloudWatch or Rackspace Control Panel or through the numerous third-party tools
that work with these sites’ APIs. In IaaS, you can alter aspects of your deployment, such as the
number of machine instances you are running or the amount of storage you have, but you have
very limited control over many important aspects of the operation. For example, your network
bandwidth is locked into the type of instance you deploy. Even if you can provision more band-
width, you likely have no control over how network traffic flows into and out of the system,
whether there is packet prioritization, how routing is done, and other important characteristics.

The situation—as you move first to Platform as a Service (PaaS) like Windows Azure or Google
App Engine and then onto Software as a Service (SaaS) for which Salesforce.com is a prime
exam-ple—becomes even more restrictive. When you deploy an application on Google’s PaaS
App Engine cloud service, the Administration Console provides you with the following
monitoring capabilities:

⚫​Create a new application, and set it up in your domain.
⚫​Invite other people to be part of developing your application.
⚫​View data and error logs.
⚫​Analyze your network traffic.
⚫​Browse the application datastore, and manage its indexes.
⚫​View the application’s scheduled tasks.
⚫​Test the application, and swap out versions.

However, you have almost no operational control. Essentially, Google App Engine lets you
deploy the application and monitor it, and that’s about it. All the management of devices,
networks, and other aspects of the platform are managed by Google. You have even less control
when you are selling software in the cloud, as you would with Salesforce.com.

Figure 11.2 graphically summarizes the management responsibilities by service model type.

The second aspect of cloud management is the role that cloud-based services can play in managing
on-premises resources. From the standpoint of the client, a cloud service provider is no different
than any other networked service. The full range of network management capabilities may be
brought to bear to solve mobile, desktop, and local server issues, and the same sets of tools can be
used for measurement.

Microsoft System Center is an example of how management products are being adapted for the
cloud. System Center provides tools for managing Windows servers and desktops. The manage-
ment services include an Operations Manager, the Windows Service Update Service (WSUS), a
Configuration Manager for asset management, a Data Protection Manager, and a Virtual
Machine Manager, among other components.

One of these service sets was called the System Center Online Desktop Manager (SCODM).
Microsoft has taken SCODM and repositioned it as a cloud-based service for managing updates,
monitoring PCs for license compliance and health, enforcing security policies, and using
Forefront protect systems from malware, and the company has branded it as Windows Intune
(http:// www.microsoft.com/windows/windowsintune/default.aspx). From the client’s standpoint, it
makes little difference whether the service is in the cloud or on a set of servers in a datacenter.
The benefit of a cloud management service accrues to the organization responsible for managing
the desktops or mobile devices. Figure 11.3 shows an Overview screen from the beta ver-sion of
Windows Intune. The product is due to be released in the first or second quarter of 2011.

http://www.microsoft.com/windows/windowsintune/default.aspx)

Management responsibilities by service model type

Managed Cloud Cloud
Hosted​ services (IaaS) (PaaS)​ SaaS

Example(s) Hosted
infrastructure

Networ
k
VoIP

Amazon
AWS,
Rackspac
e

Cloud server

Google App​
Salesforce.com Engine

Microsoft Azure

IT primary
responsibilities

Business service/ Operating

user satisfaction Application Database Server system Network

Intune is Microsoft’s cloud-based management service for Windows systems.

​​Lifecycle management
Cloud services have a defined lifecycle, just like any other system deployment. A management
program has to touch on each of the six different stages in that lifecycle:

1.​ The definition of the service as a template for creating instances

Tasks performed in Phase 1 include the creation, updating, and deletion of service
templates.

2.​ Client interactions with the service, usually through an SLA (Service Level Agreement)
contract
This phase manages client relationships and creates and manages service contracts.

3.​ The deployment of an instance to the cloud and the runtime management of instances Tasks

performed in Phase 3 include the creation, updating, and deletion of service offerings.

4.​ The definition of the attributes of the service while in operation and performance of mod-
ifications of its properties

The chief task during this management phase is to perform service optimization and
customization.

5.​ Management of the operation of instances and routine maintenance

During Phase 5, you must monitor resources, track and respond to events, and perform
reporting and billing functions.

6.​ Retirement of the service

End of life tasks include data protection and system migration, archiving, and service
contract termination.

​​Understanding Cloud
Security

Cloud computing has lots of unique properties that make it very valu-able.
Unfortunately, many of those properties make security a singu-lar concern.
Many of the tools and techniques that you would use to

protect your data, comply with regulations, and maintain the integrity of
your systems are complicated by the fact that you are sharing your
systems with others and many times outsourcing their operations as well.
Cloud computing service providers are well aware of these concerns and
have developed new technologies to address them.

Different types of cloud computing service models provide different levels
of security services. You get the least amount of built in security with an
Infrastructure as a Service provider, and the most with a Software as a
Service provider. This chapter presents the concept of a security boundary
separating the client’s and vendor’s responsibilities.

Adapting your on-premises systems to a cloud model requires that you deter-
mine what security mechanisms are required and mapping those to controls that
exist in your chosen cloud service provider. When you identify missing security
elements in the cloud, you can use that mapping to work to close the gap.

Storing data in the cloud is of particular concern. Data should be transferred
and stored in an encrypted format. You can use proxy and brokerage services
to separate clients from direct access to shared cloud storage.

Logging, auditing, and regulatory compliance are all features that require
planning in cloud computing systems. They are among the services that need
to be negotiated in Service Level Agreements.

Also in this chapter, you learn about identity and related protocols from a
security standpoint. The concept of presence as it relates to identity is
also introduced.

​​Securing the Cloud

The Internet was designed primarily to be resilient; it was not designed to be secure. Any distrib-uted
application has a much greater attack surface than an application that is closely held on a Local Area
Network. Cloud computing has all the vulnerabilities associated with Internet applica-tions, and
additional vulnerabilities arise from pooled, virtualized, and outsourced resources.

In the report “Assessing the Security Risks of Cloud Computing,” Jay Heiser and Mark Nicolett
of the Gartner Group (http://www.gartner.com/DisplayDocument?id=685308) high-lighted the
following areas of cloud computing that they felt were uniquely troublesome:

⚫​Auditing
⚫​Data integrity
⚫​e-Discovery for legal compliance
⚫​Privacy
⚫​Recovery
⚫​Regulatory compliance

Your risks in any cloud deployment are dependent upon the particular cloud service model chosen
and the type of cloud on which you deploy your applications. In order to evaluate your risks, you
need to perform the following analysis:

1.​ Determine which resources (data, services, or applications) you are planning to move to

the cloud.
2.​ Determine the sensitivity of the resource to risk.

Risks that need to be evaluated are loss of privacy, unauthorized access by others, loss
of data, and interruptions in availability.

3.​ Determine the risk associated with the particular cloud type for a resource.

Cloud types include public, private (both external and internal), hybrid, and shared
community types. With each type, you need to consider where data and functionality
will be maintained.

4.​ Take into account the particular cloud service model that you will be using.

Different models such as IaaS, SaaS, and PaaS require their customers to be
responsible for security at different levels of the service stack.

5.​ If you have selected a particular cloud service provider, you need to evaluate its system
to understand how data is transferred, where it is stored, and how to move data both in
and out of the cloud.

You may want to consider building a flowchart that shows the overall mechanism of
the system you are intending to use or are currently using.

One technique for maintaining security is to have “golden” system image references that you can
return to when needed. The ability to take a system image off-line and analyze the image for

http://www.gartner.com/DisplayDocument?id=685308)

vulnerabilities or compromise is invaluable. The compromised image is a primary forensics tool.
Many cloud providers offer a snapshot feature that can create a copy of the client’s entire
environ-ment; this includes not only machine images, but applications and data, network
interfaces, fire-walls, and switch access. If you feel that a system has been compromised, you can
replace that image with a known good version and contain the problem.

Many vendors maintain a security page where they list their various resources, certifications, and
credentials. One of the more developed offerings is the AWS Security Center, shown in Figure
12.1, where you can download some backgrounders, white papers, and case studies related to the
Amazon Web Service’s security controls and mechanisms.

The AWS Security Center (http://aws.amazon.com/security/) is a good place to start learning about
how Amazon Web Services protects users of its IaaS service.

​​The security boundary
In order to concisely discuss security in cloud computing, you need to define the particular model
of cloud computing that applies. This nomenclature provides a framework for understanding what
security is already built into the system, who has responsibility for a particular security
mechanism, and where the boundary between the responsibility of the service provider is separate
from the responsibility of the customer.

http://aws.amazon.com/security/)

All of Chapter 1 was concerned with defining what cloud computing is and defining the lexicon of
cloud computing. There are many definitions and acronyms in the area of cloud computing that
will probably not survive long. The most commonly used model based on U.S. National Institute
of Standards and Technology (NIST; http://www.csrc.nist.gov/groups/SNS/cloud-
computing/index.html) separates deployment models from service models and assigns those models
a set of service attributes. Deployment models are cloud types: community, hybrid, private, and
public clouds. Service models follow the SPI Model for three forms of service delivery: Software,
Platform, and Infrastructure as a Service. In the NIST model, as you may recall, it was not
required that a cloud use virtualization to pool resources, nor did that model require that a cloud
support multi-tenancy. It is just these factors that make security such a complicated proposi-tion in
cloud computing.

Chapter 1 also presented the Cloud Security Alliance (CSA; http://www.cloudsecurity alliance.org/)
cloud computing stack model, which shows how different functional units in a net-work stack
relate to one another. As you may recall from Chapter 1, this model can be used to separate the
different service models from one another. CSA is an industry working group that studies security
issues in cloud computing and offers recommendations to its members. The work of the group is
open and available, and you can download its guidance from its home page, shown in Figure 12.2.

The Cloud Security Alliance (CSA) home page at http://www.cloudsecurityalliance.org/ offers a number of
resources to anyone concerned with securing his cloud deployment.

http://www.csrc.nist.gov/groups/SNS/cloud-
http://www.cloudsecurityalliance.org/

The CSA partitions its guidance into a set of operational domains:

⚫​Governance and enterprise risk management
⚫​Legal and electronic discovery
⚫​Compliance and audit
⚫​Information lifecycle management
⚫​Portability and interoperability
⚫​Traditional security, business continuity, and disaster recovery
⚫​Datacenter operations
⚫​Incidence response, notification, and remediation
⚫​Application security
⚫​Encryption and key management
⚫​Identity and access management
⚫​Virtualization

You can download the group’s current work in these areas from the different sections of its Web site.

One key difference between the NIST model and the CSA is that the CSA considers multi-tenancy
to be an essential element in cloud computing. Multi-tenancy adds a number of additional security
concerns to cloud computing that need to be accounted for. In multi-tenancy, different customers
must be isolated, their data segmented, and their service accounted for. To provide these features,
the cloud service provider must provide a policy-based environment that is capable of supporting
different levels and quality of service, usually using different pricing models. Multi-tenancy
expresses itself in different ways in the different cloud deployment models and imposes security
concerns in different places.

​​Security service boundary
The CSA functional cloud computing hardware/software stack is the Cloud Reference Model. This
model, which was discussed in Chapter 1, is reproduced in Figure 12.3. IaaS is the lowest level
service, with PaaS and SaaS the next two services above. As you move upward in the stack, each
service model inherits the capabilities of the model beneath it, as well as all the inherent security
concerns and risk factors. IaaS supplies the infrastructure; PaaS adds application development
frameworks, transactions, and control structures; and SaaS is an operating environment with appli-
cations, management, and the user interface. As you ascend the stack, IaaS has the least levels of
integrated functionality and the lowest levels of integrated security, and SaaS has the most.

The most important lesson from this discussion of architecture is that each different type of cloud
service delivery model creates a security boundary at which the cloud service provider’s responsi-
bilities end and the customer’s responsibilities begin. Any security mechanism below the security
boundary must be built into the system, and any security mechanism above must be maintained by
the customer. As you move up the stack, it becomes more important to make sure that the type and
level of security is part of your Service Level Agreement.

The CSA Cloud Reference Model with security boundaries shown

In the SaaS model, the vendor provides security as part of the Service Level Agreement, with the
compliance, governance, and liability levels stipulated under the contract for the entire stack. For
the PaaS model, the security boundary may be defined for the vendor to include the software
framework and middleware layer. In the PaaS model, the customer would be responsible for the
security of the application and UI at the top of the stack. The model with the least built-in security
is IaaS, where everything that involves software of any kind is the customer’s problem. Numerous
definitions of services tend to muddy this picture by adding or removing elements of the various
functions from any particular offering, thus blurring which party has responsibility for which fea-
tures, but the overall analysis is still useful.

In thinking about the Cloud Security Reference Model in relationship to security needs, a funda-
mental distinction may be made between the nature of how services are provided versus where
those services are located. A private cloud may be internal or external to an organization, and
although a public cloud is most often external, there is no requirement that this mapping be made
so. Cloud computing has a tendency to blur the location of the defined security perimeter in such
a way that the previous notions of network firewalls and edge defenses often no longer apply.

This makes the location of trust boundaries in cloud computing rather ill defined, dynamic, and sub-ject
to change depending upon a number of factors. Establishing trust boundaries and creating a new
perimeter defense that is consistent with your cloud computing network is an important consider-ation.
The key to understanding where to place security mechanisms is to understand where physi-cally in the
cloud resources are deployed and consumed, what those resources are, who manages the resources, and
what mechanisms are used to control them. Those factors help you gauge where sys-tems are located
and what areas of compliance you need to build into your system.

Table 12.1 lists some of the different service models and lists the parties responsible for security
in the different instances.

​​Security Responsibilities by Service Model

Model Type
Security
Management

Infrastructure
Owner

Infrastructure Location

Trust Condition

Hybrid Both vendor
and customer

Both vendor
and customer

Both on- and off-premises Both trusted and
untrusted

Private/Community Customer Customer On- or off-premises Trusted

Private/Community Customer Vendor Off- or on-premises Trusted

Private/Community Vendor Customer On- or off-premises Trusted

Private/Community Vendor Vendor Off- or on-premises Trusted

Public Vendor Vendor Off-premises Untrusted

Security mapping
The cloud service model you choose determines where in the proposed deployment the variety of
security features, compliance auditing, and other requirements must be placed. To determine the
particular security mechanisms you need, you must perform a mapping of the particular cloud ser-
vice model to the particular application you are deploying. These mechanisms must be supported
by the various controls that are provided by your service provider, your organization, or a third
party. It’s unlikely that you will be able to duplicate security routines that are possible on-
premises, but this analysis allows you to determine what coverage you need.

A security control model includes the security that you normally use for your applications, data,
management, network, and physical hardware. You may also need to account for any compliance
standards that are required for your industry. A compliance standard can be any government regu-
latory framework such as Payment Card Industry Data Security Standards (PCI-DSS), Health
Insurance Portability and Accountability Act (HIPPA), Gramm–Leach–Bliley Act (GLBA), or the
Sarbanes–Oxley Act (SOX) that requires you operate in a certain way and keep records.

Essentially, you are looking to identify the missing features that would be required for an on-
premises deployment and seek to find their replacements in the cloud computing model. As you
assign accountability for different aspects of security and contract away the operational
responsibility to others, you want to make sure they remain accountable for the security you need.

​​Securing Data

Securing data sent to, received from, and stored in the cloud is the single largest security concern
that most organizations should have with cloud computing. As with any WAN traffic, you must
assume that any data can be intercepted and modified. That’s why, as a matter of course, traffic to
a cloud service provider and stored off-premises is encrypted. This is as true for general data as it
is for any passwords or account IDs.

These are the key mechanisms for protecting data mechanisms:

⚫​Access control
⚫​Auditing
⚫​Authentication
⚫​Authorization

Whatever service model you choose should have mechanisms operating in all four areas that meet
your security requirements, whether they are operating through the cloud service provider or your
own local infrastructure.

​​Brokered cloud storage access
The problem with the data you store in the cloud is that it can be located anywhere in the cloud
service provider’s system: in another datacenter, another state or province, and in many cases
even in another country. With other types of system architectures, such as client/server, you could
count on a firewall to serve as your network’s security perimeter; cloud computing has no
physical system that serves this purpose. Therefore, to protect your cloud storage assets, you want
to find a way to isolate data from direct client access.

​​Note

One approach to isolating storage in the cloud from direct client access is to create layered access to the data. In
one scheme, two services are created: a broker with full access to storage but no access to the client, and a
proxy with no access to storage but access to both the client and broker. The location of the proxy and the
broker is not important (they can be local or in the cloud); what is important is that these two services are in the
direct data path between the client and data stored in the cloud.

Under this system, when a client makes a request for data, here’s what happens:

1.​ The request goes to the external service interface (or endpoint) of the proxy, which has only a

partial trust.
2.​ The proxy, using its internal interface, forwards the request to the broker.
3.​ The broker requests the data from the cloud storage system.
4.​ The storage system returns the results to the broker.
5.​ The broker returns the results to the proxy.
6.​ The proxy completes the response by sending the data requested to the client. Figure 12.4

shows this storage “proxy” system graphically.

This discussion is based on a white paper called “Security Best Practices For Developing
Windows Azure Applications,” by Andrew Marshall, Michael Howard, Grant Bugher, and Brian
Harden that you can find at http://download.microsoft.com/download/7/3/E/73E4EE93-559F-4D0F-A6FC-
7FEC5F1542D1/SecurityBestPracticesWindowsAzureApps.docx. In their presentation, the
proxy service is called the Gatekeeper and assigned a Windows Server Web Role, and the

broker is called the KeyMaster and assigned a Worker Role. ◼

This design relies on the proxy service to impose some rules that allow it to safely request data
that is appropriate to that particular client based on the client’s identity and relay that request to
the broker. The broker does not need full access to the cloud storage, but it may be configured to
grant READ and QUERY operations, while not allowing APPEND or DELETE. The proxy has a
limited trust role, while the broker can run with higher privileges or even as native code.

The use of multiple encryption keys can further separate the proxy service from the storage
account. If you use two separate keys to create two different data zones—one for the untrusted
communication between the proxy and broker services, and another a trusted zone between the
broker and the cloud storage—you create a situation where there is further separation between
the different service roles.

http://download.microsoft.com/download/7/3/E/73E4EE93-559F-4D0F-A6FC-

In this design, direct access to cloud storage is eliminated in favor of a proxy/broker service.

Even if the proxy service is compromised, that service does not have access to the trusted key
nec-essary to access the cloud storage account. In the multi-key solution, shown in Figure 12.5,
you have not only eliminated all internal service endpoints, but you also have eliminated the
need to have the proxy service run at a reduced trust level.

The creation of storage zones with associated encryption keys can further protect cloud storage
from unauthorized access.

Client

1.​Client data request

9. Data response

Internet

6.Data relay to
client
2. Apply rules, restate

request

Proxy

8. Acknowledgement

U
n
t
r
u
s
t
e
d
S
t
o
r
a
g
e
A
c
c
o
u
n
t
,
K
e
y
1

3. Key 1 match
7. Data request

r
e
l
e
a
s
e
​
C
l
o
u
d
o
r

W
e
b

4.​ Trusted data request

Broker

5.​ S

t
o
r
a
g

e
d
a
t
a

r
e
p
l
y

Cloud

Trusted Storage
Account, Key 2

Cloud Storage

​​Storage location and tenancy
Some cloud service providers negotiate as part of their Service Level Agreements to contractually
store and process data in locations that are predetermined by their contract. Not all do. If you can

get the commitment for specific data site storage, then you also should make sure the cloud vendor
is under contract to conform to local privacy laws.

Because data stored in the cloud is usually stored from multiple tenants, each vendor has its own
unique method for segregating one customer’s data from another. It’s important to have some
understanding of how your specific service provider maintains data segregation.

Another question to ask a cloud storage provider is who is provided privileged access to storage.
The more you know about how the vendor hires its IT staff and the security mechanism put into
place to protect storage, the better.

Most cloud service providers store data in an encrypted form. While encryption is important and
effective, it does present its own set of problems. When there is a problem with encrypted data, the
result is that the data may not be recoverable. It is worth considering what type of encryption the
cloud provider uses and to check that the system has been planned and tested by security experts.

Regardless of where your data is located, you should know what impact a disaster or interruption
will have on your service and your data. Any cloud provider that doesn’t offer the ability to repli-
cate data and application infrastructure across multiple sites cannot recover your information in a
timely manner. You should know how disaster recovery affects your data and how long it takes
to do a complete restoration.

​​Encryption
Strong encryption technology is a core technology for protecting data in transit to and from the
cloud as well as data stored in the cloud. It is or will be required by law. The goal of encrypted
cloud storage is to create a virtual private storage system that maintains confidentiality and data
integrity while maintaining the benefits of cloud storage: ubiquitous, reliable, shared data
storage. Encryption should separate stored data (data at rest) from data in transit.

Depending upon the particular cloud provider, you can create multiple accounts with different
keys as you saw in the example with Windows Azure Platform in the previous section. Microsoft
allows up to five security accounts per client, and you can use these different accounts to create
different zones. On Amazon Web Service, you can create multiple keys and rotate those keys
dur-ing different sessions.

Although encryption protects your data from unauthorized access, it does nothing to prevent data
loss. Indeed, a common means for losing encrypted data is to lose the keys that provide access to
the data. Therefore, you need to approach key management seriously. Keys should have a defined
lifecycle. Among the schemes used to protect keys are the creation of secure key stores that have
restricted role-based access, automated key stores backup, and recovery techniques. It’s a good
idea to separate key management from the cloud provider that hosts your data.

One standard for interoperable cloud-based key management is the OASIS Key Management
Interoperability Protocol (KMIP; http://www.oasis-open.org/committees/kmip/). IEEE 1619.3
(https://siswg.net/index.php?option=com_docman) also covers both storage encryption and key
management for shared storage.

http://www.oasis-open.org/committees/kmip/)

Auditing and compliance

Logging is the recording of events into a repository; auditing is the ability to monitor the events to
understand performance. Logging and auditing is an important function because it is not only nec-
essary for evaluation performance, but it is also used to investigate security and when illegal activ-
ity has been perpetrated. Logs should record system, application, and security events, at the very
minimum.

Logging and auditing are unfortunately one of the weaker aspects of early cloud computing service
offerings.

Cloud service providers often have proprietary log formats that you need to be aware of. Whatever
monitoring and analysis tools you use need to be aware of these logs and able to work with them.
Often, providers offer monitoring tools of their own, many in the form of a dashboard with the
potential to customize the information you see through either the interface or programmatically
using the vendor’s API. You want to make full use of those built-in services.

Because cloud services are both multitenant and multisite operations, the logging activity and data
for different clients may not only be co-located, they may also be moving across a landscape of dif-
ferent hosts and sites. You can’t simply expect that an investigation will be provided with the nec-
essary information at the time of discovery unless it is part of your Service Level Agreement. Even
an SLA with the appropriate obligations contained in it may not be enough to guarantee you will get
the information you need when the time comes. It is wise to determine whether the cloud ser-vice
provider has been able to successfully support investigations in the past.

As it stands now, nearly all regulations were written without keeping cloud computing in mind. A
regulator or auditor isn’t likely to be familiar with the nature of running applications and storing data
in the cloud. Even so, laws are written to ensure compliance, and the client is held responsible for
compliance under the laws of the governing bodies that apply to the location where the pro-cessing
or storage takes place.

Therefore, you must understand the following:

⚫​Which regulations apply to your use of a particular cloud computing service

⚫​Which regulations apply to the cloud service provider and where the demarcation
line falls for responsibilities

⚫​How your cloud service provider will support your need for information associated
with regulation

⚫​How to work with the regulator to provide the information necessary regardless of who
had the responsibility to collect the data

Traditional service providers are much more likely to be the subject of security certifications and
external audits of their facilities and procedures than cloud service providers. That makes the will-
ingness for a cloud service provider to subject its service to regulatory compliance scrutiny an
important factor in your selection of that provider over another. In the case of a cloud service pro-
vider who shows reluctance to or limits the scrutiny of its operations, it is probably wise to use the

service in ways that limit your exposure to risk. For example, although encrypting stored data is
always a good policy, you also might want to consider not storing any sensitive information on
that provider’s system.

As it stands now, clients must guarantee their own regulatory compliance, even when their data is
in the care of the service provider. You must ensure that your data is secure and that its integrity
has not been compromised. When multiple regulatory entities are involved, as there surely are
between site locations and different countries, then that burden to satisfy the laws of those govern-
ments is also your responsibility.

For any company with clients in multiple countries, the burden of regulatory compliance is oner-
ous. While organizations such as the EEC (European Economic Community) or Common Market
provide some relief for European regulation, countries such as the United States, Japan, China, and
others each have their own sets of requirements. This makes regulatory compliance one of the
most actively developing and important areas of cloud computing technology.

This situation is likely to change. On March 1, 2010, Massachusetts passed a law that requires
companies that provide sensitive personal information on Massachusetts residents to encrypt data
transmitted and stored on their systems. Businesses are required to limit the amount of personal
data collected, monitor data usage, keep a data inventory, and be able to present a security plan on
how they will keep the data safe. The steps require that companies verify that any third-party ser-
vices they use conform to these requirements and that there be language in all SLAs that enforce
these protections. The law takes full effect in March 2012.

Going forward, you want to ensure the following:

⚫​You have contracts reviewed by your legal staff.
⚫​You have a right-to-audit clause in your SLA.

⚫​You review any third parties who are service providers and assess their impact on
security and regulatory compliance.

⚫​You understand the scope of the regulations that apply to your cloud computing applica-
tions and services.

⚫​You consider what steps you must take to comply with the demands of regulations that
apply.

⚫​You consider adjusting your procedures to comply with regulations.
⚫​You collect and maintain the evidence of your compliance with regulations.

⚫​You determine whether your cloud service provider can provide an audit statement that is
SAS 70 Type II-compliant.

The ISO/IEC 27001/27002 standard for information security management systems has a roadmap
for mission-critical services that you may want to discuss with your cloud service provider.
Amazon Web Services supports SAS70 Type II Audits.

Becoming a cloud service provider requires a large investment, but as we all know, even large com-
panies can fail. When a cloud service provider fails, it may close or more likely be acquired by
another company. You likely wouldn’t use a service provider that you suspected of being in diffi-
culty, but problems develop over years and cloud computing has a certain degree of vendor lock-in to
it. That is, when you have created a cloud-based service, it can be difficult or often impossible to
move it to another service provider. You should be aware of what happens to your data if the cloud
service provider fails. At the very least, you would want to make sure your data could be obtained in
a format that could be accessed by on-premise applications.

The various attributes of cloud computing make it difficult to respond to incidents, but that doesn’t
mean you should consider drawing up security incidence response policies. Although cloud
computing creates shared responsibilities, it is often up to the client to initiate the inquiry that gets
the ball rolling. You should be prepared to provide clear information to your cloud ser-vice
provider about what you consider to be an incident or a breach in security and what are sim-ply
suspicious events.

​​Questions

1.​ Explain the types of services required in implementing the cloud

infrastructure in terms of Consulting, Configuration, Customization and
Support in cloud infrastructure.

2.​ Explain the features of network management systems. Briefly introduce
the related products from large cloud vendors.

3.​ Discuss briefly the monitoring of an entire cloud computing deployment
stack. Mention some products used in cloud computing deployment
stack.

4.​ Explain the lifecycle management of cloud services (six stages of
lifecycle).

5.​ Explain the need of live migration of virtual machine. Design a process
of live migration.

6.​ Discuss the security issues during live migration.

7.

8.​ Discuss the infrastructure security by throwing light on the following:

i.​ Network Level

ii.​ Host Level

iii.​ Application Level

iv.​ Data Security and Storage

v.​ Aspects of Data Security

vi.​ Data Security Mitigation Provider Data and Its Security

vii.​ Identity and Access Management

9.​ Discuss the auditing and compliance in cloud environment in terms of
following:

i.​ Data Security in Cloud Computing Environment

ii.​ Need for Auditing in Cloud Computing Environment

iii.​ Third Party Service Provider

iv.​ Cloud Auditing Outsourcing Lifecycle Phases

v.​ Auditing Classification

Module – IV

Concepts of Services and

Applications

Understanding
Service Oriented
Architecture

Service Oriented Architecture (SOA) describes a standard method for

requesting services from distributed components and managing the results.
Because the clients requesting services, the components pro-

viding the services, the protocols used to deliver messages, and the responses can
vary widely, SOA provides the translation and management layer in an
architecture that removes the barrier for a client obtaining desired services. With
SOA, clients and components can be written in different languages and can use
multiple messaging protocols and networking protocols to commu-nicate with
one another. SOA provides the standards that transport the mes-sages and makes
the infrastructure to support it possible. SOA provides access to reusable Web
services over a TCP/IP network, which makes this an important topic to cloud
computing going forward.

You don’t need SOA if you are creating a monolithic cloud application that
performs a specific function such as backup, e-mail, Web page access, or instant
messaging. Many of the large and familiar cloud computing applica-tions are
monolithic and were built with proprietary technologies—albeit often on top of
open source software and hardware. However, as cloud computing applications
expand their capability to provide additional and diverse services, SOA offers
access to ready-made, modular, highly optimized, and widely shareable
components that can minimize developer and infrastructure costs.

For over a decade now Service Oriented Architecture has been part of a col-
laborative effort on the part of both large and small vendors to come up with
a common solution to architecting complex business software processes
effi-ciently. As cloud computing matures and the applications offered
become more capable, the key to being competitive and offering users the
capability to customize their environments lays in the standardization that
Service Oriented Architecture offers. The influence of SOA in cloud
computing is therefore likely to grow.

This chapter provides the basis for understanding what SOA is, how SOA operates, what limita-
tions and capabilities are part of the architecture, and the vocabulary that you need to know in this
subject. SOA is an architecture, first and foremost, so in essence it is a blueprint for creating a sys-
tem conforming to this standard. The environment it creates is a virtual message-passing system
with a loose coupling between clients and services. The products that support SOA are a diverse
lot. SOA components are meant to be modular and easily added to a business process, and this
modularity makes them good candidates for Computer Aided Software Engineering (CASE)
model-ing tools. This chapter describes the software used to support SOA and some of the
important ways in which the architecture is interpreted.

Cloud computing is not the next evolutionary step beyond SOA, as some think because of SOA’s
longer history. The two technologies are complementary. Whereas SOA can be used to construct large
and complex applications that scale both horizontally and vertically, cloud computing appli-cations
tend to be scaled vertically. Horizontal scaling refers to applications with a large number of different
business processes operating. Vertical scaling refers to large applications with a limited number of
business processes operating. SOA techniques may be applied in both instances.

Introducing Service Oriented Architecture
Service Oriented Architecture (SOA) is a specification and a methodology for providing platform-
and language-independent services for use in distributed applications. A service is a repeatable
task within a business process, and a business task is a composition of services. SOA describes a
mes-sage-passing taxonomy for a component-based architecture that provides services to clients
upon demand. Clients access a component that complies with SOA by passing a message
containing metadata to be acted upon in a standard format. The component acts on that message
and returns a response that the client then uses for its own purpose. A common example of a
message is an XML file transported over a network protocol such as SOAP.

Usually service providers and service consumers do not pass messages directly to each other.
Implementations of SOA employ middleware software to play the role of transaction manager (or
broker) and translator. That middleware can discover and list available services, as well as
potential service consumers, often in the form of a registry, because SOA describes a distributed
architecture security and trust services are built directly into many of these products to protect
communication. Middleware products also can be where the logic of business processes reside;
they can be general-purpose applications, industry-specific, private, or public services.

Middleware services manage lookup requests. The Universal Description Discovery and
Integration (UDDI) protocol is the one most commonly used to broadcast and discover available
Web services, often passing data in the form of an Electronic Business using eXtensible Markup
Language (ebXML) documents. Service consumers find a Web service in a broker registry and
bind their ser-vice requests to that specific service; if the broker supports several Web services, it
can bind to any of the ones that are useful.

This architecture does not contain executable links that require access to a specific API. The
mes-sage presents data to the service, and the service responds. It is up to the client to determine
if the service returned an appropriate result. An SOA is then seen as a method for creating an
integrated process as a set of linked services. The component exposes itself as an “endpoint” (a
term of art in SOA) to the client.

​​Note

The most commonly used message-passing format is an Extensible Markup Language (XML) docu-ment using
Simple Object Access Protocol (SOAP), but many more are possible, including Web Services Description
Language (WSDL), Web Services Security (WSS), and Business Process Execution Language for Web Services
(WS-BPEL). WSDL is commonly used to describe the service interface, how to bind information, and the nature
of the component’s service or endpoint. The Service Component Definition Language (SCDL) is used to define
the service component that per-forms the service, providing the component service information that is not part of
the Web service and that therefore wouldn’t be part of WSDL.

Whatever protocol is used to negotiate a transaction, the formal definition of the transaction is
referred to as the “contract.” Indeed, the notion of a contract implies a certain level of service that is

available to clients and that may be part of any paid service in SOA. ◼

​​Tip

Figure 13.1 shows a protocol stack for an SOA
architecture and how those different protocols
execute the functions required in the Service
Oriented Architecture. In the figure, the box
labeled Other Services could include Common
Object Request Broker Architecture
(CORBA), Representational State Transfer
(REST), Remote Procedure Calls (RPC),
Distributed Common Object Model (DCOM),
Jini, Data Distribution Service (DDS),
Windows Communication Foundation (WCF),
and other technologies and protocols. It is this
flexibility and neutrality that makes SOA so
singularly useful in designing complex
applications. These services and the manner in
which they interact in regards to SOA have
been codified by a number of standards
organiza-tions, and some of the more
prominent efforts are described later in this
chapter.

To read the IBMs SOA Foundation White Paper, see http://download.boulder.ibm.com/ibmdl/

pub/software/dw/webservices/ws-soa-whitepaper.pdf. ◼

SOA provides the framework needed to allow clients of any type to engage in a request-response
mechanism with a service. The specification of the manner in which messages are passed in SOA,
or in which events are handled, are referred to as their contract. The term is meant to imply that
the client engages the service in a task that must be managed in a specified manner. In real
systems, contracts may specifically be stated with a Quality of Service parameter in a real paper
contract. Typically, SOA requires the use of an orchestrator or broker service to ensure that
messages are correctly transacted. SOA makes no other demands on either the client (consumer)
or the compo-nents (provider) of the service; it is concerned only with the interface or action
boundary between the two. This is the earliest definition of SOA architecture.

http://download.boulder.ibm.com/ibmdl/

A protocol stack for SOA showing the relationship of each protocol to its function

SOAP

SOAP

Other Protocols and

Services Extensible Markup Language (XML)
Extensible Markup Language (XML)

Tip

Components are often written to comply with
the Service Component Architecture (SCA), a
lan- guage- and technology-agnostic design
specification that has wide, but not universal,
industry sup- port. SCA can use the services of
components that are written in the Business
Process Execution Language (BPEL), Java,
C#/.NET, XML, or Cobol, and can apply to
C++ and Fortran, as well as to the dynamic
languages Python, Ruby, PHP, and others. This
allows components to be written in the easiest
form that supports the business process that the
component is meant to service. By wrapping
data from legacy clients written in languages
such as COBOL, SOA has greatly extended the
life of many legacy applications.

To read David Chappel’s white paper on SCA, go to http://www.davidchappell.com/articles/

Introducing_SCA.pdf. ◼

Components are coded with their service logic and their dependencies, QoS is established, and
the service is instantiated. In the SCA model, data and messages are exchanged in a Service
Data Object (SDO). This system of messaging using objects and services is sometimes referred
to as a Data Access Service (DAS). Figure 13.2 shows how components of different types can
communi-cate using different protocols as part of SOA.

When you combine Web services to create business processes, the integration must be managed. Two
main methods are used to combine Web services: orchestration and choreography. In orchestra-tion, a
middleware service centrally coordinates all the different Web service operations, and all ser-vices send

http://www.davidchappell.com/articles/

messages and receive messages from the orchestrator. The logic of the compound business process is
found at the orchestrator alone. Figure 13.3 shows how orchestration is managed.

SOA allows for different component and client construction, as well as access to each using different protocols.

Clients (Consumers)

SOA
P
REST
RNI

Enterprise Service Bus

Services (Providers)

By contrast, a compound business process that uses choreography has no central coordination
function. In choreography, each Web service that is part of a business process is aware of when
to process a message and with what client or component it needs to interact with. Choreography
is a collaborative effort where the logic of the business process is pushed out to the members
who are responsible for determining which operations to execute and when to execute them, the
structure of the messages to be passed and their timing, and other factors. Figure 13.4 illustrates
the nature of choreography.

​​Tip

What isn’t clear from Figure 13.2, but is shown in
Figure 13.3 (orchestration) and Figure 13.4
(choreography) is that business processes are
conducted using a sequence, in parallel, or simply
by being invoked (called to). An execution
language like WS-BPEL provides commands for
defining logic using conditional statements, loops,
variables, fault handlers, and other constructs.
Because a business process is a collection of
activity graphs, complex processes are often
shown as part of Unified Modeling Language
(UML) diagrams. UML is the modeling language
of the Object Management Group that provides a
method for creating visual models for software in
the form of 14 types of diagrams. Some of the
diagram types are structure, behavior, class,
component, object, interaction, state, and
sequence.

You can find a primer on BPEL by Matjaz Juric on Oracle’s Web site at http://www.oracle.com/
technology/pub/articles/matjaz_bpel1.html. For information on SOA modeling, refer to Service-
Oriented Modeling: Analysis, Design, and Architecture, by Michael Bell, Wiley, 2008, and Bell’s
later book SOA Modeling Patterns for Service-Oriented Discovery and Analysis, Wiley, 2010. ◼

http://www.oracle.com/

An orchestrated business process uses a central controlling service or element, referred to as the
orchestrator, conductor, or less frequently, the coordinator.

Most mature SOA implementations favor orchestration over choreography for a number of
reasons. With orchestration a single central service manages the various processes, and changes to
the busi-ness logic can be made in that one location. The integration of Web services into the
architecture is easier than with choreography because these services don’t need to know anything
about the busi-ness process. Centralizing the business logic also makes it easier to put error
handling mechanisms in place and to account for, manage, and analyze events that occur outside
the business process that relate to a part of the process. Event handling is part of event-driven SOA
or SOA 2.0, which extends Service Oriented Architecture to include both random and scheduled
events that are trig-gered by a business process outside of a business process.

One way of performing orchestration is through the use of an Enterprise Service Bus or ESB. An
ESB provides a middleware software layer for event management with a messaging infrastructure.
ESBs are described later in the section called “The Enterprise Service Bus.” An ESB isn’t required
by SOA, but it is often used to create a compliant and efficient service architecture.

With choreography, business process execution is a cooperative affair.

Event-driven SOA or SOA 2.0
Event-driven SOA or SOA 2.0 is an extension of the Service Oriented Architecture to respond to
events that occur as a result of business processes or perhaps cause and influence a business pro-
cess. For example, in a business process, sales at a certain Web site are processed. If the business
process recognizes the rate at which sales are occurring, it could perform an analysis to determine
what events might influence the buying decision. This is the sort of analysis that event-driven
SOA is meant to address. SOA 2.0 can allow low-level events to trigger a business process,
correlate events with information contained in the SOA design, inhibit a business process if the
appropriate events don’t appear, or invoke a reaction or response based on a trigger.

To perform these tasks in SOA 2.0, a Causal Vector Engine (CVE) with some built-in artificial
intelligence must be added to the SOA design. Events are analyzed in terms of event sequences,
event relationships, and event timing to establish whether a certain condition has occurred. The
CVE then determines how to react to the condition using a set of rules that are built into the sys-
tem. Many CVE systems display events in a console in different contexts so that an observer can

analyze the display and take appropriate actions. A CVE application may include the ability to
query event data in the same way that a stock ticker or trading application can query trading data.
The CVE application provides the same kind of heartbeat and correlation functionality that a stock
trading application does.

From the standpoint of the service requestor or consumer (client), the client simply needs to know
the form required to initiate the action of the provider (service) and how to interpret the results
returned from the service provider. The nature of the component’s processing is unknown, the
location where the processing is done is unknown, and the various operating systems and applica-
tions involved are unknown. The client is responsible for validating that the service returned the
results that were expected. The SOA component is essentially a black box to the client. That is,
SOA makes no demands of the component other than to conform to the rules of a standard end-
point. This level of abstraction offers operational advantages to Web service providers in that
com-ponents can be continually upgraded, replaced, or moved to improve efficiencies without
disrupting the clients that depend on those services, and the Quality of Service for that service can
be accurately measured and delivered. In SOA, the service has been virtualized.

​​Cross-Ref
Communication protocols are discussed in detail in Chapter 3, “Understanding Cloud Architecture.” ◼

Any network service that spans different application types is a candidate for componentization.
Consider a logon or authentication system. It would be wasteful to implement the same authenti-cation
functionality in several different applications when a single unified module could serve the same
purpose. A single sign-on system for an accounting package, payroll module, or production database
replaces three separate modules with attendant efficiencies in the amount of code that needs to be
written and managed and the level of system overhead that is involved. SOA provides the rules so
each application can access the authentication module in its own way, as required. What you gain with
SOA is the ability to add significant capabilities with a fraction of the cost or effort and to federate
applications if you desire. What you lose with SOA is the ability to perform fundamental
customization of the service itself when that service is provided by a third party.

​​The Enterprise Service Bus
In Figure 13.5, those aforementioned hypothetical three different applications are shown interfaced
with an authentication module through what has come to be called an Enterprise Service Bus
(ESB). An ESB is not a physical bus in the sense of a network; rather, it is an architectural pattern
comprised of a set of network services that manage transactions in a Service Oriented Architecture.

You may prefer to think of an ESB as a set of services that separate clients from components on a
transactional basis and that the use of the word bus in the name indicates a high degree of connec-
tivity or fabric quality to the system; that is, the system is loosely coupled. Messages flow from
client to component through the ESB, which manages these transactions, even though the location
of the services comprising the ESB may vary widely.

An ESB is necessary but not essential to a Service Oriented Architecture because typical business
processes can span a vast number of messages and events, and distributed processing is an inher-
ently unreliable method of transport. An ESB therefore plays the role of a transaction broker in
SOA, ensuring that messages get to where they where supposed to go and are acted upon properly.
The service bus performs the function of mediation: message translation, registration, routing, log-
ging, auditing, and managing transactional integrity. Transactional integrity is similar to ACID in a
database system—atomicity, consistency, isolation, and durability, the essence of which is that
transactions succeed or they fail and are rolled back.

An SOA application of a shared logon or Authentication module

Other Services​ Authentication Service

An ESB may be part of a network operating system or may be implemented using a set of
middle-ware products. An ESB creates a virtual environment layered on top of an enterprise
messaging system where services are advertised and accessed. Think of an ESB as a message
transaction system. IBM’s WebSphere ESB 7.0 is an ESB based on open standards such as Java
EE, EJB, WS-Addressing, WS-Policy, and Kerberos security, and it runs on the WebSphere
Application Server. It is interoperable with Open SCA. WebSphere ESB contains both a Service
Federation Management tool and an integrated Registry and Repository function.

These typical features are found in ESBs, among others:

⚫​ Monitoring services aid in managing events.

⚫​ Process management services manage message transactions.

⚫​ Data repositories or registries store business logic and aid in governance of
business processes.

⚫​ Data services pass messages between clients and services.

⚫​ Data abstraction services translate messages from one format to another, as required.

⚫​ Governance is a service that monitors compliance of your operations with
governmental regulation, which can vary from state to state and from country to country.

⚫​ Security services validate clients and services and allow messages to pass from one
to the other.

Figure 13.6 shows how these different services in an SOA relate to one another.

The difference between a repository and a registry in the context of a Service Oriented
Architecture is subtle. Repositories and registries are both data stores, but a repository stores
references to the components of the SOA, their source code, and linking information that are used
to provide SOA services. An SOA registry contains references to rules, descriptions, and
definitions of the ser-vices—that is, the metadata of the components.

A repository serves the role that a name server does in a network operating system infrastructure, while
the registry plays the role of a directory service (domain). The service broker uses the rules contained in
the SOA registry to perform its function as translator and delivery agent. For develop-ers, the registry
serves as the central location to store component descriptions that allow composite applications to be
created and the place in which services may be published for general use.

These services in an SOA also include the provider interfaces and standard sets of network proto-cols
that were mentioned previously. Developers may also choose to create a Business Process
Orchestration module to coordinate the access and transactional integrity of multiple business
applications that integrate into a larger platform, described in the next section in more detail.

This figure shows a network services model infrastructure for an SOA, which is based on the SOA
meta-model of the Linthicum Group, 2007. A slightly different version of this diagram appears in
Networking Bible by Barrie Sosinsky, Wiley, 2009.

Internet
Services

​​Service catalogs
Finding any particular service and locating the service’s requirement in a large SOA
implementa-tion can involve a large amount of network system overhead. To aid in locating
services, SOA infrastructure often includes a catalog service. This service stores information on
the following, among other things:

⚫​What services are available, both internal and external
⚫​How to use a service
⚫​Which applications are related to a particular service (dependencies)
⚫​How services relate to one another
⚫​Who owns the service and how a service is modified
⚫​The event history of a service, including service levels, outages, and so on
⚫​The nature of service contracts

Service catalogs are dynamic and under constant modification. Catalog servers have these features:

⚫​They can be standalone catalog servers serving a single site.

⚫​They serve the role of a global catalog service where two or more catalog servers are
merged to include several sites. A global service usually requires some sort of
synchroniza-tion or update to maintain a unified data store across the servers involved.

⚫​They can be part of a federated catalog service where two or more global catalog
servers have access to one another’s information through a trusted query relationship.

​​Note

Catalog services have an enormous impact on large system performance and eventually become essential as a
SOA internetwork system grows. An internetwork is a network that is constructed through the consolidation
of separate networks, in the same manner that the Internet has been built.

The Information Technology Infrastructure Library (ITIL) developed by the United Kingdom’s Office of
Government Commerce (OGC) has developed a Service Catalog Management design specification as
part of the ITIL v2 Service Design Package (SDP). Service Designs present best practice guidance for

planned services. The ITIL Web site may be found at http://www.itil-officialsite.com/home/home.asp. ◼

Defining SOA Communications

Message passing in SOA requires the use of two different protocol types: the data interchange for-
mat and the network protocol that carries the message. A client (or customer) connected to an ESB
communicates over a network protocol such as HTTP, Representational State Transfer (REST), or
Java Message Service (JMS) to a component (or service). Messages are most often in the form of
the eXtensible Markup Language (XML) or in a variant such as the Simple Object Access
Protocol (SOAP). SOAP is a messaging format used in Web services that use XML as the message
format while relying on Application layer protocols such as HTTP and Remote Procedure Calls
(RPC) for message negotiation and transmission.

http://www.itil-officialsite.com/home/home.asp

The software used to write clients and components can be written in Java, .NET, Web Service
Business Process Execution Language (WS-BPEL), or another form of executable code; the services
that they message can be written in the same or another language. What is required is the ability to
transport and translate a message into a form that both parties can understand.

An ESB may require a variety of combinations in order to support communications between a ser-
vice consumer and a service provider. For example, in WebSphere ESB, you might see the follow-
ing combinations:

⚫​XML/JMS (Java Message Service)
⚫​SOAP/JMS
⚫​SOAP/HTTP
⚫​Text/JMS
⚫​Bytes/JMS

The Web Service Description Language (WSDL) is one of the most commonly used XML protocols
for messaging in Web services, and it finds use in Service Oriented Architectures. Version 1.1 of
WSDL is a W3C standard, but the current version WSDL 2.0 (formerly version 1.2) has yet to be
ratified by the W3C. The significant difference between 1.1 and 2.0 is that version 2.0 has more
support for RESTful (e.g. Web 2.0) application, but much less support in the current set of soft-ware
development tools. The most common transport for WSDL is SOAP, and the WSDL file usu-ally
contains both XML data and an XML schema.

REST offers some very different capabilities than SOAP. With REST, each URL is an object that
you can query and manipulate. You use HTML commands such as GET, POST, PUT, and DELETE
to work with REST objects. SOAP uses a different approach to working with Web data, exposing
Web objects through an API and transferring data using XML. The REST approach offers light-
weight access using standard HTTP command, is easier to implement than SOAP, and comes with
less overhead. SOAP is often more precise and provides a more error-free consumption model.
SOAP often comes with more sophisticated development tools. All major Web services use REST,
but many Web services, especially newer ones, combine REST with SOAP to derive the benefits that
both offer.

Contained within WSDL are essential objects to support message transfer, including these:

⚫​ The service object, a container where the service resides.

⚫​ The port or endpoint, which is the unique address of the service.

⚫​ The binding, which is the description of the interface (e.g. RPC) and the transport (e.g. SOAP).

⚫​ The portType, or interface that defines the capabilities of the Web service, and what opera-
tions are to be performed, as well as the messages that must be sent to support the operation.

⚫​ The operation that is to be performed on the message.

⚫​The message content, which is the data and metadata that the service operation is per-
formed on. Each message may consist of one or more parts, and each part must include
typing information.

⚫​The types used to describe the data, usually as part of the XML schema that accompanies
the WSDL.

​​Business Process Execution Language
If a message represents an atomic transaction in a Service Oriented Architecture, the next level of
abstraction up is the grouping and managing of sets of transactions to form useful work and to execute a
business process. An example of an execution language is the Business Process Execution Language
(BPEL) or alternatively as the Web Service Business Process Execution Language

(WS-BPEL), a language standard for Web service interactions. The standard is maintained by the
Organization for the Advancement of Structured Information Standards (OASIS) through their Web
Services Business Process Execution Language Technical Committee (WSBPEL-TC; see
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.)

BPEL is a meta-language comprised of two functions: executable commands for Web services and
clients, and internal or abstract code for executing the internal business logic that processes require.
A meta-language is any language whose statements refer to statements in another language referred
to as the object language. BPEL is often used to compose, orchestrate, and coordinate business
processes with Web services in the SOA model, and it has commands to manage asyn-chronous
communications.

BPEL uses XML with specific support for messaging protocols such as SOAP, WSDL, UDDI, WS-
Reliable Messaging, WS-Addressing, WS-Coordination, and WS-Transactions. BPEL also builds on
IBM’s Web Services Flow Language (WSFL) and Microsoft’s XLANG for data transport; the former is
a system of directed graphs, while the latter is a block-structured language adding to additional verbs
and nouns specific for business processes to BPEL, which were combined to form BPEL4WS and are
being merged with BPEL. A version of BPEL to support human interaction is called BPEL4People, and
it falls under the WS-HumanTask specifications of OASIS.

BPEL was designed to interact with WSDL and define business processes using an XML
language. BPEL does not have a graphical component. A business process has an internal or
executable view and an external or abstract view in BPEL. One process may interact with other
processes, but the goal is to minimize the number of specific extensions added to BPEL to support
any particular business process. Data functions in BPEL support process data and control flow,
manage process instances, provide for logic and branching structures, and allow for process
orchestration. Because transactions are long-lived and asynchronous, BPEL includes techniques
for error handling and scopes transactions. As much as possible, BPEL uses Web services for
standards and to assemble and decompose processes.

​​Business process modeling
SOA was created by the industry to solve a problem: how to make disparate, diverse, and distrib-uted
services talk to disparate and diverse clients. The final result of an SOA project isn’t the access of
services, per se; it is the creation of a business process. In a complex business project, the devel-opers
juggle many clients and many services, which can make visualization of the overall system difficult. To
address this problem, various modeling tools have been developed to support SOA development and
optimization, system and process management, change and life-cycle management.

Several methodologies have been developed to model SOAs. Working in a software package to
model your business processes is similar in approach to designing and optimizing a relational data-
base in entity-relationship, object-role modeling package, or another Computer Aided System
Engineering (CASE) tool for data storage—and equally as valuable.

Commonly encountered system models include the following:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.)
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.)

⚫​ Unified Modeling Language (UML): The UML standard is the work of the Object
Management Group (http://www.omg.org/). UML creates graphical representations of
software systems in the form of a set of diagram types. Elements in a UML
architectural blueprint include actors, business processes, logic modules (components),
program rou- tines, database schemas, software components, and activities. UML
diagrams are separated into seven structural types and four behavior types; structure
types model the components of the system, while behavior types model states, actions,
and events. UML is widely used in the industry for software system modeling. A
developed system model can be reduced automatically to code.

⚫​ XML Metadata Interchange (XMI): XMI is another standard of the Object
Management Group (OMG) and is used to exchange metadata using the Extensible
Markup Language (XML). Metadata is structured into a metamodel that fits into the
OMG’s Meta-Object Facility. UML models often use XMI as their interchange format,
although they can be used by other languages. XMI files are not generally
interchangeable between the different modeling languages that can use them. XMI has
been codified as an international standard by ISO, as IS0/IEC 19503:2005.

⚫​ Systems Modeling Language (SysML) is an open-source extension of the part of the
UML system dealing with profiles. It is smaller, more focused, and easier to learn and
work with than UML itself. SysML reuses 7 of UML 2.0’s 13 diagrams. The effort to
develop SysML was rolled into OMG in 2008, but remains open source. SysML can
use XMI and is developing toward support of ISO 10303, which is the Standard for the
Exchange of Product Model Data (STEP) AP-233. STEP aims to create the mechanisms
for sharing information between the different software engineering tools described in
this sec-tion (and others).

⚫​ Business Process Modeling Notation (BPMN) is a methodology for representing busi-ness
processes as a set of connected visual objects that illustrate workflow in a Business Process
Diagram (BPD). It is similar to UML. Originally developed in the Business Process
Management Initiative (BPMI), it was incorporated into the Open Management Group in
2005. A BPD can be reduced to the OASIS standard WS-Business Process Execution
Language, which is an executable language for information transfer between different Web
services. However, this mapping is tool specific and standardized at this point.

⚫​ Service-Oriented Modeling Framework (SOMF): This framework was proposed by
Michael Bell and combines a modeling language with a graphical display of the various
SOA components so the system can be viewed as a map of objects and associated
relation-ships. SOMF software allows developers to create an action plan to implement
their busi-ness processes and can be valuable in system and architecture optimization,
tracing message pathways, positioning software assets correctly, and providing a
language for describing through abstraction and generalization how the processes
operate. SOMF soft-ware not only allows you to determine what needs to be done, but
also allows you to run “what-if” scenarios to see how changes will impact your SOA
system.

http://www.omg.org/)

The four different message-passing topologies used in SOMF are shown above. The lines and arrows
indi-cate message-passing pathways and relationships.

Circular topology​ Network topology

​​Star topology

Hierarchical topology

Rarely do atomic services stand alone. A service that provides ID, name, and address might be
part of a set of services that describe a bank account, customer purchase record, or any number
of services. A collection of services that work together is referred to as a composite service. The
Enterprise Service Bus described previously in this chapter is another example of a composite
ser-vice; it contains functions for message routing, message interchange and translation, and
process orchestration. A composite service is usually organized as a hierarchical topology and is
multi-functional or a coarse-grained entity.

SOA describes a distributed collection of services performing business process functions. A
collec-tion of composite services that would form a process module is referred to as a service
cluster. Service clusters may be composed of both atomic services and composite services. Large
functions such as payroll modules would normally be composite SOA services.

Tip
To view a structured presentation on how to build an SOMF diagram, go to http://www.modeling
concepts.com/pdf/SOMF_ANALYSIS_MODELING.pdf. The white paper “Enacting the Service Oriented
Modeling Framework (SOMF) Using Enterprise Architect” by Frank Truyen (http://www.sparxsystems.

com/downloads/whitepapers/EA-SOMF_Introduction.pdf) shows different SOMF diagram types. ◼

In an SOMF model, each of these three service types (atomic, composite, and clusters) appears as
a specific shape, and connections are made between them that generalize, specify, expand, or con-
tract the services they provide. Services are typed, granular services are identified, and then ser-
vices may be aggregated, decomposed, unified, intersected, or subtracted from other services to
suit the needs of the business process being modeled. The SOMF modeling notation has a symbol
for each analysis that relates one service to another. As you build a business process, you add ser-
vices to the model and connect them in ways that make sense for your workflow. When the model
is complete and optimized, it is reduced to a conceptualized service that relates the business pro-
cess to the specific implementation chosen. Some modeling technologies allow for the reduction
of the model to executable code.

​​Managing and Monitoring SOA

Software for monitoring and managing an SOA infrastructure plays an important role in large
SOA deployments. While SOA offers a logical design and reusable components, it does not make
the task of network management any easier. If anything, SOA management requires proactive
over-sight because you can’t wait for a particular application to fail before taking corrective
action. Therefore, tools for managing SOAs tend to be multifaceted and run constantly.

​​SOA management tools
There are a number of network management frameworks products and suites, notably these:

⚫​HP Software and Solutions OpenView SOA Manager (https://h10078.www1.

hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto &cp=1-
10^36657_4000_100)

⚫​IBM Tivoli Framework Composite Application Manager for SOA (ITCAM; see http://
www-01.ibm.com/software/tivoli/solutions/),

⚫​Oracle BPEL Process Manager (http://www.oracle.com/technology/bpel/ index.html)

These products have SOA tools for network management. IBM’s product specializes in change
management and SOA lifecycle development, and it integrates with a WebSphere and other
Tivoli systems. HP SOA Manager provides dynamic mapping, monitoring, and optimization of
SOA ser-vices such as Web services, software assets, and virtual services. These framework
products create a central console with a variety of management views. Oracle’s BPEL Process
Manager and WebSphere are process managers for creating an Enterprise Service Bus.

The SOA management software technology is dynamic, with many small vendors’ products some of
which have been purchased and rolled into (or are being rolled into) larger systems. Oracle’s recent

http://www.oracle.com/technology/bpel/

acquisition of AmberPoint’s SOA Management System is an example of this trend. BMC Software’s

AppSight (http://www.bmc.com/products/product-listing/BMC-AppSight.html) is an automated SOA
problem-resolution package, as is Tidal Software’s Intersperse package, which has root cause
analysis services. The CA Wily SOA Solution (http:// www.ca.com/us/eitm/solution.aspx?id=8254) is a
monitoring and discovery service that can map SOA transactions and dependencies and discover
components such as ESBs, Web portals, and various Web services. iTKO’s LISA
(http://www.itko.com/products/index. jsp). Enterprise SOA Testing platform specializes in testing Web
service components that are used in SOA. Another example of an SOA transaction manager is
OpTier’s CoreFirst (http://www. optier.com/corefirst_overview.aspx).

Configuration and change management present a particular challenge in the area of SOA (and cloud
computing in general). In addition to the fact that elements of an SOA infrastructure can be highly
distributed and therefore require good discovery mechanisms, these environments also are highly
virtualized. As workloads vary, solutions often provision virtual servers as needed and move these
virtual servers’ processing across physical servers. Virtualization will continue to challenge SOA
management software well into the future.

​​SOA security
Any system that sends hundreds or thousands of messages across an internetwork as SOA does is
subject to attack in all the traditional ways that network traffic is hijacked, spoofed, redirected, or
blocked. Because SOA eliminates the use of application boundaries, the traditional methods where
security is at the application level aren’t likely to be effective.

Cisco has a family of products that enforce rules and policies for the transmission of XML messag-
ing that they have named Application Oriented Networking (AON; http://www.cisco.com/
en/US/products/ps6480/). A similar policy based XML security service may be found in Citrix’s
NetScaler 9.0 (http://www.citrix.com/English/ps2/products/product.
asp?contentID=21679) Web application delivery appliance.

To address SOA security, a set of OASIS standards (http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=security) was created, which includes the
following:

⚫​Security Assertion Markup Language (SAML) is an XML standard that provides for data

authentication and authorization between client and service. The SAML technology is used
as part of Single Sign-on Systems (SSO) and allows a user logging into a system from a
Web browser to have access to distributed SOA resources.

⚫​WS-Security (WSS) is an extension of SOA that enforces security by applying tokens
such as Kerberos, SAML, or X.509 to messages. Through the use of XML Signature and
XML Encryption, WSS aims to offer client/service security.

http://www.bmc.com/products/product-listing/BMC-AppSight.html)
http://www.ca.com/us/eitm/solution.aspx?id=8254)
http://www.itko.com/products/index
http://www/
http://www.cisco.com/
http://www.citrix.com/English/ps2/products/product
http://www.oasis-open.org/

⚫​ WS-SecureConversion is a Web services protocol for creating and sharing security con-
text. WS-SecureConversion is meant to operate in systems where WS-Security, WS-
Trust, and WS-Policy are in use, and it attaches a security context token to
communications such as SOAP used to transport messages in an SOA enterprise.

⚫​ WS-SecurityPolicy provides a set of network policies that extend WS-Security, WS-
Trust, and WS-SecureConversion so messages complying to a policy must be signed and
encrypted. The SecurityPolicy is part of a general WS-Policy framework.

⚫​ WS-Trust extends WS-Security to provide a mechanism to issue, renew, and validate
security tokens. A Web service using WS-Trust can implement this system through the use
of a Security Token Service (STS), a mechanism for attaching security tokens to messages
and a set of mechanisms for key exchanges that are used to validate tokens and messages.

Another approach to enforcing security in SOA is to use an XML gateway that intercepts XML
mes-sages transported by SOAP or REST, identifies the source of the message, and verifies that
the mes-sage was securely received. Providing XML Gateway SOA security requires a Public Key
Infrastructure (PKI) so that encryption is enforced by digital signatures. Progress Software’s
Actional 8.0 (http://web.progress.com/en/actional/index.html) now includes Mindreef’s SOAPscope
Server and has an XML middleware service that performs diagnostic testing and Web services
governance, adding that component to Actional’s ability to monitor and map XML appliances and
application servers.

​​The Open Cloud Consortium
The Open Cloud Consortium (OCC; see http://opencloudconsortium.org/) is an organi-zation
comprised of several universities and interested companies that supports the development
of standards for cloud computing and for interoperating with the various frameworks.

OCC working groups perform these functions:

⚫​They develop benchmarks for measuring cloud computing performance. Their

benchmark and data generator for measuring large data clouds is called MalStone
(http://code. google.com/p/malgen/).

⚫​They provide testbeds that vendors can use to test their applications, including the
Open Cloud Testbed and the Intercloud Testbed that are part of the work of the Open
Cloud Testbed and Intercloud working groups.

⚫​They support the development of open-source reference implementations for cloud com-
puting. The Working Group on Standards and Interoperability For Large Data Clouds
extends the architecture for data storage with a distributed file system, table services, and
computing using MapReduce following the model that is part of Google’s offering.

http://web.progress.com/en/actional/index.html)
http://opencloudconsortium.org/)
http://code/

MapReduce is Google’s patented software framework that supports distributed large data sets
organized by the Google File System (GFS) accessed by clusters of computers. The Apache
Hadoop (http://hadoop.apache.org/) open-source system is based on MapReduce and GFS.

⚫​They support the management of cloud computing infrastructure for scientific research as part
of the Open Science Data Cloud (OSDCP) Working Group’s initiative.

​​Relating SOA and Cloud Computing

Cloud computing is still in its infancy, and although Web services can implement a Service Oriented
Architecture, it is not a requirement. Most of the large implementations of cloud comput-ing described in this
book are single-purpose applications that have been optimized on a grand scale: Carbonite’s backup, Google’s
Gmail e-mail, and Twitter’s Instant Messaging (IM) are several examples. Applications of those types have less
of a need for the flexibility and loose coupling that SOA provides. As cloud applications become more diverse in
scope, SOA offers an architectural blueprint for accessing diverse optimized services through a loosely coupled
standardized method that provides an ability to evolve that is difficult to implement in any other way.

SOA is loosely coupled because the service is separated from the messaging. If a component doesn’t
provide the capabilities required, it is an easy task to switch to a different component, and switching
requires almost no programming. Developers lose some of the ability to customize mod-ules, but gain a
significant advantage in simplifying their applications. Taken as a whole, applica-tions that rely on SOA
components can be very complex and appear to be tightly coupled, when in reality they are not.

SOA components are often best-of-breed service providers that can provide a measured service level
and can play a role in Business Process Management (BPM) systems. The separation of ser-vices from
their design allows for much easier system upgrades and maintenance.

Many Web 2.0 applications use SOA components, and SOA will become increasingly useful in larger
applications that require many Web services. Web 2.0 is an acronym coined by Tim O’Reilly to describe
Web services that allow for user input and modification. These applications often rely on REST and
feature AJAX components in a user interface that supports Web syndication (think of the Google
customizable user page), blogs, and wikis. Some people regard mashups as Web 2.0 applications as well.
A mashup is the combination of data from two or more sources that creates a unique service. The layers
added to Google maps are examples of mashups.

AJAX stands for Asynchronous JavaScipt and XM. AJAX is a set of development tools that allow for client
input into Web applications; it is not a standard. Rather AJAX describes a group of technolo-gies that leverage
HTML and CSS for styling, Web objects in the Document Object Model (DOM)

http://hadoop.apache.org/)

for data, XML and XSLT for data interchange, the XMLHttpRequest for asynchronous communica-tion,
and JavaScript commands to request data from data sources.

The challenge SOA faces in designing systems to support Web 2.0 is the lack of standardization in how
components in Web 2.0 are used. However, many people believe that SOA will play a role in creating what
has been dubbed an “Internet of Services” where complex services will be available for use as a set of
building blocks based on the convergence of SOA and Web 2.0. The Gartner Group refers to this trend as the
development of “Advanced SOA,” but features of SOA that are event-driven have been part of many
vendors’ middleware offerings for several years now.

​​Summary

This chapter described Service Oriented Architecture (SOA). SOA offers a design methodology for
creating distributed applications using diverse clients and components. SOA defines a message-passing
infrastructure from clients or consumers to and from service providers. Making SOA work correctly
requires a certain set of middleware products in your infrastructure. These servers may aid in
transaction management or brokering, message translation, or other services. Taken as a whole, these
services are referred to as an Enterprise Service Bus (ESB).

Most message-passing protocols are based on a version structured XML, although that is not required
in SOA. A variety of transport protocols are used, but SOAP and RPC are the most com-mon ones. The
nature of SOA messaging was explored. In a complex system of message passing and services, system
management and security is an important consideration. Tools for setting up and running an SOA
infrastructure were described.

Finally, this chapter described the relationship between SOA and cloud computing. You don’t need to
use SOA to build a massively scaled cloud computing application, but as cloud computing applications
become more capable and user configurable, the logic and structure that SOA design imposes on
infrastructure will prove to be invaluable to cloud applications. The two areas of tech-nology benefit
from their mutual convergence.

In Chapter 14, I consider the topic of transactional Web applications in cloud computing systems. That
subject builds on what you have learned about SOA in this chapter, extending the discussion into the
command Web APIs that are in use today.

​​Moving Applications
to the Cloud

In this chapter, you learn about some of the important considerations involved
in moving an application from a local or on-premises installa-tion to one that is
either fully or partly in the cloud. Some applications

benefit from cloud deployment, and the cloud enhances some features.

The process for determining whether, what, and when to move your applica-
tions to the cloud involves an analysis of what critical features of the
applica-tion need to be supported. After those critical features are understood,
you can determine the features supported by your particular cloud service
pro-vider to see whether the cloud can support the application’s critical features.
Factors such as access to data, latencies, data security, and so on often limit what
applications are good candidates for porting.

Two examples of application porting to the cloud are discussed in this chap-
ter. In one application, physical hardware is eliminated by moving the entire
application to the cloud. In the second example, a system is essentially
cloned to the cloud to provide an overflow capability, an example of a
hybrid application technique called cloud bursting.

When you move an application to the cloud, you must use the APIs of your
particular cloud service provider. There are APIs for each of the types of
cloud services: infrastructure, software services, and applications in the
case of platform providers. These APIs are generally not interoperable. So
although the situation may change in the future, an application developer
must make an informed choice to select the vendor that both best suits his
needs and allows him to have the greatest flexibility.

​​Applications in the Clouds

When you deploy an application to the cloud, you start with the advantages and disadvantages of a
distributed system that is the Internet and add to that mix the fundamental characteristics that
clouds offer. In the cloud, your applications must account for system abstraction and redirection,
scalability, a whole new set of application and system APIs, LAN/WAN latencies, and other
factors that are specific to one cloud platform or another. In theory, any application can run either
com-pletely or partially in the cloud.

The question a developer needs to ask is whether his application’s function is best served by cloud
or local deployment. That answer depends upon the attributes of the application that the developer
is trying to preserve or enhance, and how locating those services in the cloud impacts those attri-
butes. This chapter takes a broad look at cloud computing from an application-specific viewpoint
and attempts to highlight the factors that make cloud-based applications successful.

The location of an application or service plays a fundamental role in how the application must be
written. An application or process that runs on a desktop or server is executed coherently, as a
unit, under the control of an integrated program. An action triggers a program call, code executes,
and a result is returned and may be acted upon.

Taken as a unit, “Request => Process => Response” is an atomic transaction. Because the transac-
tion is executing locally within the purview of a monolithic application, the process is stateful and
transaction is consistent. That is, the condition of the transaction is always known and the result is
always accounted for. A coherent transaction either succeeds and is enacted, or fails and is rolled
back. When rollback is not possible due to optimistic transaction commitment in a multiuser
application, atomicity requires correcting the condition or performs some other compensating
action at some later time.

The properties necessary to guarantee a reliable transaction in databases and other applications and
the technologies necessary to achieve them have been called the ACID principle. The acronym
stands for:

⚫​Atomicity: The atomic property defines a transaction as something that cannot be subdi-

vided and must be completed or abandoned as a unit.

⚫​Consistency: The consistency property states that the system must go from one
known state to another and that the system integrity must be maintained.

⚫​Isolation: The isolation property states that the system cannot have other
transactions operate on data that is currently being processed by a transaction.

⚫​Durability: The durability property states that the system must have a mechanism to
recover from committed transactions should that be necessary.

The ACID rules were developed by Jim Gray to apply to database technology in the late 1970s.
The ACID principle is used today by any application that is reading and writing to a stored data
set, which includes just about any application type you can think of.

An application that runs as a service on the Internet has a client portion that makes a request and a
server portion that responds to that request. The request has been decoupled from the response
because the transaction is executing in two or more places. In a distributed system, the transaction
is stateless. In order to create a stateful system in a distributed architecture, a transaction manager
or broker must be added so that the intermediary service can account for transactions and react
accordingly when they succeed or fail.

When applications get moved to the cloud, they retain the features of a three-layered
architecture, but now physical systems become virtualized systems. Virtual machines are not
only stateless, but the place where program execution occurs is likely to be different every time
the process runs. These fundamental properties must be accounted for in any cloud-based
application.

​​Functionality mapping
Some applications can be successfully ported to the cloud, while others suffer from the
translation. Understanding whether your particular application can benefit from cloud
deployment requires that you deconstruct your application’s functionality into its basic
components and identify which functions are critical and can be supported by the cloud.

For example, any application that requires access to a data store quickly runs up against some of
the limits that cloud computing imposes. Order transaction systems require that data in a database
maintain the transactional integrity implied by the ACID model. For many non-relational cloud
storage systems, such as the Amazon Simple Storage Service (S3), the newly announced Google
Storage for Developers, and the Windows Azure Storage Service, the ability of the system to
main-tain transactional integrity through record locking isn’t part of those systems. These types of
stor-age systems are secure and store large amounts of data, but they have very slow access to that
data and do not support query and retrieval well. These limitations are why all these vendors offer
alter-native relational cloud database systems such as SQL Azure.

​​Note

In Figure 14.1, an attribute tree is constructed for an order transaction system where the function- ality is
decomposed into different functional areas. At the top are high-level attributes; some of these functions are
essential to the operation of the application while others are not. Drilling down on the data management
attribute, the second level explores data access and then access methods. A critical attribute for the application
is the need to be able to access data when the client is both online and offline.

This exercise isn’t required for all attributes, just the critical ones, which should result in a manageable list. ◼

An attribute map is created to expose critical functionality.

Availability Data
Managemen
t

Distribution Managebility Reliability Scalability User
Interface

Access Data
Structure Index Persistence Query State Transaction

The choice to allow both online and offline data access determines the nature of your application’s
interaction with both cloud and local data stores. If the application needed to access data only
when the client was online, then access to cloud-based storage would be the only data store your
application would required. Perhaps the application could be entirely in the cloud and browser-
based. The decision to allow both online and local data access means that you must create a hybrid
application with a cloud component and a local component. Even if the access to data on the local
system is a simple caching system, client-side support is needed. To support the application’s data
access, you may also be faced with building a synchronization or replication feature, which adds
more overhead to the application.

This type of mapping exercise leads to some conclusions about the value of cloud computing to
this particular application. You could safely conclude that an application that gets the most value
from a cloud deployment is one that uses online storage without the need for offline storage. An
application that needed offline storage alone might not benefit from a cloud deployment at all. In
the case of a hybrid application, other factors such as scalability, costs, or ubiquitous access
might offset the cost of offline access and make the cloud more attractive.

​​Application attributes

Table 14.1 lists some of the first- and second-level application attributes that you might want to
consider in your analysis of an application’s suitability to be ported to the cloud.

​​Application Attributes

First Level Second Level First Level Second Level

Application Abstraction Implementation
Architecture Language/locale

Configuration Monitoring

Interoperability Operations

Modularity Staffing

Object model Startup/recovery

Reusability Tools

Availability Caching Scalability Caching

Fault management Expertise

Geographic location Licensing

Pooling Lifecycle management

Resource access Load balancing

Reliability Replication

Uptime Scale up or out

Costs Development

Resources Staging

Data Management Application needs

Data exchange Security Access

Database needs Auditing

Index Authentication

Online/offline access Authorization

Portability Cryptography

Query Encryption

State Identity

Store type Regulations

Structure Remote access

Transactions Security rules
 Trust relationships

Maintenance APIs User Interface Ease of use

Configuration Interface features
Deployment User interaction

Deconstructing an application’s critical functionality is only half the process. Each cloud platform
also has its own set of attributes that need to be mapped. In considering the needs of any feature,
the key drivers for applications that benefit from deployment to the cloud are those that meet these
criteria:

⚫​Are not mission critical
⚫​Are not core business functions
⚫​Do not have sensitive data to protect
⚫​Tolerate high network latencies or low network bandwidth
⚫​Are legacy applications with no particular competitive advantage
⚫​Are based on industry standard technologies
⚫​Do not need to be customized
⚫​Are mature enough and understood well enough to be successfully ported to the cloud

​​Cloud service attributes
You then want to match up application attributes to these key cloud service attributes:

⚫​Applications
⚫​Core services
⚫​Infrastructure
⚫​Platform features
⚫​Storage

At the current stage in its development, it is impracticable to match the needs of an application to a
set of cloud service providers. Each provider has a unique solution, uses its own APIs, and pro-
vides unique services. Therefore, each cloud provider needs separate developer skills, and integra-
tion between clouds would be a major chore. Perhaps someday this situation may change as more
standards are developed, but at the moment application developers need to match their application
to the single best vendor.

Table 14.2 lists some of the first- and second-level cloud features that you might want to
consider in your analysis. You should map your critical application features to the features of a
particular cloud platform to get the best match.

​​Cloud Service Attributes

First Level​ Second Level First Level​ Second Level

Application​ Accounting Operating system support (platform)
Database Resource pooling

Event management Scale up or out

Messaging Site location

Location service Redundancy and replication

Relation management Virtual machine types

Web server API

Core Services​ Accounting Platform Features​ Application support

Application support Deployment technology

Auditing Development environment

Data access Language and locale

Identity Programming language support

Index Testing

Query API and commands

Transaction management Storage​ Query

Workflow Non-relational

Infrastructure​ Application support Relational

Availability Reliability

I/O (network) characteristics Replication
Load balancing SQL support

System abstraction
The cloud turns physical systems into virtual systems. Organizations choose to deploy systems to the
cloud entirely when they can recreate the essential part of their process and eliminate infra-structure.
As an example, consider a service that does medical imaging. In the past, this service created patient
scans and then rendered the image on a local computer. After the image was ren-dered, it was posted
to the hospital LAN and made available to the people who read the scans. When the people reading
the scans were outside the hospital, across the country, or around the world, those people would have
to log into the hospital server via VPN to download the file.

The scanning service decided to eliminate infrastructure and streamline the process. The service
began its redeployment by first moving the stored images off the hospital’s LAN and onto
shared storage in the cloud. This feature eliminated the need to maintain a great deal of managed
storage locally. As the service began to outsource the reading of scans to other countries, it
enabled a content delivery network feature that the cloud service provider had. CDN (Content
Delivery Network) placed copies of recently used and created scans in locations that were closer
to the readers and made the system faster.

The second stage in the redeployment was to eliminate the local processing associated with the
scanning machines themselves. Most of the time the scanning machine was operating, it was col-
lecting data, and an economic analysis revealed that it was significantly cheaper to process the
files in the cloud.

In the new system, shown in Figure 14.2, the files are created locally and transmitted to the cloud.
Virtual machines are provisioned to process the scans. The system leverages a message queuing
server to create a steady stream of execution for the application server to process. At times of
peak load, the system creates new machine instances to handle the load. As the application server
com-pletes the scan processing, it notifies the message queue, records the result in a database,
and dis-plays it on a Web page on a Web server, all of which are in the cloud.

This new system results in greater system efficiencies because the system is always processing at
its optimum load. The rendered scans are available from anywhere viewed inside a browser.
Also, because the system is scalable, the scanning service can expand to other sites and bring on
new capacity to handle additional load. As the service loses sites, it can also release resources as
well. When it is decided that the scans need to be converted into a different format, this can be
done in a central location and doesn’t need to be rolled out to the computers attached to
individual scan systems.

Infrastructure, storage, and the queuing system all come together to eliminate a great deal of cost
and operational complexity. This is a pure cloud play.

​​Cloud bursting
Many cloud deployments are hybrid applications: Part of the application is on a local system, and
part is in the cloud. Often, this is the first stop on the path for many organizations migrating their
applications to the cloud. There are many reasons why this is desirable, but one of the most com-
mon reasons is that the cloud can serve as excess capacity at times of high volume. This type of
hybrid has been called cloud bursting. Examples of systems where there is high volume over
short periods of time are transaction processing systems such as reservations systems.

In a reservation system, there is a certain low level of background transactions occurring at any
time. At certain times, events trigger high demand. If the system builds infrastructure to accommo-
date peak demand, then that infrastructure is wasted.

An application deployed entirely to the cloud

Most systems built to perform cloud bursting have a simple underlying design: clone the local sys-
tem in the cloud. Often, there may be little activity in the cloud portion of the system, but when
the activity grows, the copy of the system in the cloud picks up the extra activity and, when neces-
sary, provisions extra resources. Figure 14.3 shows a simple reservations system set up for cloud
bursting.

An application that provides for transaction overflow in a reservation system is an example of cloud bursting.

Reservation systems often require that transactions not only are atomic, but that when there is a
pool of items being reserved, the system is consistent. When a transaction enters the local branch
in Figure 14.3 and another transaction enters the cloud platform branch, they can’t both reserve
the same item. So there must be a transaction manager in this system to manage the pool. This is
shown as a dotted line between the two database servers, labeled “Synchronization.” The underly-
ing mechanism is to perform record locking on a set of database records and when the transaction
or a batch of transactions completes, the system performs a commit operation.

In most reservation systems, the actual transaction commitment is a small part of the traffic and
processing. Most of the traffic is generated on the Web site as users browse the content. So it makes
sense in this scenario to recreate the company Web site and create additional load-balanced Web server
instances as needed. You also can optimize that Web site for faster transactions with less

customization. If your Web site relies on dynamic data driven content, you can speed up its opera-
tion by switching more of the content over to static content. You’ll need to synchronize changes
between your on-premises and cloud-based Web servers in order to keep the information current.

The other step in a reservation system that is often a bottleneck is the payments gateway to credit
card companies and financial institutions. It may make sense to move the payment portion com-
pletely to the cloud so that the processing of payments doesn’t affect the other parts of the system.
Because the commitment of the payment either is effective or not, this portion of the process does
not need to be tracked. The fact that a virtual server is executing the payments and that the process
is stateless has no impact in this point.

Eventually, developers will want to create composite applications that are built from the best-of-
breed cloud services on multiple platforms. This offers the benefit of redundant suppliers, access
to additional services and features, more data sources, and a whole host of other advantages.
Cloud architectures offer enough advantages that over time large organizations will want to adopt
them as a core architectural design. For example, in Figure 14.4, an internal cloud provides high-
speed transactional services on the LAN, an external cloud services other needs of users, and the
com-pany cloud is replicated to multiple sites. Where services get located then depends upon
factors such as cost, latency, and convenience.

For the users in large organizations, it is literally clouds everywhere in their future.
Internet Services access through

Directly accessed Internet Services​ Internal Services only

internal cloud

​​Applications and Cloud APIs

The nature of a cloud provider’s Cloud API will impact your ability to move an application to the
cloud and affect the way many of your application features operate. Cloud APIs are the
Application Programming Interface to functions that exchange information in and with the cloud,
request sup-ported operations, and provide management and monitoring functions for applications
running in the cloud.

At this stage in cloud computing’s development, Amazon Web Service’s Cloud API dominates
the conversation, but that is probably subject to change. Each cloud vendor has its own specific
API; most are exposed as REST, a few are exposed as SOAP, or some are both. Each API
provides spe-cific calls required by that vendor’s infrastructure and service.

Most importantly, the cloud API contains the authentication and authorization mechanisms needed
to access cloud services. When a vendor like Google allows other cloud application provid-ers to
access its ID mechanism (as is the case now), there is the same flexibility in using those ser-vices
on other platforms.

Although efforts are underway to create more standardized cloud APIs, the situation limits the por-
tability of any application developed for the cloud. The two cross-platform API initiatives are the
Simple Cloud API (http://www.simplecloud.org/) and the work arising out of the Cloud Computing
Interoperability Forum (http://www.cloudforum.org/). Several cross-platform cloud API projects are
underway, including the Design Cloud, Deltacloud, jclouds, and libcloud APIs. These cross-
platform APIs are based on generalizing the major cloud vendors APIs.

Each layer of a cloud application has its own specific API as well. So at the infrastructure level
in addition to AWS EC2, you have the following:

⚫​Windows Azure (http://www.microsoft.com/windowsazure/windows azure/)

⚫​VMWare vCloud (https://www.vmware.com/products/vcloud/)

⚫​Racksapce Cloud Servers (http://www.rackspacecloud.com/cloud_hosting_
products/servers/api)

⚫​RimHosting (http://rimuhosting.com/)

All these present the developer with their own APIs. Individual services such as Windows Azure
SQL, Flickr, and Google Maps present a service cloud API. If your application is developed in a
platform such as Facebook, LinkedIn, or the Salesforce Force APIs, each platform has its own
spe-cific application API.

The point is that the decision to move an application to the cloud rapidly funnels you into a spe-
cific solution that provides a measure of vendor lock-in that, depending upon the nature of your
application, can be anywhere from very easy to nearly impossible to port to any other cloud tech-
nology. This may not always be so, but it currently is true and it should give a developer some
moments to pause.

http://www.simplecloud.org/)
http://www.cloudforum.org/)
http://www.microsoft.com/windowsazure/windows
http://www.vmware.com/products/vcloud/)
http://www.vmware.com/products/vcloud/)
http://www.rackspacecloud.com/cloud_hosting_
http://rimuhosting.com/)

​​Summary

In this chapter, you learned about some of the factors involved in deciding to move an
application to the cloud. Cloud computing supports some application features better than
others. To deter-mine whether your application will port successfully, you should perform a
functionality mapping exercise. This process involves determining the critical application
features and then matching them to the cloud provider’s offering to see if those features can
be supported.

Examples of applications that were ported were presented. One application virtualized the
entire application in the cloud and presented users with a browser-based service. The
second scenario, called cloud bursting, is an overflow solution that clones the application to
the cloud and directs traffic to the cloud during times of high traffic.

The role of a cloud vendor’s specific API and the impact that it has on porting an
application was also considered. This aspect of a migration isn’t given enough thought
beforehand and can cause problems later on should you wish to move to other solutions.

In Chapter 15, “Working with Cloud-Based Storage,” various storage, backup, and disaster
recov-ery solutions offered by cloud vendors are discussed.

​​Working with Cloud-
Based Storage

The world is creating massive amounts of data. A large percentage of that
data either is already stored in the cloud, will be stored in the cloud, or will
pass through the cloud during the data’s lifecycle.

Cloud storage systems are among the most successful cloud computing
applications in use today. This chapter surveys the area of cloud storage
systems, categorizes the different cloud storage system types, discusses
file-sharing and backup software and systems, and describes the methods
being used to get cloud storage systems to interoperate.

Cloud storage can be either unmanaged or managed. Unmanaged storage is
presented to a user as if it is a ready-to-use disk drive. The user has little
control over the nature of how the disk is used. Most user-oriented software
such as file-sharing and backup consume unmanaged cloud storage.
Applications using unmanaged cloud storage are Software as a Service
(SaaS) Web services.

Managed storage involves the provisioning of raw virtualized disk and the
use of that disk to support applications that use cloud-based storage. Storage
options involved in formatting, partitioning, replicating data, and other
options are available for managed storage. Applications using managed
cloud storage are Infrastructure as a Service (IaaS) Web services.

Developing cloud storage interoperability standards are described in this
chapter, notably those from the Storage Networking Industry Association
(SNIA) and the Open Grid Foundation (OGF). The Cloud Data Management

Interface (CDMI) interoperability storage object protocol is described. This interface can store data
objects, discover stored data objects, and supply these data objects to subscribing applications. The
Open Cloud Computing Interface (OCCI) is another storage data interchange interface for stored
data objects. The two protocols interoperate with one another.

​​Measuring the Digital Universe

The world has an insatiable hunger for storage. This hunger is driven by the capture of rich
media, digital communications, the Web, and myriad other factors. When you send an e-mail with
a 1GB attachment to three people, this generates an estimated 50GB of stored managed data.
Only 25
per-cent of the data stored is unique; 75 percent of stored data is duplicated. You may be
surprised to learn that 70 percent of the data stored in the world is user initiated; the remainder is
enterprise-generated content.

Video cameras and surveillance photos, financial transaction event logs, performance data, and
so on create what IDC (International Data Corporation; http://www.idc.com/), the research
analysis arm of International Data Group has called the “digital shadow”—data that is automati-
cally generated. Shadow data represents more than 50 percent of the data created every day.
However, lots of shadow data does get retained, having never been touched by a human being.

Much of the data produced is temporal, stored briefly, and then deleted. That’s a good thing,
because there is a growing divide between the amount of data that is being produced and the
amount of storage available.

The storage giant EMC has an interest in knowing just how much data is being stored worldwide.
EMC has funded some studies over the past decade to assess the size of what it calls “The Digital
Universe.” The latest study done by IDC in 2007-2008 predicted that by 2011 the world will store
1800 exabytes (EB) or 1.8 zettabytes (ZB) of data. By the year 2020, stored data will reach an
astonishing 35ZB. The number of managed objects stored in containers—files, images, packets,
records, signals, and so on—is estimated to be roughly 25 quintillion (1018) containers. A con-
tainer is a term of art in cloud storage.

These numbers are astronomical, and wrapping your mind around them can be hard. Even more
astonishing is the fact that the amount of stored data is doubling roughly every five years. In 2007, the
last year before the recession of 2008, the amount of stored data grew even faster, by 60 percent

​​Note

http://www.idc.com/)

annually. You can visit EMC’s Digital Universe home page, shown in Figure 15.1, to link to the IDC study,
view the Digital Data Consumption Ticker, and get EMC’s take on the problems associ-ated with managing
vast data sets.

Here are some definitions of scale: a gigabyte is 109 bytes, a petabyte is 1015 bytes; an exabyte is
equal to one billion gigabytes or 1018 bytes; a zettabyte is equal to one trillion gigabytes or 1021

bytes; and a yottabyte (YB) is 1024 bytes. ◼

EMC’s Digital Universe Web page located at http://www.emc.com/leadership/digital-
universe/expanding-digital-universe.htm

http://www.emc.com/leadership/digital-

To provide some measure of scale, the size of William Shakespeare’s complete works
downloaded as text from Gutenburg.org (http://www.gutenberg.org/etext/100) is 5.1MB. The
amount of stored information in the United States Library of Congress is about 10 terabytes of
data (10,000 gigabytes), and in 2009 Google was processing around 24 petabytes of data per day.
Figure 15.2 shows a logarithmic scale with different data storage sizes.

Data storage plotted on a logarithmic scale

Bits used for​ Number of

Shakespeare’s
M
a
n
a
g
e
d
O
b
j
e
c
t
s

collected works​ 2011 Bits stored
Daily bits​ in 2020

Bits​ processed
available in​ by Google​ Bits stored
1 TB drive​ 2009​ in 2011

Powers of 10

Avagadro’sA

http://www.gutenberg.org/etext/100)

number
Library of (1 per mole)

Congress​ Estimated number
of Bill Gates’ estimated​ ​ stars in the

worth in US $​ observable
universe

Cloud storage in the Digital Universe
A very significant fraction of this data is now or will be residing in cloud storage. Even more will
pass through cloud storage in its use. IDC’s 2010 study attempted to estimate the percentage of
data that will be stored in the cloud or passed through the cloud in the year 2020. There will be a
steady growth of cloud storage at the expense of online storage over the next decade. Figure 15.3
shows a graphical illustration of the impact of cloud storage systems on the overall Digital
Universe in 2020.

Cloud storage data usage in the year 2020 is estimated to be 14 percent resident and 34 percent
passing through the cloud by IDC. Source: IDC Digital Universe, May 2010.

​​Cloud storage definition
Think of cloud storage as storage accessed by a Web service API. The characteristics that separate
cloud storage include network access most often through a browser, on-demand provisioning, user
control, and most often adherence to open standards so that cloud storage may be operating-
system-neutral and file-system-neutral. These characteristics, taken as a whole define an offering
that is best described as an Infrastructure as a Service model. However, most users do not provi-
sion storage under IaaS systems such as Amazon S3 (described in Chapter 9). Instead, most users
interact with cloud storage using backup, synchronization, archiving, staging, caching, or some
other sort of software. The addition of a software package on top of a cloud storage volume makes
most cloud storage offerings conform to a Software as a Service model.

Storage devices may be broadly categorized as either block storage devices or file storage devices.
A block storage device exposes its storage to clients as Raw storage that can be partitioned to
create volumes. It is up to the operating system to create and manage the file system; from the
standpoint of the storage device, data is transferred in blocks. The alternative type of storage is a
file server, most often in the form of a Network Attached Storage (NAS) device. NAS exposes its
storage to clients in the form of files, maintaining its own file system. Block storage devices offer
faster data transfers, but impose additional overhead on clients. File-oriented storage devices are
generally slower (with the exception of large file-streaming applications), but require less
overhead from attached clients. Cloud storage devices can be either block or file storage devices.

​​Provisioning Cloud Storage

Cloud storage may be broadly categorized into two major classes of storage: unmanaged and
man-aged storage. In unmanaged storage, the storage service provider makes storage capacity
available to users, but defines the nature of the storage, how it may be used, and by what
applications. The options a user has to manage this category of storage are severely limited.
However, unmanaged storage is reliable, relatively cheap to use, and particularly easy to work
with. Most of the user-based applications that work with cloud storage are of this type.

Managed cloud storage is mainly meant for developers and to support applications built using
Web services. Managed cloud storage is provisioned and provided as a raw disk. It is up to the
user to partition and format the disk, attach or mount the disk, and make the storage assets
available to applications and other users.

The sections that follow describe these two storage types and their uses in more detail.

​​Unmanaged cloud storage
With the development of high-capacity disk storage starting in the mid- to late-1990s, a new class
of service provider appeared called a Storage Service Provider (SSP). Fueled by venture capital
and the dot.com boom, dozens of companies created datacenters around the world with the intent
of doing for online storage what Internet service providers (ISP) did for communications.

With so much excess capacity in place, companies with names like iDrive (now at http://www.
driveway.com/), FreeDrive (http://www.freedrive.com/) MyVirtualDrive (defunct), OmniDrive
(gonzo), XDrive (kaput), and others were formed to offer file-hosting services in the form of
unmanaged cloud storage. It is unmanaged storage in the sense that the storage is precon-figured
for you, you can’t format as you like, nor can you install your own file system, or change drive
properties such as compression or encryption.

Storage was offered to users by these file-hosting services as fixed online volumes. These
volumes were first accessible using FTP, then from a utility, and then from within a browser.
Often the ser-vice offered a certain capacity for free, with the opportunity to purchase more
online storage as needed. FreeDrive is an example of an unmanaged storage utility set up to do
automated backups, a class of Web services that is discussed in the section “Exploring Cloud
Backup Solutions” later in this chapter.

Three factors led to the demise of many of the early SSPs and to many hosted file services:

⚫​The Dot.com bust in 2000
⚫​The inability of file-hosting companies to successfully monetize online storage

⚫​The continued commoditization of large disk drives, which led to free online
storage from large vendors such as Google

http://www/
http://www.freedrive.com/)

These SSPs and file-hosting services were ahead of their time, but in many
cases—through acquisi-tions and offspring ventures—their legacy remains.

The simplest of these unmanaged cloud storage services falls into the category of a file transfer
utility. You can upload files to the service where that file is stored (for a while) and made
available to you for downloading from another location. Some of these services allow the
transfer of only a single file. File transfer services may be shared by other users you allow, and
the files that are uploaded may be discoverable for some services. That is, you can query the
system for a file or information that meets the criteria you set. The service FreeDrive is storage
that allows Facebook users to view the content of others.

Dropbox, shown in Figure 15.4, is an example of a file transfer utility. You install the Dropbox
utility on your system and create an account, and the Dropbox folder appears. Dropbox also
installs a System Tray icon in Windows for you. You can then drag and drop files and folders
to your Dropbox. When a remote user logs into a Dropbox account, he installs the Dropbox
folder for that account on his system, creating what is in effect a shared folder over the Web.

​​Managed cloud storage
basic service that online storage can serve is to provide disk space on demand. In the

previous section, you saw examples of services where the service provider prepares and
conditions the disk space for use by the user, provides the applications that the user can use with
that disk space, and assigns disk space to the user with a persistent connection between the two.
The user may be able to purchase additional space, but often that requires action by the service
provider to provision the storage prior to use. That type of storage is considered unmanaged cloud
storage because the user can’t proactively manage his storage.

​​Note

The second class of cloud storage is what I call
managed cloud storage. You saw an example of a
managed cloud storage system in Chapter 9 where
Amazon’s Simple Storage System (S3) was
described. In a managed cloud storage system, the
user provisions storage on demand and pays for the
storage using a pay-as-you-go model. The system
presents what appears to the user to be a raw disk
that the user must partition and format. This type of
system is meant to support virtual cloud computing
as the virtualized storage component of that system.

SNIA (Storage Networking Industry Association; http://www.snia.org/) has coined the term Data
Storage as a Service (DaaS) to describe the delivery of storage on demand to clients over a distributed system.

Others have called these types of system services Storage as a Service (STaaS). ◼

Managed cloud storage providers include the following:

⚫​Amazon.com Simple Storage Service (S3; http://aws.amazon.com/s3/): This
hosting service is described in Chapter 9.

⚫​EMC Atmos (http://www.emc.com/products/family/atmos.htm): With Atmos, you can
create your own cloud storage system or leverage a public cloud service with Atmos
online.

⚫​Google Storage for Developers (http://code.google.com/apis/storage/
docs/overview.html): Code named “Platypus,” this service currently in beta allows

http://www.snia.org/)
http://aws.amazon.com/s3/)
http://www.emc.com/products/family/atmos.htm)
http://code.google.com/apis/storage/

developers to store their data in Google’s cloud storage infrastructure. It will share
Google’s authentication and data sharing platforms.

⚫​IBM Smart Business Storage Cloud (http://www-935.ibm.com/services/us/
index.wss/offering/its/a1031610): IBM has both infrastructure and software offerings that
allow businesses to create and manage a private storage cloud.
IBM is a major player in cloud computing (http://www.ibm.com/ibm/cloud/), particularly for
businesses. The company offers a hardware platform called CloudBurst, as well as a
portfolio of software that leverages cloud infrastructure such as IBM Smart Analytics
Cloud, IBM Information Archive, IBM LotusLive, and LotusLive iNotes.

⚫​Iron Mountain (http://www.ironmountain.com/storage/storage-as-a-service.html): Iron
Mountain’s service is mainly focused on backup and digital archiving, not on storage
hosting.

http://www-935.ibm.com/services/us/
http://www.ibm.com/ibm/cloud/)
http://www.ironmountain.com/storage/storage-as-a-service.html)

⚫​Nirvanix (formerly Streamload; http://www.nirvanix.com/): The company’s MossoFS

offers a managed cloud service.

⚫​Rackspace Cloud (http://www.rackspace.com/index.php): Rackspace is a direct
competitor to Amazon’s S3 service.

​​Creating cloud storage systems
The Internet was designed to be a fault-tolerant network that could survive a nuclear attack. Paths
between endpoints are redundant, message transfer is packetized, and dropped or lost packets can be
retransmitted and travel different paths. Networks are redundant, name servers are redundant, and
overall the system is highly fault tolerant. These features help make cloud-based storage sys-tems
highly reliable, particularly when multiple copies of data are stored on multiple servers and in
multiple locations. Failover can involve a system simply changing the pointers to the stored object’s
location.

In Chapter 9, you saw how Amazon Web Services (AWS) adds redundancy to its IaaS systems by
allowing EC2 virtual machine instances and S3 storage containers (bucket) to be created in any
one of its four datacenters or regions. AWS S3 essentially lets you create your own cloud storage,
provided you distribute your provisioned storage appropriately on Amazon’s system.

AWS created “Availability Zones” within regions, which are sets of systems that are isolated from
one another. In theory, instances in different availability zones shouldn’t fail at the same time. In
practice, entire regions can be affected, and storage and system redundancy needs to be established
on a multi-regional basis. AWS can perform load balancing on multiple instances and can perform
failover from one geographical location to another, but this is an additional service that you must
purchase. The important point about redundancy is that for it to be effective, it has to be imple-
mented at the highest architectural level.

Companies wishing to aggregate storage assets into cloud storage systems can use an enterprise
software product like StorageGRID. This storage virtualization software from Bycast (now a part
of NetApp; http://bycast.com/) creates a virtualization layer that pools storage from different storage
devices into a single management system. You can potentially pool petabytes of data stor-age, use
different storage system types, and transport protocols even over geographically dispersed
locations. Figure 15.5 shows how SystemGRID virtualizes storage into storage clouds.

StorageGRID can manage data from CIFS and NFS file systems over HTTP networks. Data can be
replicated, migrated to different locations, and failed over upon demand. The degree of data repli-
cation can be set by policy, and when storage in the pool fails, StorageGRID can failover to other
copies of the data on redundant systems. StorageGRID can enforce policies and create a tiered stor-
age system.

http://www.nirvanix.com/)
http://www.rackspace.com/index.php)
http://bycast.com/)

ByCast’s StorageGRID allows you to create fault-tolerant cloud storage systems by creating a
virtualization layer between storage assets and application servers.

Application​ Application​ Application

Main Site​ Backup Site

​​Virtual storage containers
In traditional pooled storage deployments, storage partitions can be assigned and provide a device
label called a Logical Unit Number (LUN). A LUN is a logical unit that serves as the target for
stor-age operations, such as the SCSI protocol’s READs and WRITEs (PUTs and GETs). The two
main protocols used to build large disk pools, particularly in the form of Storage Area Networks
(SANs), Fibre Channel and iSCSI both use LUNs to define a storage volume that appears to a
connected computer as a device. Unused LUNs are the equivalent of a raw disk from which one
or more vol-umes may be created.

Traditionally, pooled online storage assigns a LUN and then uses an authorization process called LUN
masking to limit which connected computers (or hosts) can see which LUNs. LUN masking isn’t as
strong a security feature as the direct identification of a physical Host Bus Adapters (HBAs),

which are the storage networking equivalent of NICs (Network Interface Cards). LUN addresses
can have their unique addresses spoofed more easily than a hardware address can. However,
LUNs do protect against a server being able to write to a disk to which it shouldn’t have access.
Storage partitioning in large storage deployments also may be achieved using SAN zoning, as well
as a par-titioning disk based on physical location.

When online storage is converted for use in a cloud storage system, none of these partitioning methods
allows for easy, on-the-fly storage assignment and the high disk utilization rates that are required in a
multi-tenancy storage system. Delivering effective cloud storage solutions requires the use of a virtual
storage container, which allows a tenant to perform storage operations on the vir-tual storage container
consistent with the capabilities of the underlying storage system. Different storage vendors call their
virtual storage containers by different names, but all use this entity as a construct to create high-
performance cloud storage systems. LUNs, files, and other objects are then created within the virtual
storage container. Figure 15.6 shows a model for a virtual storage con-tainer, which defines a cloud
storage domain. This model, based on the SNIA model but modified somewhat, includes the interface
operations that are needed to use that domain.

When a tenant is granted access to a virtual storage container, he performs standard disk opera-
tions such as partitioning, formatting, file system modifications, and CRUD (Create, Read, Update,
and Delete) operations as desired. Data stored in a virtual storage container may be stored in
chunks or buckets as the Amazon Simple Storage Service (Amazon S3) does, or it may be stored
in containers that are in a hierarchical relationship typical of most file systems. The main
requirement is that however cloud storage data is organized that data and its associated metadata
may be discoverable.

Making cloud storage data discoverable on a TCP/IP network using HTTP or some other
protocol requires that objects be assigned a unique identifier such as a URI (Uniform Resource
Identifier) and that the relationship between objects and their metadata be specified. In the
section “Developing Cloud System Interoperability,” I describe the OCCI protocol for
discovering and retrieving objects from a cloud.

Because virtual storage containers must be secured, these objects must carry a set of security attri-
butes that protect a tenant’s data from snooping, denial of service attacks, spoofing, inappropriate
deletion, or unauthorized discovery. The main mechanism for securing one tenant’s virtual storage
container from another is to assign an IP address to the virtual storage container and then bind that
container to a separate VLAN connecting storage to the tenant (host). Traffic flowing over the
VLAN is encrypted, and the tenant is carefully authenticated by the system. Usually, data sent
over the VLAN is compressed to improve data throughput over a WAN connection.

Different cloud storage vendors may implement their own proprietary management interfaces
to connect distributed hosts or tenants to their provisioned storage in the cloud and to provide
for security services. One open interface standard is the Storage Networking Industry
Association’s Cloud Data Management Interface (CDMI) described later in this chapter.

In evaluating cloud storage solutions, these factors are deemed to be important considerations:

⚫​Client self-service
⚫​Strong management capabilities
⚫​Performance characteristics such as throughput

⚫​Appropriate block-based storage protocol support such as iSCSI or FC SAN, or
file- based storage protocol support such as NFS or CIFS to support your systems

⚫​Seamless maintenance and upgrades

In addition to assigning security-provisioned cloud storage to a client or service requester, a cloud
storage service provider must be able to deliver a measured level of service as captured by its
stated Service Level Agreement (SLA). An SLA might specify that a particular Quality of Service
(QoS) for a virtual storage container may be measured in terms of the I/O per second or IOPS that
may be provided, as well as the reliability and availability of the service. QoS levels may be
applied to dif-ferent services against a single virtual storage container or a single service applied to
the client’s multiple assigned storage containers. In situations where multiple virtual storage
containers are assigned to a client, a mechanism would need to be provided to federate the
different containers into a consolidated management console.

One unique characteristic of cloud-based storage solutions is that they permit rapid scaling, both in
terms of performance and storage capacity. To provide for scaling, a virtual storage container must be
easily migrated from one storage system to another. To increase the capacity of a storage provision, it is
necessary to provide the capability to scale up or scale out across storage systems. To scale up, the
service must allow for more disks and more spindles to be provisioned. To scale out, the service must
allow for stored data to span additional storage systems. Cloud storage systems that successfully scale
their provisioned storage for clients often allow for the multiple storage systems to be geographically
dispersed and often provide load-balancing services across different storage instances.

​​Exploring Cloud Backup Solutions

Cloud storage is uniquely positioned to serve as a last line of defense in a strong backup routine,
and backing up to the cloud is one of the most successful applications of cloud computing. This
area is a cornucopia of solutions, many inexpensive and feature rich.

​​Backup types
Backups may be categorized as belonging to one of the following types:

⚫ Full system or image backups: An image backup creates a complete copy of a volume,

including all system files, the boot record, and any other data contained on the disk. To
create an image backup of an active system, you may need to stop all applications
(quiesce the system). An image backup allows a system to do what is referred to as a bare
metal restore. Ghost is an example of software that supplies this type of backup.

​​Note

⚫​Point-in-time (PIT) backups or snapshots: The data is backed up, and then every so often changes are
amended to the backup creating what is referred to as an incremental backup. This type of backup lets you
restore your data to a point in time and saves multi-ple copies of any file that has been changed. At least
10 to 30 copies of previous versions of files should be saved.

The first backup is quite slow over an Internet connection, but the incremental backup can be relatively
fast. For example, software such as Carbonite may take several days to backup a system, but minutes to
create the snapshot.

The amount of time needed to backup a system is referred to as its backup window. ◼

⚫​ Differential and incremental backups: A differential backup is related to an
incremental backup, but with some subtle differences in the way the archive bit is
handled. During an incremental backup, any changed files are copied to the backup
media and their archive attribute is cleared by the incremental backup. In a differential
backup, all of the changed files since the last full backup are copied by the backup
software, which requires that the software leave the archive bit set to ON for any
differential backup, as only a full backup can clear all files’ archive bit.

An archive bit is used by backup software to specify whether a file should be backed up
or not. The bit is set on for backup and cleared when backup has copied the file. In a
sense, an archive bit is a directive to the software. The archive bit comes into play in
backup soft-ware in the sense that an incremental backup solution must examine the full
backup data and then analyze all subsequent increments to find the latest file(s). In a
differential backup, the backup software can obtain the up-to-date backup from the last
full backup and the last incremental backup alone. Files in intervening incremental
backups may be taken as temporary or scratch versions. While incremental backups are
faster and more efficient from a storage perspective, they are also less fault tolerant.

⚫​ Reverse Delta backup: A reverse delta backup creates a full backup first and then period-
ically synchronizes the full copy with the live version. The older versions of files that have
been changed are archived so that a historical record of the backup exists. Among the soft-
ware that uses this system is Apple’s Time Machine and the RDIFF-BACKUP utility.

⚫​ Continuous Data Protection (CDP) or mirroring: The goal of this type of backup
sys-tem is to create a cloned copy of your current data or drive. A cloud storage
system con-tains a certain built-in latency, so unless the original data set is quiescent,
the mirror lags behind the original in concurrency.

⚫​ Open file backup: Some applications such as database systems and messaging systems
are mission critical and cannot be shut down before being backed up. An open file backup
analyzes the transactions that are in progress, compares them to the file(s) at the start of the
backup and the file(s) at the end of the backup, and creates a backup that represents a
complete file as it would exist at the time the backup started after all the transactions have
been processed. This is a difficult proposition, and open file backup systems are expensive
and highly customized to a particular application such as SQL Server or Exchange.

​​Note

http://www.dpbestflow.org/backup/

⚫​Data archival: The term archiving is used to specify the migration of data that is no longer in use to
secondary or tertiary long-term data storage for retention. An archive is useful for legal compliance or to
provide a long-term historical record.

Data archives are often confused with backups, but the two operations are quite different. A backup
creates a copy of the data, whereas an archive removes older information that is no longer operational

and saves it for long-term storage. You can’t restore your current data set from an archive. ◼

​​Cloud backup features
Features of cloud storage backup solutions that are valuable listed roughly in order of
importance include the following:

⚫​ Logon authentication.

⚫​ High encryption (at least 128-bit) of data transfers, preferably end-to-end, but at least
for the data that is transferred over the Internet.

⚫​ Lossless data compression to improve throughput. A related feature called
differential compression transfers only binary data that has changed since the last
backup.

⚫​ Automated, scheduled backups.

⚫​ Fast backup (snapshots) after full online backup, with 10 to 30 historical versions
of a file retained.

⚫​ Data versioning with the ability to retrieve historical versions of files
from different backups.

⚫​ Multiplatform support. The most important clients to back up are
Windows, Macintosh, and Linux/Unix.

⚫​ Bare file/folder restore.

⚫​ Adequate bandwidth and perhaps scalable bandwidth options to which to upgrade.

⚫​ Web-based management console with ease-of-use features such as drag and drop, e-
mail updates, and file sharing.

⚫​ 24x7 technical support.

⚫​ Backed up data set validation; checking to determine if the backed up data
matches the original data.

⚫​ Logging and reporting of operations.

⚫​ Open file backups of mission-critical transactional systems such as enterprise databases
or e-mail/messaging applications.

⚫​ Multisite storage or replication, enabling data failover.

Table 15.2 lists some of the current backup services offered on unmanaged cloud storage.

​​Cloud attached backup
The backup solutions described have been client- or software-based solutions that are useful for
an individual desktop or server. However, some interesting hardware-based solutions are
available for backing up your systems to cloud-based storage.

CTERA (http://www.ctera.com/home/cloud-attached-storage.html) sells a server referred to as
Cloud Attached Storage, which is meant for the Small and Medium Business (SMB) market,
branch offices, and the Small Office Home Office (SOHO) market.

The CTERA Cloud Attached Storage backup server has the attributes of a NAS (Network
Attached Storage), with the added feature that after you set up which systems you want to back
up, create user accounts, and set the backup options through a browser interface, the system
runs automated backup copying and synchronizing of your data with cloud storage. Backed up
data may be shared between users. Figure 15.7 shows how the CTERA Cloud Attached Storage
Device is deployed in practice.

CTERA cloud backup provides a solution that optimizes the backup based on bandwidth
availabil-ity. It performs incremental backups from the server, compressing and encrypting the
data that is transmitted to CTERA’s cloud storage servers where de-duplication is performed.
The CTERA server performs the backups of clients without requiring any client-based software.
Clients have browser-based access to the backups or can locally access files using CTERA’s
“Virtual Cloud Drive” network drive. Snapshots are captured on the CTERA Next3 file system,
which is based on the open source Ext3 file system.

http://www.ctera.com/home/cloud-attached-storage.html)

CTERA’s cloud-attached storage network backup scenario

Online
Backu

p

The development of systems on a chip has enabled CTERA to create a scaled-down version of
the CTERA server called the CTERA CloudPlug for the SOHO market. This palm-sized low-
power device converts a USB/eSATA drive and your Ethernet network and turns the hard drive
into a NAS server. CloudPlug performs backup and synchronization services and then performs
auto-mated or on-demand backups and snapshots of your systems.

CloudPlug uses UPnP (Universal Plug and Play) and Bonjour to discover systems on the
network and then installs a small agent on those systems. The software works with Microsoft
Active Directory and allows for role-based user access. Among the protocols it supports are the
Common Internet File Sharing (CIFS) used by Windows and Apple File Sharing (AFP) systems.
It can back up NTFS, FAT32, EXT3, and the NEXT3 file systems. Laptops may be backed up
from any loca-tion because they are assigned a roaming profile with dynamic IP support. The
system also backs up locked files.

​​Cloud Storage Interoperability

Large network storage deployments tend to get populated by vendors who provide unique func-
tionality for their systems by creating proprietary APIs for the storage hardware that they sell. This

problem exists for online network storage, Storage Area Networks (SANs), and to an even
greater extent for cloud storage systems. Storage vendors have encouraged adoption of their
proprietary APIs by making them “open,” but cloud system vendors have not responded by
making any single API an industry standard. The development of Open Source APIs from the
Open Source commu-nity has only added more storage APIs to the mix.

​​Cloud Data Management Interface (CDMI)
An example of an open cloud storage management standard is the Storage Networking Industry
Association’s (SNIA; http://www.snia.org) Cloud Data Management Interface (CDMI). CDMI
works with the storage domain model shown in Figure 15.8 to allow for interoperation between
different cloud systems, whether on public, private, or hybrid cloud systems. CDMI includes
commands that allow applications to access cloud storage and create, retrieve, update, and delete
data objects; provides for data object discovery; enables storage data systems to commu-nicate
with one another; and provides for security using standard storage protocols, monitoring and
billing, and authentication methods. CDMI uses the same authorization and authentication
mechanism as NFS (Network File System) does.

In the Cloud Data Management Interface (CDMI), the storage space is partitioned into units
called containers. A container stores a set of data in it and serves as the named object upon which
data service operations are performed. The CDMI data object can manage CDMI containers, as
well as containers that are accessible in cloud storage through other supported protocols.

Figure 15.8 shows the SNIA cloud storage management model. In the figure, XAM stands for the
eXtensible Access Method, a storage API developed by SNIA for accessing content on storage
devices. VIM stands for Vendor Interface Modules, which is an interface that converts XAM requests
into native commands that are supported by the storage hardware operating systems.

CDMI can access objects stored in the cloud by using standard HTTP command and the REST
(Representational State Transfer) protocol to manipulate those objects. CDMI also can discover
objects and can export and manage those exported objects as part of a storage space called a con-
tainer. CDMI provides an interface through which applications can gain access to the storage
objects in a container over the Web. Other features of CDMI are access controls, usage
accounting, and the ability to advertise containers so that applications see these containers as if
they are vol-umes (LUNs with a certain size).

CDMI uses metadata for HTTP, system, user, and storage media attributes accessing them through a
standard interface using a schema that is known as the Resource Oriented Architecture (ROA). In this
architecture, every resource is identified by a standardized URI (Uniform Resource Identifier) that may
be translated into both hypertext (HTTP) and other forms. CDMI uses the SNIA eXtensi-ble Access
Method (XAM) to discover and access metadata associated with each data object.

Metadata is stored not only for data objects, but for data containers so that any data placed into a
container assumes the metadata associated with that container. Should there be conflicting meta-
data at different levels of the hierarchy (container, object, and so on), the most granular level
object’s metadata attribute takes precedence.

CDMI allows data in cloud storage to be managed from a variety of resources.

Clients Using Data
Storage Interface

Block Storage​ Filesystem Object Storage XAM Client​
Database Client​ ​ Client​ Client
​ XAM VIM for CSI​ ​ Client

POSIX Filesystems​CDMI
(NFS, CIFS, WebDAV)​ CDMI

APIs
iSC​ Ns

Other Targets

Data Cloud
Storage

H
a
C

Data Storage Management Client

mand Resource Access

CDMI

Clients Managing Storage

CDMI
Data Services​ Information

Services
S
t
o
r
a
g
e
S
e
r
v
i
c
e
s

Source: “Cloud Storage for Cloud Computing” SNIA/OGF, September 2009, http://ogf.org/Resources/documents/
CloudStorageForCloudComputing.pdf.

In CDMI, resources are identified as nouns, which have attributes in the form of key-value pairs,
upon which actions in the form of verbs may be performed. Standard actions include the standard
CRUD operations: Create, Retrieve, Update, and Delete; which translates into the standard HTTP
action verbs POST, GET, PUT, and DELETE. Additionally, the HEAD and OPTIONS verbs
provide a wrapper for metadata and operational instructions.

A typical action might be a PUT or GET operation, as follows:

PUT http://www.cloudy.com/store/<myfile>
GET http://www.cloudy.com/compute/<myfile>

The domain cloudy.com would be the service provider, myfile is the instance, and compute is
the folder containing the file. In a PUT operation, the container (store) is created if it didn’t

​​Note

http://ogf.org/Resources/documents/
http://www.cloudy.com/store/
http://www.cloudy.com/compute/

exist previously. The metadata KEY/VALUE pair MIME is required in a PUT; other metadata KEY/ VALUE
pairs are optional in a PUT. A variety of KEY/VALUE pairs describing object attributes in CDMI is defined by
the standard.

​​Open Cloud Computing Interface (OCCI)
SNIA and the Open Grid Forum (OGF; http://www.ogf.org/) have created a joint working group to create the Open
Cloud Computing Interface (OCCI), an open standard API for cloud computing infrastructure systems. OCCI is
meant to span the different vendors’ standards and allow for system interoperability.

To view the Cloud Standards Wiki with information about all the different standards groups working in this
area of technology, go to: http://cloud-standards.org/wiki/index.php?title=Main_Page.
This page contains links to the work of groups in cloud storage, virtual machines, protocols, and more. ◼

The OCCI interface standard is based on the Resource Oriented Architecture (ROA) and uses
the URI definition for OCCI that was previously defined by SNIA’s Cloud Data Management
Interface (CDMI) that OCCI interoperates with CDMI. Associations between resources appear
in the HTTP header in the Atom Publishing Protocol (AtomPub or APP) that transfers the Atom
Syndication Format (XML) used for XML Web news feeds. The OCCI API maps to other
formats such as Atom/ Pub, JSON, and Plain Text.

OCCI specifies, but does not mandate, what is called a service life cycle. In a service life cycle,
a cli-ent (service requestor) instantiates or invokes a new application and through OCCI
commands provisions its storage resources, manages the application’s use, and then manages
the application’s destruction and the release of its cloud storage.

Cloud storage devices can be either a block or file system storage device, and in that regard they
are no different than online network storage devices or even local storage. It is the ability to pro-
vide storage on a demand basis and pay as you go that is the key differentiator for cloud storage.
The ability to provide storage on demand from a storage pool is referred to as thin provisioning,
a term that also applies to compute resources such as virtual machines. Management of cloud
storage is performed by out-of-band management systems through a data storage interface. Out-
of-band refers to a management console that isn’t on the storage network, but is most often on
an Ethernet network inside a browser. From the management console, additional data services
such as cloning, compression, de-duplication, and snapshots may be invoked.

As previously mentioned, CDMI and OCCI are meant to interoperate, and CDMI containers can be
accessed through a data path and over other protocols. A CDMI container can be exported and then
used as a virtual disk by Virtual Machines in the cloud. The cloud infrastructure management console
can be used to attach exported CDMI containers to the Virtual Machine that is desired. CDMI exports
containers so the information that is obtained from the OCCI interface is part of the exported
container.

http://www.ogf.org/)
http://cloud-standards.org/wiki/index.php?title=Main_Page

OCCI also can create containers that are interoperable with CDMI containers. These export opera-
tions can be initiated from either the OCCI or CDMI interfaces, with similar results. However, there
are syntactical differences between using either interface as the export starting point. In Figure 15.9,
CDMI and OCCI are shown interoperating with cloud resources of different types.

CDMI and OCCI interoperating in an integrated cloud system

CDMI​ ​Data​ Data​ Data​ Data​ Data

Exports​ Object Object Object Object Object

Source: “Cloud Storage for Cloud Computing” SNIA/OGF, September 2009, http://ogf.org/Resources/documents/
CloudStorageForCloudComputing.pdf.

http://ogf.org/Resources/documents/

​​Summary

In this chapter, you learned about the nature of stored digital data and the role that cloud storage
will play in the future in storing and processing data.

Cloud storage is classified as either unmanaged or managed storage. Most user applications work
with unmanaged storage. The two major classes of cloud-based storage applications described in
this chapter were file sharing and backup utilities. Managed storage is cloud storage that you
provi-sion for Web services or applications using cloud storage that you are developing. Managed
storage requires you to prepare the disk and manage its use.

All cloud storage vendors partition storage on the basis of a virtual storage container. A model
describing the virtual storage container is described. Efforts to make cloud storage systems
interop-erate, particularly the CDMI and OCCI protocols, were described.

In Chapter 16, “Working with Productivity Software,” I consider desktop applications that
replace office suite applications. These applications have the potential to displace a major portion
of their commercial shrink-wrapped software counterparts over time, and while not as feature-
filled as commercial software, they are surprisingly good. The chapter discusses the state of the
art in this area and makes some predictions of what to expect over time.

​​Using Webmail
Services

This chapter describes two of the most popular Web services that are
deployed in the cloud: Webmail and syndicated content. Webmail sites are
among the most popular Web sites in use today with the

major services having hundreds of millions of user accounts.

Many Webmail services are free, and the rest are generally modestly priced.
Webmail may be differentiated from hosted e-mail by its access through a
Web browser. This makes them platform-independent. These services also
sometimes use POP3 and IMAP, which allows them to be used to feed e-
mail into traditional e-mail clients like Outlook and Thunderbird.

The current generation of Webmail services implements user interfaces based
on Ajax and tends to follow a model that makes them look similar to the
Microsoft Outlook e-mail client. These browser-based services provide filters,
advanced search capabilities, sorting, tagging, and many other features. Most
of these services use spam and virus detection to eliminate unwanted mail.

Syndication services are a method for publishing content from Web sites,
blogs, wikis, and other services. It is a form of group e-mail, broadcast e-
mail if you will.

There are both content providers and content consumers. Examples of
content providers include not only the services just mentioned but also
aggregation services and site. Many aggregation Web sites are well
known for collecting content on the subject area in which they specialize.

RSS content can be read in most modern browsers. When you subscribe to
an RSS feed, you create a bookmark or favorite that is updated automatically
as new content appears. Another type of application called a newsreader
allows you to collect subscriptions and view them all in one site. The
iGoogle customization site is based on RSS and Atom news feeds.

​​Exploring the Cloud Mail Services

By any measure, browser-based hosted e-mail or “Webmail” is one of the great success stories of
the Internet. It is the prototypical Software as a Service (SaaS) application. Webmail was also one
of the first cloud computing applications to emerge and is today among the most heavily used
services. Webmail is differentiated from hosted e-mail primarily by the use of browser-based
client access. The underlying e-mail servers and the mail protocols are the same ones used for
client/ server e-mail services, but the servers and services have been deployed on a massive scale.

Many of these services such as Gmail and Hotmail are free up to a certain level of service; it is
certainly the price that has attracted such a large worldwide audience. When you layer on top of
low price all the advantages that cloud computing offers—scale, ubiquitous access, platform
independence, and others—it is not hard to understand Webmail’s allure.

The first of the free hosted Webmail services to emerge was Hotmail. It was begun in 1996 by
Sabeer Bhatia and Jack Smith with the name HoTMaiL. The capitalization indicated its origin as a
Web- or HTML-based application. Microsoft acquired HotMail a year later and rebranded it as
MSN Hotmail. The current version of the product is called Windows Live Hotmail, and it is part
of the Windows Live suite of Web-based software products discussed in Chapter 10, “Using
Microsoft Web Services.”

​​Note

It’s anyone’s guess who has the largest Webmail service. Based on the number of registered accounts, that honor
would seem to be accorded to Microsoft, which has 360 million Hotmail accounts. Yahoo Mail! also claims to be
the largest Webmail service with 260 million accounts. Google’s Gmail by comparison has 176 million accounts
as of the end of 2009, and AOL Mail (also called AIM Mail) is believed to be the fourth largest Webmail service.

It is common practice among Webmail services to flag dormant accounts after a certain period of
time and then to delete the accounts at some later time, should there be no activity. For Gmail and
Hotmail, those actions occur after six and nine months, respectively. Yahoo! Mail deactivates
accounts after only four months of inactivity. ◼

Accounts are one thing; active use of accounts is another. A much more accurate picture of
how popular these services are may be obtained by examining the number of visits (hits) that
the different Web sites get. A hit can be measured relatively accurately by looking at the DNS
server logs at key points in the Internet backbone.

The Internet data analytics company Experian’s Hitwise.com service maintains a dashboard
(http://www.hitwise.com/us/datacenter/main/dashboard-10133.html) shown in Figure 17.1 with the
current percentage of hits made on individual sites. As of the week of 7/17/2010, these were
the three top Web sites:

http://www.hitwise.com/us/datacenter/main/dashboard-10133.html)

⚫ 1. Facebook (9.16%)

⚫ 2. Google (7.45%)

⚫ 3. Yahoo! (3.76%)

Webmail services occupy these slots:

⚫ 4. Yahoo! Mail (3.59%)

⚫ 8. Windows Live Mail (1.60%)

⚫ 11. Gmail (0.87%)

⚫ 14. AOL Mail (0.59%)

These figures give a much more accurate picture of how important the different services are
in real-world usage.

Experian’s Hitwise.com site publishes a dashboard with the leading Web sites by different categories.

Table 17.1 summarizes the features of leading Webmail providers. The following sections
describe the three largest Webmail services: Gmail, Hotmail, and Yahoo! Mail in detail.

​​Webmail Features

 Cost Storage/Max IMAP or

Service/Owner URL (U.S. $) Attachment POP3 Support
AOL Mail https://mail.aol.com/ Free Unlimited/25MB Both
AOL USA
BlueTie http://www.bluetie.com/ $4.99/mo 10GB/25MB Both
BlueTie, Inc.
ContactOffice http://www.contact Free and 100MB to Both
Contract Office office.com/ paid 10GB/25MB

Group sa
Excite http://www.excite.com/ Free 1GB/25MB No
IAC Search &

Media
FastMail.FM http://www.fastmail.fm/ Free, 25MB to 15GB/10 IAMP for all,
Opera Software $4.95/yr to 50MB POP3 and
Australia ad free, SMTP paid

 $34.95
 enhanced

Gawab http://www.gawab.com/ Free 10GB/50MB Both
EgyptHome IT,

Egypt
Gmail https://www.google.com/ Free 7.48GB/25MB IMAP, POP3,
Google USA POP+TLS,

 Microsoft
 Exchange

GMX Mail http://www.gmx.net/ Free, paid 1 free or 5GB Both (IMAP
United Internet, for paid/20 to 50MB paid)
Germany ProMail

 and
 TopMail

Hushmail http://www.hushmail.com/ Free, 2MB free to 5GB IMAP paid
Hush $34.99 premium/2MB free
Communications premium to 1GB premium

Ltd.
Lavabit http://lavabit.com/ Two free 128MB/32 to Both (SSL
Lavabit LLC, options, 128MB optional)
USA and two

 paid
 options

http://www.bluetie.com/
http://www.excite.com/
http://www.fastmail.fm/
http://www.gawab.com/
http://www.google.com/
http://www.gmx.net/
http://www.hushmail.com/
http://lavabit.com/

 Cost Storage/Max IMAP or
Service/Owner URL (U.S. $) Attachment POP3 Support
LuxSci http://luxsci.com/ $9.99/mo 2GB+/100MB IMAP,
Lux Scientiae, IMAP+SSL,
Inc. USA IMAP+TLS,

 POP,
 POP+SSL,
 POP+TLS,
 Alternate
 Ports

Lycos http://www.lycos.com/ $19.95/yr 5GB/Unlimited NA
Duam, Korea
Mail.com http://www.mail.com/ Free, Unlimited/16MB Free: None,
MMC, USA $3.99/mo Paid Both

 or $19.99/
 yr ad free

Mail.ru http://mail.ru/ Free, $5/ Unlimited/30MB Both
Mail.ru, Russia mo ad free
Mail2World http://www.mail2world.com/ Free, Unlimited/40MB Both
Mail2World, Inc. $19.95

USA premium
MobileMe http://www.mobileme.com $99/yr 20GB/Unlimited IMAP (POP3
Apple, Inc. USA optional
MyWay http://www.myway.com/ Free 1GB/25MB No
IAC Search &

Media USA
O2 Webmail http://www.o2.co.uk/ Free 20MB/NA POP3 only
Telefonica O2 UK
Ovi Mail http://www.ovi.com/ Free 1GB/20MB NA
Nokia Finland
Rackspace Email http://www.rackspace.com/ $1/mail- 10GB/50MB Both
Rackspace USA box

 month
Runbox http://www.runbox.com/ $49.95/yr 10GB/100MB IMAP4 and
Runbox AS, POP3 with
Norway SSL
Seznam.cz http://www.seznam.cz/ Free Unlimited/13MB POP3
Seznam.cz
ThinkPost.net http://www.thinkpost.net/ $5/mo 10GB/50MB Both
Thinkpost
Windows Live http://www.mail.live.com/ Free, 5GB/10 to 20MB POP3
Hotmail $19.95 ad

Microsoft, USA free
 continue

d

http://luxsci.com/
http://www.lycos.com/
http://www.mail.com/
http://mail.ru/
http://www.mail2world.com/
http://www.mobileme.com/
http://www.myway.com/
http://www.o2.co.uk/
http://www.ovi.com/
http://www.rackspace.com/
http://www.runbox.com/
http://www.seznam.cz/
http://www.thinkpost.net/
http://www.mail.live.com/

TABLE 17.1 (continued)

 Cost Storage/Max IMAP or
Service/Owner URL (U.S. $) Attachment POP3 Support

WWW.COM
Email
WWW.COM

https://mail.www.com/web-email $28.99 7GB/25MB Both (w/SSL
option)

Yahoo! Mail
Yahoo!

http://mail.yahoo.com/ Free,
$19.99/yr
for Plus

Unlimited/25MB POP3 in
most
countries,
with Plus), or
with YPOPs!

Source: http://en.wikipedia.org/wiki/Comparison_of_webmail_providers.

Google Gmail
Google Gmail (http://www.gmail.com or alternatively http://www.mail.google.com) is the third
most popular of the large Webmail services and became available first in beta in 2004 from
Google Labs and then for the use of the public in 2007 as “beta.” In July 2009 Google
announced that Gmail and the Google apps were released products. Gmail is available
worldwide in 52 languages, works in nearly all modern browsers, and comes in both a desktop
and mobile browser version. Google markets Gmail for domains to organizations and has a
Google Apps Partner Edition that Google allows to be branded by ISPs, large organizations, port
Web sites, and other organizations as paid services.

Gmail is written to look like an Internet chat utility, as shown in Figure 17.2, and it sorts e-mails
by conversations or threads. Conversations containing multiple e-mails can be edited to delete
individual messages, but Gmail tends to perform most of its operations such as archiving on the
conversation as a whole. A conversation cannot be split into multiple conversations, nor can a
conversation be added to another conversation. When conversations get large, as they do with
group e-mails, Gmail can be cumbersome to work in. When a conversation gets to be 100
messages long, Gmail splits the conversation into a second section.

At the time of its offering, Gmail created something of a sensation by offering 1GB of free
storage when competitors would allow their free customers to have only a few megabytes of
storage for their accounts. Today Gmail’s free accounts come with up to 7.48GB of free storage.
Figure 17.2 shows a Gmail screen for a new user account.

Gmail was notable for its early use of Ajax (Asynchronous JavaScript and XML), something that
has become the standard development platform for Webmail applications across the industry.
When you compose a message in Gmail’s Rich Text Format interface, Gmail performs an
Autosave of its content at 1-minute intervals.

http://www.com/
http://www.com/
http://mail.yahoo.com/
http://en.wikipedia.org/wiki/Comparison_of_webmail_providers
http://www.gmail.com/

The product is extensible both through a number of add-ons from Gmail Labs and through its
multi-tabbed settings page (https://mail.google.com/mail/?shva=1#settings), shown in Figure 17.3.
As these add-ons (or experiments if you will) are tested and mature, some of them make their way
into Gmail’s default setup. Among the features to have graduated into Gmail are the integrated
chat with SMS messaging that you see in the lower left of Figure 17.3 (Google Talk, which is
discussed in the next chapter), offline access using Google Gears, and the Tasks feature.

The Gmail service presents an interface that is reminiscent of an Internet chat utility.

Gmail’s General settings page

Although many e-mail services use spam filters based on Bayesian algorithms, the developers of
Gmail opted for a system where the entire user base’s assignment of spam is used to grade and mark
e-mail as potential spam. You can set your own flag for whether any particular e-mail or sender is
spam overriding Gmail’s setting. Gmail also scans both incoming and outgoing e-mail attachments
for viruses and blocks the receipt of any file that it recognizes as an executable file.

In Gmail, you can construct searches with multiple operators using the Advanced Search feature,
which accepts keywords, sender, location, and date. A number of additional search criteria, such as
“language:<languagename>,” can be used to narrow a search. When you set flags on messages,
those flags can be used in filters to narrow what you see in the window. Some flags are set by
performing operations such as reading the message, archiving, and so forth.

Google uses an advertiser-driven model to supply its free service to users. In its search function,
Google uses the keywords from your search and your search history to match sponsors to you. In

Gmail, Google scans the content of the e-mail and extracts keywords from your messages. This has
raised the concern that mail sent through Gmail isn’t as private as some advocates might like.
Although you have agreed to Google’s privacy policy, the people sending you e-mail have not.

In one of the General settings shown earlier in Figure 17.3, you can set an option to force Gmail to
use the HTTPS transfer protocol instead of the non-secure HTTP protocol. This is the default
setting in the current version of the program. For POP3 and IMAP access to your Gmail account
through a mail client, the transport protocol is TLS (Transport Layer Security). Not all e-mail
clients receive mail from Gmail’s servers using TLS; some, such as Thunderbird, get the message
transmitted to them over the wire as clear text. Using the Mail Fetcher feature, up to five POP3
accounts can be automatically retrieved and displayed within a Gmail account.

These are the Gmail POP3 settings:

⚫​POP server address: pop.gmail.com.

⚫​POP user name: Your full Gmail address (including @gmail.com); Google Apps users
may have to enter <Username>@your_domain.com>.

⚫​POP password: Your Gmail password.
⚫​POP port: 995.
⚫​POP TLS/SSL required: Yes.

The fact that Google scans and stores e-mail for up to 60 days makes it a target for hackers. The
recent kerfuffle concerning hackers gaining access to human rights activists’ Gmail accounts in
China led to Google moving its servers from Beijing to Hong Kong and tends to validate these
concerns. However, Google isn’t unique in the way it handles Webmail, and these concerns apply
to nearly every service described in this chapter.

​​Mail2Web
Mail2Web is the prototypical POP3 Webmail mail retrieval service, established in 1997. You log
into your e-mail account from a browser using your account name and password, and then
Mail2Web queries your mail server and downloads the messages that are unread for display. From
the Mail2Web interface, you can read messages, reply, and create new messages, as shown in
Figure 17.4. The basic service is free, but the company based in Toronto, Canada, has additional
paid services for hosted Microsoft Exchange accounts.

Mail2Web also has a mobile e-mail service based on Exchange called Mail2Web.com Mobile E-
mail. The mobile service works with RIM Blackberry cell phones. The company’s instant
messaging service for mobile devices allows users to connect to their AOL, ICQ, MSN, and
Yahoo! IM accounts.

Mail2Web.com provides online access to any POP3 account.

​​Windows Live Hotmail
Windows Live Hotmail is Microsoft’s Webmail offering and with localized versions in 36 languages.
The original version of the product was found at http:www.hotmail.com and was rebranded
as MSN Hotmail. Today, that URL redirects you to the login page for Windows Live Hotmail at
http://mail.live.com. After you establish an account with the domain address of either
<Username>@hotmail.com or <Username>@live.com, you are directed to your Windows Live
Hotmail inbox, and the welcome message is displayed, as shown in Figure 17.5.

Windows Live Hotmail is one of the central applications in Microsoft Windows Live product
portfolio, and it’s integrated with other Windows Live applications. As you can see in Figure
17.5, Hotmail provides one-click access to Windows Live Calendar, Contacts, Messenger, and
Spaces. The last version of Hotmail was released in June 2010 and added further integration to
Windows Live Office and to your Windows Live SkyDrive online storage.

Although the interface looks similar to an Outlook client in that it has a folder-based navigation
tree (the left panel), Windows Live Hotmail was created with Ajax technology. The current
version of Hotmail is compatible with Internet Explorer, Firefox, and Chrome, but not Safari.

http://www.hotmail.com/
http://www.hotmail.com/
http://mail.live.com/

A welcome message shown in Windows Live Hotmail, a central offering of Windows Live Services

Hotmail has a strong feature set. This includes the ability to navigate the interface with a
keyboard, automatic completion of input fields, and strong contact management and group e-mail
support. Built into the product is a spam filter and virus scanning. You can support multiple e-
mail accounts in Hotmail, allowing the product to serve as a central repository of your e-mail from
different services.

The newest version of Hotmail added the ability to set a spam filter directly with your mouse,
called 1-Click Filters; to set a junk mail collection, called Inbox Sweeping; and to send
attachments up to 10GB in size. Also new is a set of special content folders called Quick views,
which can show messages you flag, display photos and Office documents, and show shipping
update notices from shipping carriers.

One of the stronger features of Hotmail is its Advanced Search function, shown in Figure 17.6.
You can search on addresses, domains, keywords, and dates, and you can perform a search scoped
to different folders. The search terms you enter create a compound structured query.

You can get your Hotmail account using POP3 inside a traditional e-mail client or using a
POP3 Web service such as Mail2Web.com.

Hotmail’s Advanced Search creates a structured query across multiple fields.

The POP3 settings for Hotmail are as follows:

⚫​POP server: pop3.live.com (Port 995).
⚫​POP SSL required: Yes.

⚫​User name: Enter your Hotmail account, <Username>@hotmail.com or <Username>@
live.com.

⚫​Password: Enter the password you use to log into Hotmail, or if you are using
a Windows Live account, use that password.

⚫​SMTP server: smtp.live.com (Port 25 or 587).
⚫​Authentication required: Yes; this matches your POP username and password.
⚫​TLS/SSL required: Yes.

Hotmail also can be viewed in Microsoft Office Outlook using the Outlook Connector or using
Windows Live for Windows Mobile phones on that phone’s operating system. The Microsoft
Office Outlook Connector (for Outlook 2003, 2007, and 2010) lets you access messages, contacts,
and your calendar from Outlook in your Hotmail account. If you have a premium subscription to

Hotmail, you also can access your notes and tasks using the connector. Windows Live Mail
and Microsoft Outlook can synchronize messages with Hotmail using Microsoft’s DeltaSync

protocol, but only on the Windows platform. Another synchronization feature called Exchange
ActiveSync adds the ability to synchronize messages, contacts, and calendars on any mobile
phone that has ActiveSync.

​​Yahoo! Mail
Yahoo! Mail, or as it is now rebranded “Y! Mail,” is the largest Webmail service on the Internet.
It is also one of the oldest, having appeared at the same time as Hotmail did in 1997. The
original Y! Mail interface is still available for clients on older operating systems and other retro
fan boys; it is shown in Figure 17.7.

In 2006, Yahoo! added a version of the user interface based on Ajax that looks like a form of
Microsoft Outlook that has become something of an industry standard. This Ajax interface is
based on the work of Oddpost, which the company acquired in 2004. Gmail also was heavily
influenced by Oddpost’s work. Figure 17.8 shows Y! Mail in the Ajax form.

Yahoo! Mail shown in the “Classic” interface format

The Ajax form of Y! Mail, referred to as the “All New Mail” option

Mail is meant to mimic a desktop client and has drag-and-drop capabilities, keyboard equivalents,
tabbed widows, an advanced search, address auto-completion, and supports RSS feeds. You can
send SMS messages to others in some countries using Y! Mail. Yahoo! Mail provides an
unlimited amount of mail storage and a limit of 10MB per message and 25MB per attachment in
the United States.

Y! Mail supports POP3 client access and mail forwarding. The service also runs a set of IMAP
servers that you can access for free. The login to the service requires that a special command be
sent, so you may need to either obtain a mail client that supports Y! Mail IMAP or make
appropriate modifications to your own client. Versions of Mozilla Thunderbird and Mutt support
the IMAP feature. In some countries, you can use Yahoo! SMTP server (smtp.mail.yahoo.com) to
send messages.

These are the POP3 and SMTP settings for Yahoo! Mail:

⚫​Incoming Mail (POP3) Server: pop3.mail.yahoo.com (use SSL, port: 995)

⚫​Outgoing Mail (SMTP) Server: smtp.mail.yahoo.com (use SSL, port:
465, use authentication)

⚫​Account Name/Login Name: Your Yahoo! Mail ID (your email address without the
“@ yahoo.com”)

⚫​Email Address: Your Yahoo! Mail address (<Username>@yahoo.com)
⚫​Password: Your Yahoo! Mail password

Yahoo! Mail has a filter feature that lets you create up to 100 filters per account. The paid
versions of the service expand this limit to 200 filters. Those filters operate in addition to the
built-in spam filter called SpamGuard that Yahoo! applies to its e-mail. SpamGuard works on
messages before filters are applied. The system also flags some mail that it suspects of being
spam to deferred delivery, a feature referred to as greylisting. While the details of greylisting
aren’t fully revealed, they probably work by seeing if additional mail of this type arrives in a
certain period, and if not, the block is lifted.

Mail is authenticated by Y! Mail using DomainKeys, which is a service that verifies the DNS
domain of the person sending the e-mail and establishes the messages integrity. DomainKeys is
based on the IETF protocol call Identified Internet Mail, which was enhanced to create a new
protocol called DomainKeys Identified Mail (DMIK; http://www.dkim.org/), so that DMIK now
replaces the original version of DomainKeys. You can also filter messages and archive messages
to your local drive. Y! Mail also allows a sender to send messages with other domains listed as
the origin.

Y! Mail has been integrated with a number of Yahoo! Web services. Y! Mail is integrated with
Yahoo! Messenger, so you can check your mail and connect with others using instant messaging.
This integration has become a standard feature in Webmail offerings; both Gmail and Hotmail
offer this feature. Yahoo! Messenger can exchange messages with Windows Live Messenger. You
also can access Yahoo! Calendar from within the program. Some other applications that are
accessible from Y! Mail are Flickr, Piknic, and Wordpress.

Yahoo! offers a premium subscription version of Y! Mail called Yahoo! Mail Plus. Another
service called Yahoo! Business E-mail provides Webmail, POP3, IMAP, and SMTP services
along with 10 accounts of the Plus version for a $25 setup charge with a $9.99 monthly
subscription. You also can register accounts with two other Yahoo! e-mail service domains:
ymail.com and rocketmail. com.

​​Working with Syndication Services

A syndication service is another way for people to send messages to a group of people; it’s a form
of published e-mail. To receive syndicated content, you must opt into the system and subscribe to
the “feed” from one of the many content management system services. You can read RSS and
Atom formatted content inside special applications called newsreaders, or as they are called more
often “readers,” as well as in many Webmail applications. After you subscribe to a feed, the reader
uses the link provided to download content from a site that you haven’t downloaded already.

http://www.dkim.org/)

​​Note

The technology behind syndication is simple,
but the value of the content can be impactful. It’s
a shame that more people don’t make better use
of this free Web service, although Web service
providers have proved themselves to be creative
consumers of syndication. Your personalized
Google home page can be altered to include
information from any of thousands of feeds,
serving the role of a reader or aggregator
application, and with Ajax you can rearrange
pages of feeds into various channels. Web feeds
also are used to follow blogger and wikis entries.

RSS and Atom are prototypes of a class of XML specifications called syndication markup languages. ◼

The RSS and Atom Protocols
Two technologies are behind most of the syndicated content being used on the Internet: RSS and
Atom. The first of these technologies, RSS, stands for Really Simple Syndication. A typical RSS
document or feed contains text and metadata that can be used to indicate publication dates,
authors, keywords, and more. RSS uses an XML file format and the concept of an RSS world or
module. Several modules exist that are XML namespaces, including Ecommerce RSS 2.0, Media
RSS 2.0, and OpenSearch RSS 2.0 modules. The major browser providers use the feed icon
shown in Figure 17.9 to indicate that you can subscribe to content on that Web page; the icon
applies equally to RSS and Atom content.

The RSS syndication feed icon used in today’s browsers.

The format has a long history of development starting as far back as 1995 as an effort to
summarize content of Web pages. Dave Winer and UserLand Software were instrumental in
developing the format specification, which exists in two main forms: RDF (RSS 0.91, 1.0, and
1.1), and RSS 2.* (RSS 0.91, 0.92-0.94, and 2.0.1). Winer added the ability for subscription to
include audio files in RSS feeds at the end of 2000. Most consumers of RSS can work with either
branch of the standard. Currently, the RSS Advisory Board (http://www.rssboard.org/rss-
specification) manages this format.

http://www.rssboard.org/rss-

RSS feeds are the basis of podcasts that are carried on the Apple iTunes store and in many other
locations and helped spark a revolution in media distribution (and for which this author is
eternally grateful).

Because of the number of people involved in the development of RSS and the absence of a
standards body endorsing it, an alternative version of XML syndication called the Atom
Publishing Protocol was developed by the IETF. That standard was released as part of the
Proposed Standard RFC 4287 (http://tools.ietf.org/html/rfc4287), with the Atom Publishing
Protocol published as RFC 5023 (http://bitworking.org/projects/atom/rfc5023.html). Atom has
some structural differences with RSS, but is similar in approach and technology.

Most of the major browsers support RSS and Atom, but some ask you to choose between them.
Blog and wiki content tends to use Atom as the format. When you view a syndication content
management application, the aggregators tend to list feeds by content. This is possible because
a feed contains keywords in its metadata.

http://tools.ietf.org/html/rfc4287)
http://bitworking.org/projects/atom/rfc5023.html)

​​Questions

1.​ Discuss the basic concepts of message-based transactions. Explain the
protocol stack for an SOA architecture.

2.​ Short notes:

i.​ Event-driven SOA

ii.​ Enterprise Service Bus

iii.​ Service catalogs

3.​ Discuss the applications in the cloud in terms of the following:

i.​ Cloud transactions

ii.​ Functionality mapping

iii.​ Application attributes

iv.​ Cloud service attributes

v.​ System abstraction and Cloud Bursting

vi.​ Applications and Cloud APIs

4.​ Define cloud storage. Explain managed and unmanaged cloud storage.

5.​ Explain the Cloud mail services services in terms of the following:

i.​ Google Gmail

ii.​ Mail2Web

iii.​ Windows Live Hotmail

iv.​ Yahoo mail

6.​ Give the concepts of Syndication services

	​​Subject Code: CS703C
	​​Module – I
	​​Definition of Cloud Computing and its Basics
	​​Defining Cloud Computing
	​​Cloud Types
	​​The NIST model
	​​The Cloud Cube Model
	​​Deployment models
	​​Service models

	​​Examining the Characteristics of Cloud Computing
	​​Paradigm shift
	​​Benefits of cloud computing
	​​Disadvantages of cloud computing

	​​Understanding Cloud Architecture
	​​Exploring the Cloud Computing Stack
	​​Composability
	​​Infrastructure
	​​Platforms
	​​Note

	​​Virtual Appliances
	​​Communication Protocols
	​​Note

	​​IaaS workloads
	​​Cross-Ref

	​​Pods, aggregation, and silos

	​​Defining Platform as a Service (PaaS)
	​​Defining Software as a Service (SaaS)
	​​SaaS characteristics

	​​Defining Identity as a Service (IDaaS)
	​​What is an identity?
	​​Networked identity service classes
	​​Identity system codes of conduct
	​​IDaaS interoperability

	​​Defining Compliance as a Service (CaaS)
	​​Using Virtualization Technologies
	​​Load Balancing and Virtualization
	​​Advanced load balancing
	​​The Google cloud

	​​Understanding Hypervisors
	​​Virtual machine types
	​​Note
	​​Note

	​​VMware vSphere

	​​Understanding Machine Imaging
	​​Cross-Ref
	​​Note
	​​Cross-Ref

	​​Porting Applications
	​​The Simple Cloud API
	​​AppZero Virtual Application Appliance
	​​Note

	​​Summary

	​​Exploring Platform as a Service
	​​Defining Services
	​​Application development

	​​Using PaaS Application Frameworks
	​​Caution
	​​Eccentex AppBase 3.0
	​​LongJump
	​​Squarespace
	​​WaveMaker
	​​Wolf Frameworks

	​​Summary

	​​Using Google Web Services
	​​Note
	​​The dark Web
	​​Aggregation and disintermediation
	​​Note

	​​Productivity applications and services
	​​Enterprise offerings
	​​AdWords
	​​Google Analytics
	​​Google Translate
	​​The Google APIs
	​​Summary

	​​Using Amazon Web Services
	​​Understanding Amazon Web Services
	​​Cross-Ref

	​​Amazon Web Service Components and Services
	​​Cross-Ref

	​​Working with the Elastic Compute Cloud (EC2)
	​​Amazon Machine Images
	​​Pricing models
	​​System images and software

	​​Working with Amazon Storage Systems
	​​Amazon Simple Storage System (S3)
	​​Caution

	​​Amazon Elastic Block Store (EBS)
	​​Tip

	​​Amazon SimpleDB
	​​Amazon Relational Database Service (RDS)
	​​Choosing a database for AWS

	​​Summary

	​​Using Microsoft Cloud Services
	​​Exploring Microsoft Cloud Services
	​​Defining the Windows Azure Platform
	​​The software plus services approach
	​​The Azure Platform
	​​The Windows Azure service
	​​Windows Azure AppFabric
	​​Cross-Ref
	​​Note

	​​Azure Content Delivery Network
	​​SQL Azure
	​​Note

	​​Windows Azure pricing
	​​Note

	​​Windows Live services
	​​Note

	​​Summary
	​​Questions

	​​Administrating the Clouds
	​​Management responsibilities
	​​Lifecycle management

	​​Understanding Cloud Security
	​​Securing the Cloud
	​​The security boundary
	​​Security service boundary

	​​Securing Data
	​​Brokered cloud storage access
	​​Note

	​​Storage location and tenancy
	​​Encryption
	​​Questions
	​​Note
	​​Tip
	​​Tip
	​​Cross-Ref

	​​The Enterprise Service Bus
	​​Service catalogs
	​​Note

	​​Business Process Execution Language
	​​Business process modeling

	​​Managing and Monitoring SOA
	​​SOA management tools
	​​SOA security
	​​The Open Cloud Consortium

	​​Relating SOA and Cloud Computing
	​​Summary

	​​Moving Applications to the Cloud
	​​Applications in the Clouds
	​​Functionality mapping
	​​Note

	​​Application attributes
	​​Cloud service attributes
	​​Cloud bursting

	​​Applications and Cloud APIs
	​​Summary

	​​Working with Cloud- Based Storage
	​​Measuring the Digital Universe
	​​Note
	​​Cloud storage definition

	​​Provisioning Cloud Storage
	​​Unmanaged cloud storage
	​​Managed cloud storage
	​​Note

	​​Creating cloud storage systems
	​​Virtual storage containers

	​​Exploring Cloud Backup Solutions
	​​Backup types
	​​Note
	​​Note

	​​Cloud backup features
	​​Cloud attached backup

	​​Cloud Storage Interoperability
	​​Cloud Data Management Interface (CDMI)
	​​Note

	​​Open Cloud Computing Interface (OCCI)

	​​Summary

	​​Using Webmail Services
	​​Exploring the Cloud Mail Services
	​​Note
	​​Mail2Web
	​​Windows Live Hotmail
	​​Yahoo! Mail

	​​Working with Syndication Services
	​​Note
	​​Questions

