
Active Learning: A Systematic 
Investigation 
Full Stack Deep Learning Spring 2021 Capstone Project 

Matthias Pfenninger (https://www.linkedin.com/in/matthiaspfenninger/) 
Stefan Josef (https://www.linkedin.com/in/stefan-j-7a5a6b120/) 
Ravindra Bharathi (https://www.linkedin.com/in/sravindrabharathi/) 
 
April & May 2021 
 
1. Introduction 

2. Datasets 
2.1. DroughtWatch 
2.2. MNIST 

3. Active Learning Techniques 
3.1. Baseline: Random 
3.2. Uncertainty Sampling Strategies 
3.3. Bayesian Uncertainty Sampling Strategies 
3.4. Diversity Sampling Strategies 
3.5. Mixed Sampling Strategies 
3.6. Other Strategies 

4. Results 
4.1. DroughtWatch 
4.2. MNIST 

5. Conclusions & Outlook 

6. References 

7. Appendix A: Implementation Details 
7.1. BaseDataModule 
7.2. Datasets 

7.2.1. DroughtWatch 
7.2.2. MNIST 

7.3. Models 
7.4. Metrics 
7.5. Experiment Routine 
7.6. modAL Integration 
7.7. Examples: How to Run Experiments 

7.7.1. DroughtWatch 
7.7.2. MNIST 
7.7.3. modAL 

 

1 

https://www.linkedin.com/in/matthiaspfenninger/
https://www.linkedin.com/in/stefan-j-7a5a6b120/
https://www.linkedin.com/in/sravindrabharathi/


1. Introduction 
In recent years, Deep Learning has significantly pushed the boundaries of what is possible 
with Machine Learning-based systems, especially in the fields of computer vision and natural 
language processing, and has shown enormous potential for real-world applications. 
However, in order to achieve such high levels of accuracy, these algorithms require large 
amounts of annotated training data. Even though the rise of transfer learning has already 
lowered the amount of annotated data necessary to train high-accuracy models, there is still 
plenty of room for making the learning process more data-efficient. 
 
In real-world ML projects, data annotation budgets are limited while in many cases plenty of 
unlabelled examples are available. The difficulty however is, that we don’t know a-priori 
which examples will have the largest impact on model performance and should be labelled 
within our limited budget. Active Learning tries to solve this issue by putting the model into 
the annotation process and asking the model what examples should be labelled next. 
 
In our final project for the Full Stack Deep Learning Spring 2021 online course, we focus on 
investigating various active learning techniques in a practical setting, following the research 
idea proposed by Scale AI in the course’s project guidelines. For our project we decided to 
mainly focus on the setting of fine-tuning a pre-trained ResNet-50 on the DroughtWatch 
dataset from the Weights & Biases benchmarks. While we mainly focused on DroughtWatch, 
we also ran some experiments on MNIST, Cassava Leaf Disease and Deepweeds datasets,  
to a) include a more basic and well-explored dataset and b) try more datasets .  
 
Since all our team members were entirely new to Active Learning we started the project with 
a reading phase, where each of us tried to read up on the basics as well as recent 
developments in the field. After that we entered a coding phase, where each of us explored 
the dataset and tried to implement different sampling methods from scratch or experiment 
with existing libraries. In the third project phase we combined our efforts and implemented 
an Active Learning pipeline as well as a variety of different sampling methods into the 
course’s lab codebase. The main reason for adapting the existing codebase instead of 
writing our own or just running our experiments in Jupyter notebooks was to maximize our 
learning from the course’s labs by actively modifying and extending the codebase.  
 
In the final project phase we ran a selection of experiments in different settings and tracked 
our results in Weights & Biases. The detailed results of our experiments are presented in the 
results section of this report. 

2. Datasets 
Following is a quick introduction of the datasets we used in our project. Note that we 
implemented MNIST, Cassava Leaf Disease and Deepweeds in separate branches. 

2.1. DroughtWatch 
For testing our Active Learning pipeline and running most experiments, we chose the 
DoughtWatch dataset from the Weights & Biases benchmarks.  
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The dataset consists of 86’317 train and 10’778 validation set satellite images from Northern 
Kenya. We didn’t use the non-public test set of an additional 10’774 images in our 
experiments. The task is to predict drought conditions based on expert labels that describe 
how many cows the location at the center of each image can support. The labels are divided 
into 0, 1, 2 or 3+ cows per image. We decided to explore both the original multi-class 
classification task as well as a simplified binary classification task grouping the labels into 0 
or 1+ cows per image. The satellite images themselves are 65x65 pixels with 11 channels. 
Here, we also decided to explore both the whole number of channels as inputs to our model 
as well as reducing the number of channels to the three RGB channels. 
 
The DroughtWatch dataset is certainly a challenging dataset: A) It is not clear a-priori what is 
the optimal number of channels to be included. B) A very large area (1.95 kilometers across) 
is compressed into a relatively small resolution image. The area of interest in each image is 
actually not much larger than a single pixel. C) Unlike many other image classification 
datasets, this task cannot be solved by human experts by looking at the satellite image 
alone. Experts were standing in the actual location and were tasked to label the location 
within 20 meters around them. 
 
For each experiment and Active Learning iteration we use the full validation set and we 
randomly divide the original training set into initial training set and unlabelled pool. We vary 
the initial training set sizes, as well as the number of labelled examples that are added to the 
training set at each Active Learning iterations across experiments. 

2.2. MNIST 
The MNIST dataset is one of the most popular image classification datasets consisting of  
60’000 training and 10’000 test images, that are small square 28×28 pixel grayscale images 
of handwritten single digits between 0 and 9. 
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Source: https://en.wikipedia.org/wiki/MNIST_database 
 
We use the dataset in addition to DroughtWatch because it is a much more established 
dataset with well known, high accuracies that can be achieved. 
 
In our experiments, we only use the training set of 60’000 images and divide it randomly into 
training, validation and active learning pool datasets. The test set of 10’000 samples is not 
actively used in the active learning routine. 
 

2.3. Cassava Leaf Disease Classification Dataset 
 

The Cassava Leaf Disease Classification Dataset consists of “21,367 labeled images collected 
during a regular survey in Uganda. Most images were crowdsourced from farmers taking photos 
of their gardens, and annotated by experts at the National Crops Resources Research Institute 
(NaCRRI) in collaboration with the AI lab at Makerere University, Kampala. This is in a format 
that most realistically represents what farmers would need to diagnose in real life.” (kaggle) The 
images are 512x512 pixels with RGB channels. The prediction task is to classify the images into 
four disease categories and a fifth category indicating a healthy leaf. 
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2.4. DeepWeeds Dataset 
 
The DeepWeeds dataset is public dataset based on the work, "DeepWeeds: A 
Multiclass Weed Species Image Dataset for Deep Learning", published with open 
access by Scientific Reports: https://www.nature.com/articles/s41598-018-38343-3. 
“The DeepWeeds dataset consists of 17,509 images capturing eight different weed 
species native to Australia in situ with neighbouring flora.” (Github) The data are 
224x224 RGB images. The classes in the dataset are relatively well balanced, with 
1.000-1.100 images in each class and approximately 9.000 negative labels. 
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3. Active Learning Pipeline 
In this section we will give a brief overview of the Active Learning Pipeline we implemented 
based on this course’s lab codebase. For implementation details, please refer to Appendix A 
or to our codebase on Github. 

3.1. Data 
We adjusted the data module in the codebase to support an Active Learning pipeline. 
Among others, two major changes were a) to add a module that stores and keeps track of 
the unlabelled pool and b) to add a function that moves examples from the unlabelled pool to 
the training set at each Active Learning iteration.  

3.2. Model 
We used a pre-trained ResNet-50 model for most of our experiments. Only in one of our 
experiment settings we ran the Active Learning pipeline without relying on pre-training and 
training the model from scratch at each iteration. Since the focus of this project was not to try 
the latest state-of-the-art computer vision models, but instead focus on Active Learning, we 
decided to use ResNet-50 pre-trained on ImageNet because it is a well-established model 
that has shown robust performance on a variety of image classification tasks.  
 
We adapted the model so that it can handle a flexible amount of input channels, e.g. RGB or 
11 channels. Since ResNets usually don’t include dropout modules, we added a 3-layer 
classification head with batchnorm, relu activation functions and dropout in order to prepare 
the model for experiments with Monte Carlo Dropout. Moreover, we added a model path to 
extract activations from intermediate layers that some sampling methods needed access to. 

3.3. Pipeline 
In order to explain our Active Learning pipeline and its flexibility, we describe a step-by-step 
example of a possible experiment. At the start of each experiment we define the size of our 
initial training set, the number of Active Learning iterations, the maximum number of epochs 
within each iteration, if we want to run multi-class or binary classification, all channels or 
RGB only, as well as other parameters like early stopping, learning rate finder, if a 
pre-trained model should be used and most importantly, which Active Learning sampling 
method will be used for sampling new data at each iteration.  
​
The experiment starts by training a model according to the specified parameters on the initial 
training set, evaluating it on the validation set and logging the best achieved validation set 
metrics (accuracy of F1 score). Then, at the beginning of each Active Learning iteration we 
use the model trained in the previous step to sample new labelled examples from the 
unlabelled pool according to the specified sampling method. Then, we re-initialize the model 
(we also support the option of continuing training) and train it on the new, expanded training 
set, evaluate it and log the best metrics. This process continues until we either have reached 
the maximum number of Active Learning iterations or we exhausted the unlabelled pool. 
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4. Active Learning Techniques 
In this section, we describe all Active Learning sampling techniques that we implemented 
during the project.  

4.1. Baseline: Random 
As a baseline, we sample randomly from the unlabelled pool at each iteration. 

4.2. Uncertainty Sampling Strategies 
Uncertainty sampling is a very common Active Learning technique, where the goal is to 
sample the examples that the model is most uncertain about. We implemented four different 
methods according to Robert Monarch’s blog. All methods were implemented both in Numpy 
as well as vectorized versions in PyTorch, which both yield the same results. 
 

●​ Least confidence sampling: This sampling method selects the maximum predicted 
probability for each example and then samples the k examples with the lowest 
maximum probability from the unlabelled pool. 

●​ Margin of confidence sampling: Selects the two largest predicted probabilities for 
each example and calculates the difference. Then samples the k examples with the 
lowest margin from the unlabelled pool. 

●​ Ratio of confidence sampling: Similar to margin of confidence sampling, but 
instead of using the absolute difference, it relies on the ratio between the two highest 
predicted probabilities. Samples the k examples with the highest ratio, meaning that 
the second highest probability is very close to the highest probability. 

●​ Entropy sampling: This sampling method calculates the difference between all 
predicted probabilities for an example using the entropy formula. It then samples the 
k examples with the highest entropy score. Compared to the previous methods, it 
takes all classes into account, not only the one or two most probable ones. 

4.3. Bayesian Uncertainty Sampling Strategies 
A shortcoming of the basic uncertainty sampling methods above is that the predicted 
probabilities that they sample from can in many cases not be trusted. This is especially 
problematic for Deep Learning models, that often very confidently predict a wrong class. 
Bayesian neural nets try to overcome this issue by providing better uncertainty estimates. 
The main idea is to sample a model’s weights from a random variable instead having the 
same deterministic weights for each forward pass. A way to approximate this behavior is 
Monte Carlo Dropout, where we keep dropout active during inference, run several forward 
passes and then average the predicted probabilities.  
 

●​ Bayesian Active Learning by Disagreement (BALD): The idea of this technique is 
to maximize the information gain by maximising mutual information between 
predictions and model posterior. The details are depicted in the papers Deep 
Bayesian Active Learning with Image Data and Bayesian Active Learning for 
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Classification and Preference Learning.​
 

●​ Bayesian least confidence sampling: Combines Monte Carlo Dropout with least 
confidence sampling​
 

●​ Bayesian margin of confidence sampling: Combines Monte Carlo Dropout with 
margin of confidence sampling​
 

●​ Bayesian ratio of confidence sampling: Combines Monte Carlo Dropout with ratio 
of confidence sampling​
 

●​ Bayesian entropy sampling: Combines Monte Carlo Dropout with entropy sampling​
 

4.4. Diversity Sampling Strategies 
Another class of sampling techniques are diversity sampling methods. Instead of sampling 
the least confident predictions, diversity sampling techniques aim to produce a diverse 
sample from the distribution in the unlabelled pool. Inspired by the methods in Robert 
Monarch’s blog on diversity sampling, we implemented the four following methods. 
 

●​ Model based outliers mean: This sampling method extracts activations from 
intermediate layers (in our case from the last three linear layers), then calculates the 
average activation scores for each layer, and finally also averages across the three 
layers. Then, we sample the k examples from the unlabelled pool with the lowest 
average activation scores. The rationale behind this sampling type is that our model 
is confused by examples with low activation scores due to “lack of information”. 

 
●​ Model based outliers max: Same method as above, but instead of taking the mean 

for each layer and across layers, it takes the maximum activation scores.​
 

●​ Combined clustering & outlier based sampling: Clusters the pool and takes both 
the most relevant and the most outlier points in each cluster. The idea is to get a set 
that covers all meaningful trends of the features space as good as possible. 
Clustering is done with HDBSCAN and outlier scores calculated via GLOSH, both 
algorithms taken from the hdbscan library.​
 

●​ Outlier based sampling: Takes the samples with the highest outlier scores 
according to their GLOSH score (calculated via hdbscan library), with the idea to 
cover points that are not part of any trend of the feature space. We expect that this 
strategy should be combined with others to perform well, in order to capture both 
trends and outliers. 

4.5. Mixed Sampling Strategies 
The goal of mixed sampling strategies is to combine the strengths of uncertainty and 
diversity sampling and thereby produce a sample where our model is confused while also 
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reflecting the diversity of the unlabelled pool. In order to produce such mixed sampling 
strategies it is possible to chain different sampling methods together.  
 

●​ Model based outliers mean + least confidence sampling: This method first 
samples 4 times the sample size from the unlabelled pool using least confidence 
sampling. Then the actual sample size is sampled from this pre-selected pool using 
the model based outliers mean strategy. 

●​ Model based outliers mean + entropy sampling: First samples 4 times the sample 
size from the unlabelled pool using entropy sampling. Then samples the actual 
sample size from this pre-selected pool using model based outliers. 

4.6. Advanced Sampling Strategies 
What we call “advanced” sampling techniques are methods that train another model in the 
sampling step. This model is then used to run inference on the unlabelled pool and sample 
the examples that will be added to the training set for the next Active Learning iteration. 
 

●​ Active Transfer Learning for uncertainty sampling: This method, presented in 
Robert Monarch’s blog on active transfer learning, combines the ideas of Active 
Learning and Transfer Learning. The main idea is to ask the model to predict its own 
errors. After training the model on our target task with a given training set, we create 
a new dataset from the validation set where the labels are whether the model 
predicted an example correctly or not. We then fine-tune the classification head of 
the previous model on this new dataset and run inference on the unlabelled pool. The 
examples with the highest probability of being incorrect are sampled. 

●​ Discriminative Active Learning: Discriminative Active Learning (DAL) follows a 
similar process as Active Transfer Learning for uncertainty sampling, but fine-tunes 
the discriminative model on a different dataset. More specifically, we create a new 
dataset consisting of examples from our current training set and examples from our 
unlabelled pool. The model’s classification head is then fine-tuned to predict if an 
example is part of our training set or unlabelled pool. Finally, we are sampling the 
examples from the unlabelled pool that have the highest probability according to the 
fine-tuned model of belonging to the unlabelled pool. 

5. Results 
In the following part we present the results of some experiments we ran. Our initial plan was 
to run all the active learning methods we implemented across all four Droughtwatch 
scenarios (binary/multi-class, RGB/11 channels) from approximately 25% initial training set 
size up to the full training set size with a step size of 2.000 additionally labelled examples at 
each active learning iteration. However, due to time constraints and limitations of our Colab 
Pro accounts, we didn’t manage to run the number of experiments we set out to do.  
 
Moreover, once we realized that the results in this experimental setting were a) not what we 
expected to see, i.e. our sampling methods didn’t consistently outperform the random 
baseline and b) not very insightful, i.e. there was no clear difference among different 
sampling strategies, we decided to pivot our experimentation strategy and instead run 
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experiments in many different settings: using different initial training set sizes, different 
numbers of epochs, different step sizes per active learning iteration, different training 
strategies (training from scratch, fine-tuning the whole model, fine-tuning only the 
classification head) and ultimately even different datasets. 

5.1. DroughtWatch 
Expecting to see a clear difference between random and other strategies, we started to 
collect training & validation accuracies for the DroughtWatch dataset, starting with an initial 
training set of 20’000 (approx. 25% of all available samples) and expanding it by 2’000 
labelled examples in each iteration, until the whole training set is consumed: 

 
 
 
Two surprising observations in these results: 

●​ The validation accuracies start at a very high level with the initial training set 
(between 0.5 and 0.6) and don’t steadily increase, but more or less stay within 0.5 
and 0.7. A possible explanation for this behavior could be that using a pre-trained 
model greatly reduces the need for labelled data and already gives good 
performance on smaller dataset sizes. 

●​ All the strategies perform similarly and not better than the random baseline. 
 
Since the leaderboard of the W&B DroughtWatch benchmark contains scores of maximum 
0.78, we decided to start with smaller initial training set sizes to hopefully see a difference in 
how fast strategies get to scores around 0.7. 
 
Due to the class imbalance in the data set, we decided to additionally report the F1 score 
going forward as well, which gives more reasonable results in imbalanced scenarios. 
 
Starting with a training set of 2’000 and increasing by 2’000 up to 20’000 and reporting both 
F1 and validation accuracy for six different strategies, we see the following: 
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Again in these results and for neither of the two metrics, the same points as before hold: 

●​ Random is not clearly worse than other strategies 
●​ Metrics start on a high level and increase at a very slow rate, sometimes even 

deteriorating with additional training data 
Additionally it shows the effect of random initialization in our experiments. We launched both 
random and least confidence sampling twice and while they perform very similarly to each 
other in each run, the two runs themselves differ strongly.  
 
To avoid the challenges of multi-class classification and avoid potential fitting to noise in the 
11 image channels, we ran similar experiment scenarios in the simplified setting of binary 
classification and only using the RGB channels, additionally starting at a smaller training set 
size (200) and increasing less per iteration (200): 
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Still the results behave similarly as to the experiments above. 
 
Following our suspicion that transfer learning leads to high levels of accuracy even for small 
initial training sets, we decided to additionally run experiments where we attempt to train the 
model from scratch instead of fine-tuning a pre-trained model. Since training from scratch 
requires large amounts of data, we started these experiments again with an initial training 
set size of 20’000 and a sample size of 2’000. Another change we made here was to use a 
fixed learning rate of 3e-4 instead of running learning rate finder at each iteration. 
 
However, even in this experimental setting without pre-training, the results didn’t show any 
clear difference between the random baseline and our sampling methods as well as among 
the individual sampling methods. 
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5.2. MNIST 
Concerned that the random results described above could be caused by the dataset, we ran 
similar experiments with MNIST. To avoid having negative impacts from suboptimal learning 
rates, we additionally used PyTorch Lightning’s automatic learning rate finder and started 
from even smaller training size of 100, increasing by 100 in every iteration: 
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The results show a somewhat strange training behavior that could be caused by the 
automatic learning rate that we used in this setting. The fact that the model didn’t learn 
anything in the first iteration (up to training size 200) and drops steeply at training size 900 
could be explained by an overly large learning rate. Hence we returned to a fixed learning 
rate of 3e-4 for the following experiments. 
 
Starting with 50 training samples, increasing by 50 until a total size of 400: 
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We see the expected pattern of achieving better metrics with a growing training size, but 
random is not clearly performing worse than the other sampling strategies.  
 
To zoom in on the phase where accuracies are increasing strongly, we started another 
experiment with initial training set size of 8 and increasing by 4 in each iteration: 
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Also here in this small data setting, where we can see the overall increase in accuracy more 
clearly as we are adding more training examples, there is again no clear winner among the 
different sampling strategies. While active transfer learning for uncertainty sampling seems 
to be performing slightly better than the other sampling strategies (incl. random baseline), it 
is also experiencing two very steep drops in accuracy and it would be a stretch to conclude 
that it is consistently outperforming the other sampling strategies. 
 

5.3. Deepweeds  
 
For the Deepweeds dataset, we used a ResNet-50 backbone with pretrained weights from 
ImageNet. We added a couple of fully connected layers as the classification head. The 
ResNet-50 backbone layers were kept frozen during fine-tuning.  
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The dataset was split into a 20% validation set and the rest used for active learning 
unlabelled pool. The initial training set was set to 10% of the unlabelled pool and the training 
set size was increased by 2000 for every active learning iteration.  
 
Uncertainty sampling methods - least confidence, margin, ratio and entropy, were tested 
against the baseline of random sampling. For this dataset and this experimental setting, 
entropy and margin sampling methods clearly showed better gains in validation accuracy 
and F1 score compared to the baseline random sampling. Surprisingly, least confidence and 
ratio of confidence sampling performed even worse than the random baseline. It is also 
interesting to observe that the difference in accuracy kept increasing during the first half of 
the experiment, but started to get smaller again during the second half.    
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5.3. Cassava Leaf Disease Classification Dataset 
 
For the Cassava Leaf Disease Classification dataset, we used a ResNet-50 backbone with 
pretrained weights from ImageNet. We added a couple of fully connected layers as the 
classification head. The ResNet-50 backbone layers were kept frozen during fine-tuning.  
 
The dataset was split into a 20% validation set and the rest used for active learning 
unlabelled pool. The initial training set was set to 10% of the unlabelled pool and the training 
set size was increased by 2000 for every active learning iteration.  
 
Uncertainty sampling methods - least confidence, margin, ratio and entropy, were tested 
against the baseline of random sampling. Similar to the Deepweeds dataset, for this dataset 
and this experimental setting, entropy and margin sampling methods clearly showed better 
gains in validation accuracy and F1 score compared to the baseline random sampling. Least 
confidence and ratio of confidence sampling performed worse than the random baseline. We 
once again observed that the difference in accuracy kept increasing during the first half of 
the experiment, but started to get smaller again during the second half as the labelled 
training set size increases. 

19 



 
 

 
 

20 



6. Conclusion & Outlook 
To sum up our project, we have implemented an Active Learning pipeline for image 
classification with 18 different sampling methods (incl. random baseline) covering basic as 
well as Bayesian uncertainty sampling, diversity sampling, mixed uncertainty and diversity 
sampling and finally advanced sampling based on transfer learning. We implemented four 
different datasets to test our pipeline and ran a variety of experiments in different settings. 
 
In our main experiments with DroughtWatch and the few experiments we launched with 
MNIST, we didn’t observe the clear results we expected to see, i.e. Active Learning methods 
clearly outperforming the random baseline as well as clear differences between sampling 
strategies. This could be caused by different factors. The DroughtWatch dataset, that we 
focused our main attention on, is certainly an unusual and challenging dataset and in 
hindsight it could have been beneficial to start with a more basic dataset before focusing on 
a more complex one. Fine-tuning ResNet-50 on DroughtWatch turned out to be very 
unstable and heavily dependent on the choice of the learning rate. In an Active Learning 
experiment it is also not obvious what should be the optimal choice of the learning rate, 
since it could be different for different dataset sizes. In addition, the fine-tuning process for a 
fixed dataset size showed different results across different runs even with the exact same 
setting, most likely caused by the random factors in our model, i.e. random initialization of 
the classification head and dropout. The differences across sampling methods in our 
experiments could therefore also be caused by random factors and can therefore not solely 
be attributed to the sampling methods themselves. This limitation could be overcome by 
running the same experiments multiple times and reporting the average results, significantly 
larger computational resources would be required to run experiments at this scale.  
 
In our experiments with the Cassava Leaf Disease and DeepWeeds datasets however, we 
observed clear differences across sampling strategies, with margin of confidence and 
entropy sampling clearly outperforming the random baseline as well as least confidence and 
ratio of confidence sampling. Unfortunately, due to time constraints we didn’t manage to run 
more experiments with other sampling methods on these datasets until submission.  
 
The project has been an incredible learning experience for all our team members. We 
learned about a new research field in a relatively short amount of time, learned to use new 
frameworks and tools, incl. PyTorch Lightning and Weights & Biases, and implemented our 
pipeline as well as sampling methods from scratch in the course’s codebase. Working in the 
lab codebase gave us the opportunity to really take it apart, understand how the different 
modules play into each other and expand it to accommodate our needs, meeting our goal to 
learn as much as possible from the labs. Another challenge we had to overcome was 
working with limited computational resources. We ran all our experiments from Google Colab 
Pro accounts and often had to experience interrupted experiments and lost progress. 
 
We have several ideas of how we could continue our collaboration and our work in the field 
of Active Learning in the future: 

-​ It would be interesting to implement “batch-aware” sampling methods that might lead 
to a better performance for Deep Learning models compared to a random baseline 
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-​ Deploy our Active Learning pipeline and develop a simple UI in which users can 
upload images and get back suggestions from the model which images to annotate 
next based on a sampling strategy they choose 

-​ We developed a couple of modAL extensions that could be added to the library 
-​ Integrate a more modern Active Learning framework like baal from Element AI 
-​ Implement Active Learning methods for the fastai library 
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8. Appendix A: Implementation Details 
We structured our code base similarly to the one that was developed as part of the text 
recognizer labs in the course. Following is a description of the most important extensions. 
 

8.1. Code Repository  
https://github.com/ravindrabharathi/fsdl-active-learning2  
 

8.2. BaseDataModule 
The central class that implements on top of PyTorch’s LightningDataModule is extended 
with the following main methods: 

●​ expand_training_set(sample_idx): Expand the module’s train data with data 
from the unlabelled pool identified by the sample_idx argument. 

●​ get_activation_scores(model): Feed all samples from the unlabelled pool 
into the model provided as argument and get out activations from different 
intermediate layers inside the model. This method is needed for model based active 
learning techniques. 

●​ get_pool_probabilities(model, T): Feed all samples from the unlabelled 
pool into the model provided as argument multiple times (denoted by the parameter 
T), while keeping dropout layers in the model activated. This method is needed for 
Monte Carlo / Bayesian active learning techniques. 

 
Additional helper methods: 

●​ unlabelled_dataloader: DataLoader similar to the ones for train/validation/test 
that can be used to load data from the unlabelled sample pool. 

●​ get_ds_length(ds_name): Helper method to get the size of the different data 
sets (train/val/test/pool) in the module.  

●​ enable_dropout(model): Set all dropout layers in model into train modus, 
meaning that they are activated and are also applied during prediction. 

 

8.3. Datasets 

8.3.1. DroughtWatch 
Additionally to the parent BaseDataModule functionality, the following logic is implemented in 
the DroughtWatch data class:​
 

●​ Data loading / preprocessing​
Data is loaded as zipped TensorFlow’s TFRecords format from a publicly available 
URL configured under data/raw/droughtwatch/metadata.toml. The loading 
procedure is divided into multiple steps such that repeated runs only need to rerun 
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the steps needed (e.g. if you change the split sizes, only steps 2 & 3 need to be 
executed again). 

1.​ Downloading the data as ZIP to local 
2.​ Unzipping, conversion to regular numpy arrays and storing in 

train/validation/pool splits in compressed HDF5 format.  
3.​ Loading the splitted HDF5  data into the DroughtWatch class.​

 
●​ Configurable args parameters​

The data class is configurable via args parameters bands (which of the 11 image 
bands to use), rgb (whether to use only RGB channels) and binary (whether to 
load the dataset as multiclass or binary classification set) 

 
 

8.3.2. MNIST 
Additionally to the parent BaseDataModule functionality, the following logic is implemented in 
the MNIST data class:​
 

●​ Data loading / preprocessing​
Data is loaded as PyTorch Vision dataset, converted to NumPy arrays, split to 
train/val/pool datasets and assigned to the respective BaseDataModule class 
attributes. Since the conversion and splitting is rather quick, everything is done 
in-memory and not further persisted to disk – with one exception: The PyTorch Vision 
API is designed in such a way so that the raw ZIPs are only downloaded if not 
available locally already. 

 

8.3.3 Deepweeds 
The DeepweedsDataModule extends Pytorch Lightning LightningDataModule and uses a 
custom Pytorch Dataset (DeepweedsDataset) . It exposes the same methods as the 
DroughtWatch DataModule. The Images and the labels (csv file) for this dataset are stored in 
Google drive due to the size of data and copied to the local data folder while running 
experiments. The images are resized to  224x224 and ImageNet Normalization applied 
before feeding to a Custom ResNet50 model.  
 

8.3.4 Cassava 
The CassavaDataModule extends Pytorch Lightning LightningDataModule and uses a 
custom Pytorch Dataset (CassavaDataset) . It exposes the same methods as the 
DroughtWatch DataModule. The Images and the labels (csv file) for this dataset are stored in 
Google drive due to the size of data and copied to the local data folder while running 
experiments. The images are resized to  224x224 and ImageNet Normalization applied 
before feeding to a Custom ResNet50 model. 
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8.4. Models 
A custom ResnetClassifier PyTorch model class was implemented that contains the following 
main features: 

●​ Core: PyTorch’s ResNet50 TorchVision model 
●​ Input layer: in_channels of the first convolutional layer is dynamically adapted 

based on the n_channels args parameter 
●​ Output layer: out_channels of the last fully connected layer is dynamically adapted 

based on the n_classes args parameter 
 
Other mentionable adaptations are the following: 

●​ Dropout: If the dropout args parameter is activated, the last fully connected layer is 
replaced by a sequence of linear / ReLU / Dropout / BatchNorm layers. The goal of 
this is to introduce non-deterministic dropout behaviour in order to use 
Bayesian/Monte Carlo active learning techniques. 

●​ Pretraining: If the pretrained args parameter is activated, the ResNet50 model is 
used in its pretrained version (provided by the PyTorch Vision API). 

●​ Intermediate activations: The forward method is implemented in such a way that it 
can either return the final activations only, or additionally activations from 
intermediate layers. This is required in model based active learning techniques that 
are built on intermediate model outputs. 

●​ RGB/Binary switch: If the args parameters rgb or binary are activated, input and 
output layers are automatically adapted accordingly to the required number of 
channels. 

 

8.5. Metrics 
To adequately measure our experiments, we implemented two metrics helper classes:​
 

●​ MaxAccuracyLogger(pl.callbacks.Callback): A callback compatible with 
PyTorch Lightning’s Trainer interface to keep track of the maximum of a certain 
metric over multiple epochs: e.g. the best F1 score over 20 epochs of training. ​
​
This callback is needed to plot the best metric against a certain other metric in W&B 
plots, e.g.: Plotting the best F1 score against the size of the training_set at that point.​
 

●​ F1_Score(pl.metrics.F1): Fixed PyTorch F1 metric that can handle 
non-normalized prediction inputs. 

 

8.6. Experiment Routine 
The experiment routine takes the following most important args parameters: 

●​ sampling_method: Active learning sampling technique to use 
●​ max_epochs: Maximum of epochs to train per active learning iteration 
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●​ data_class: Data class to use 
●​ model_class: Model class to use 
●​ n_train_images: Number of training samples with which model is trained in initial 

iteration 
●​ al_samples_per_iter: Number of training samples that are added to the training 

set in each iteration 
●​ al_iter: Number of active learning iterations 

 
Based on the args Parameter sampling_method, the experiment routine automatically 
decides how to handle each active learning iteration: 

●​ Basic sampling: Pool predictions are calculated with PyTorch’s Trainer built in 
testing routine and then passed to the sampling method which returns the indices to 
add to the training set in the next iteration.​
 

●​ Monte Carlo/Bayesian sampling: Multiple predictions for every data point in the pool 
are done via the separately implemented get_pool_probabilities that runs the 
model’s forward method multiple times. The predictions are then passed to the 
sampling method which again returns the indices for the next iteration.​
 

●​ Model based sampling: Activation scores at different intermediate layers of the model 
are calculated via the externalized get_activation_scores method. These are 
then passed to the respective sampling method which again returns the indices for 
the next iteration.​
 

●​ Active transfer learning: For speed up, a subsample of both train data and pool data 
is taken. We then train a model to distinguish between correct and incorrect 
predictions based on this reduced train set, and apply it on the reduced pool data to 
get the points which the highest probability of being predicted incorrectly. 

 
 

8.7. modAL Integration 
A separate experiment running routine was developed that integrates with the modAL active 
learning library. 
 
It provides similar parametrization possibilities, but conducts the active learning iterations 
leveraging the modAL framework. This enables to apply modAL’s built in classification 
uncertainty techniques (see documentation for details): 

●​ uncertainty_sampling 
●​ margin_sampling 
●​ entropy_sampling 

 
Additionally, we implemented multiple sampling strategies that can be used as part of the 
modAL framework in general: 

●​ random: Baseline technique to randomly sample from the pool 
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●​ bald: Active learning sampling technique that maximizes the information gain via 
maximising mutual information between predictions and model posterior (Bayesian 
Active Learning by Disagreement - BALD) – for details see chapter about techniques 
above. 

●​ max_entropy: Bayesian entropy sampling that maximizes the predictive entropy – 
for details see chapter about techniques above. 

●​ cluster_outlier_combined: Diversity sampling technique that clusters the pool 
and takes both the most relevant and the most outlier points in each cluster to get a 
set that is as diverse as possible. Clustering is done with the HDBSCAN algorithm 
and outlier scores calculated via GLOSH score, both part of the hdbscan library. 

●​ outlier: Diversity sampling technique that takes the samples with the highest 
outlier scores according to their GLOSH score, calculated via the hdbscan library. 

 
All of them work only by taking as input modAL’s ActiveLearner, a NumPy array 
containing X values of the pool, and the number of instances to be sampled. 

8.8. Examples: How to Run Experiments 

8.8.1. DroughtWatch 
Run an experiment with the DroughtWatch dataset, starting at 1000 training samples and 
increasing by 500 for 20 iterations, training for max. 20 epochs in each iteration. Activate the 
RGB and Binary scenario additionally, set the learning rate and start with a pretrained 
ResNet model: 
 

python training/run_experiment.py \ 

  --sampling_method=active_transfer_learning \ 

  --data_class=DroughtWatch \ 

  --model_class=ResnetClassifier \ 

  --n_train_images=1000 \ 

  --al_samples_per_iter=500 \ 

  --al_iter=20 \ 

  --max_epochs=20 \ 

  --pretrained=True \ 

  --binary \ 

  --rgb \ 

  --lr=3e-4 \ 

  --gpus=1 \ 

  --wandb 

 

8.8.2. MNIST 
Run an experiment with the MNIST dataset with all default parameters: 

python training/run_experiment.py \ 
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  --data_class=MNIST \ 

  --model_class=MNISTResnetClassifier \ 

  --gpus=1 \ 

  --wandb 

 

8.8.3. modAL 
Run an experiment using the modAL framework using a margin sampling strategy with the 
DroughtWatch dataset: 
 

python training/run_modal_experiment.py \ 

  --data_class=DroughtWatch \ 

  --model_class=ResnetClassifier \ 

  --al_query_strategy=margin_sampling 

  --gpus=1 --wandb 

 

8.8.4 Deepweeds 
Run an experiment with the Deepweeds dataset . Options for sampling_method are 
‘random’,’least_confidence’,’margin’,’ratio’,’entropy’ 
 
python training/run_experiment.py --gpus=1 --max_epochs=10 --num_workers=4  

--data_class=DeepweedsDataModule --model_class=ResnetClassifier3 

--sampling_method="entropy" --batch_size=128 

 

8.8.4 Cassava Leaf Disease Classification 
Run an experiment with the Cassava leaf disease classification dataset . Options for 
sampling_method are ‘random’,’least_confidence’,’margin’,’ratio’,’entropy’ 
 
python training/run_experiment.py --gpus=1 --max_epochs=10 --num_workers=4  

--data_class=DeepweedsDataModule --model_class=ResnetClassifier2 

--sampling_method="entropy" --batch_size=128 
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