
OOP-R on Canvas2D 
8 September 2019 

khushalsagar@ 

OVERVIEW 
Out of process raster (OOP-R) is an architectural change aimed at enabling the use of multiple 

graphic backends (Vulkan/Metal/D3D12) for rasterization in Chromium, particularly targeted at 

rasterization currently done using skia in client processes (see The GPU process), which is done 

by 2 clients : compositor (cc) and canvas2d. As of today, the compositor has been transitioned to 

use OOP raster . This document is to summarize the remaining work for transitioning canvas2d to 1

use OOP raster. 

Prior to OOP raster, rasterization using Skia is performed using a GrContext provided by 

viz::RasterContextProvider. Under the hood, we set up the GL bindings for this GrContext to a 

cross-process GPU command buffer implementation. Instead of issuing GL commands issued by 

skia in the client process directly to the driver, the command buffer serializes them for execution 

in the service process (see GPU Process/Command Buffer). 

With OOP raster, the serialization of GL commands is replaced with paint commands recorded in 

a PaintOpBuffer. These are higher level commands which can be executed on an SkCanvas that 

may be backed by any GPU backend (or software) implementation. 

DESIGN DETAILS 

Client Context APIs 

The viz::RasterContextProvider encapsulates multiple APIs to provide access to different 

functionalities on the client side. The 3 high level interfaces that we need to understand here are: 

1)​ GLES2Interface 

Allows direct access to GL APIs sent to the GPU service via GL command buffer. This is 

currently used by multiple components in the renderer but the eventual goal is to limit this 

1 Still being rolled out to users via finch on some platforms. 

https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://cs.chromium.org/chromium/src/third_party/skia/include/gpu/GrContext.h
https://cs.chromium.org/chromium/src/components/viz/common/gpu/raster_context_provider.h
https://www.chromium.org/developers/design-documents/gpu-accelerated-compositing-in-chrome
https://cs.chromium.org/chromium/src/cc/paint/paint_op_buffer.h
https://cs.chromium.org/chromium/src/third_party/skia/include/core/SkCanvas.h
https://cs.chromium.org/chromium/src/components/viz/common/gpu/raster_context_provider.h
https://cs.chromium.org/chromium/src/gpu/command_buffer/client/gles2_interface.h


to WebGL, since by design this requires the context to support GL. All other use-cases 

should go through the RasterInterface below. 

2)​ GrContext 

Allows use of skia on the client side for GPU rasterization, by binding it with the 

ContextProvider’s GL command buffer. 

3)​ RasterInterface 

Provides higher level APIs which can be mapped to any graphics API backend on the 

service side. The APIs relevant for rasterization using skia are 

BeginRaster/Raster/EndRasterCHROMIUM, used to serialize and send a PaintOpBuffer to 

the GPU service. However, these APIs are not supported on RasterImplementationGLES 

(used with GL decoder). 

Each of these functionalities, which need to be supported for a context, should be specified at 

creation time (using ContextCreationAttribs). The important part here is that supporting OOP 

raster and GLInterface/GrContext for a RasterContextProvider is mutually exclusive. This is 

because supporting OOP raster requires the use of a RasterCommandBuffer/Decoder, which 

does not provide a GL API. This is a design choice to make execution of commands from the 

client, interleaved with work using skia, simpler and also because there should be no use-case 

where both these functionalities are required together. 

Blink Context Providers 

The renderer process has multiple ContextProviders, each backed by its own command 

buffer/command stream. For the work pertaining to canvas2d, the ContextProvider usage we 

need to understand/modify here is the one relevant for blink and renderer’s main thread. The 

APIs detailed above are exposed to blink using the WebGraphicsContext3DProvider interface, 

which internally wraps a ContextProviderCommandBuffer. The important part here is that there is 

a single instance of this context per thread (other than WebGL). This means that for the main 

thread, the context used by canvas2d is also shared with the media/video stack (see 

SharedMainThreadContextProvider). 

HIGH LEVEL PLAN 

At a high level, the work involved with transitioning canvas2d to use OOP raster can be divided 

into 2 broad parts: 

 

https://cs.chromium.org/chromium/src/components/viz/common/gpu/raster_context_provider.h?l=100
https://cs.chromium.org/chromium/src/gpu/command_buffer/client/raster_interface.h
https://cs.chromium.org/chromium/src/gpu/command_buffer/client/raster_interface.h?l=63
https://cs.chromium.org/chromium/src/gpu/command_buffer/common/context_creation_attribs.h
https://cs.chromium.org/chromium/src/gpu/command_buffer/service/raster_decoder.h
https://cs.chromium.org/chromium/src/third_party/blink/public/platform/web_graphics_context_3d_provider.h
https://cs.chromium.org/chromium/src/services/viz/public/cpp/gpu/context_provider_command_buffer.h
https://cs.chromium.org/chromium/src/content/renderer/render_thread_impl.cc?l=1398


 

Eliminate GLInterface dependencies 

Since supporting OOP raster for a context implies that it can not be used for GL execution, a 

prerequisite for this is to remove all GL dependencies from contexts used by canvas2d. And 

since canvas2d uses the SharedGpuContext, which is a per thread instance, this effectively 

means eliminating all GL access on this shared context (basically everything other than WebGL?). 

The details for this are a bit unknown at this point, and would need to be addressed on a case by 

case basis. My take here would be to look at all callers of 

WebGraphicsContext3DProvider::ContextGL and trace back whether the usage could be from a 

non-WebGL context to decide whether it needs to be updated. Our approach here has been to 

move all resource allocation to SharedImageInterface, which is designed to support cross 

graphics API synchronization of resources, and add APIs to RasterInterface for other functionality 

as needed. 

The good part here is that we don’t need to simultaneously maintain code using GLInterface and 

RasterInterface for the consumers. In order to allow an easy transition here, we currently support 

a RasterInterface implementation backed by a GL decoder. So the goal here would be to 

eliminate the use of GLES2Interface for each case incrementally until the shared context no 

longer needs to support it. One downside though is that we won’t have coverage for the 

RasterDecoder path for these contexts until the step below is completed, but at least for scoped 

unit-tests we could run 2 versions of them using GL and RasterDecoder. 

Another option, if we did not want to block the canvas2d work on the above, would be to create 

and use a different context for canvas rather than the shared one. This might have some gotchas 

though because code outside could assume that canvas2d is on the same shared context and 

lack synchronization across streams. I think eventually we do want to avoid using GL from any 

context other than WebGL, but it’s worth evaluating whether a separate context in the short term 

is better to make progress with canvas2d first. 

Switch GrContext use to RasterCHROMIUM 

The second part is to switch uses of GrContext, which depend on running skia’s GL 

implementation on the client side, to use RasterCHROMIUM commands on RasterInterface. The 

main code change for this would be in CanvasResourceProvider, which manages the 

rasterization backend used for canvas2d. The resource allocation here has already been moved 

to shared images, but we still import them into SkSurfaces on the client side which will need to 

https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/gpu/shared_gpu_context.h
https://cs.chromium.org/chromium/src/third_party/blink/public/platform/web_graphics_context_3d_provider.h?l=90
https://cs.chromium.org/chromium/src/gpu/command_buffer/client/shared_image_interface.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/canvas_resource_provider.cc


switch to using RasterCHROMIUM. A few sub-problems here that have already been identified 

are: 

1)​ Drawing accelerated images on canvas 

The canvas context exposed to script supports multiple APIs for drawing accelerated 

resources (video, webgl canvas, 2d canvas, etc.) onto a canvas element. Since we 

currently draw them using an SkCanvas, this works by storing texture backed SkImages in 

paint recordings. In a lot of cases, we import shared image mailboxes into textures on the 

canvas context and then wrap them in SkImages for these draws. 

The ideal way for storing and serializing these accelerated resources in paint recordings 

would be as mailboxes. PaintImage is the class used to store images in paint recordings, 

and it supports different types of backing data, one of which could be a mailbox. When 

this PaintImage is deserialized on the GPU service, we can retrieve an SkImage for the 

mailbox which wraps the resource in whichever API is being used by skia. Note that we 

expect all resources used here to be created using shared images and thus have 

mailboxes, since the only context which can/should create GL textures on the client side 

is WebGL. 

In blink, these resources are passed around using StaticBitmapImage which already 

provides PaintImages for use with a PaintCanvas. The accelerated version of this would 

be AcceleratedStaticBitmapImage which can be created using mailboxes or SkImages 

wrapping textures. The Image base class provides an API (PaintImageForCurrentFrame) to 

get a Paint representation of the image for use in drawing with a PaintCanvas. The aim 

would be to have it return mailbox backed PaintImages instead of importing mailboxes to 

wrap in SkImages as is done today. This is somewhat tricky because a lot of the consumer 

code directly uses SkImage from PaintImage, mostly for operations like scaling, color 

conversion, readbacks, etc. So would need to be updated once PaintImage no longer 

provides an SkImage if its accelerated. One of the biggest such users is ImageBitmap. 

Another thing would be to get rid of the 

AcceleratedStaticBitmapImage::CreateFromSkImage factory method, so we always have 

images created using mailboxes only. 

2)​ Preserving transform/clip state on canvas 

Canvas2D has APIs which allow script to save the transform/clip state on the canvas 

currently before modifying it using save/restore operations. This effectively allows the 

user to build a stack of this state that can be restored as needed. When calls are 

https://cs.chromium.org/chromium/src/cc/paint/paint_image.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/static_bitmap_image.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/accelerated_static_bitmap_image.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/image.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/core/imagebitmap/image_bitmap.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/accelerated_static_bitmap_image.h?l=33


executed on a canvas2d context from script, we store them in a PaintOpBuffer for 

deferred execution and clear this once they are drawn. For the common case, this is 

managed inside Canvas2DLayerBridge. 

The transform/clip state is mirrored on the SkCanvas and is preserved across multiple 

draws through the use of a constant SkSurface, which allows us to only store paint 

operations executed by script since the last draw. But with OOP-R, we create transient 

SkSurfaces on the service side each time a resource is updated, so this transform/clip 

state is no longer preserved. 

This means that either we need to retain the SkSurface on the service side (less likely) or 

need to ensure that each time a PaintOpBuffer is serialized for a draw using 

RasterCHROMIUM, we also serialize the transform/clip stack. This is already done in some 

cases where we do need to tear down the SkSurface (for instance if the page is hidden 

and we’re purging all memory associated with the canvas element) here, so would just 

need to be hooked up properly for the OOP-R case. 

3)​ Eliminate canvas deferral disabling option 

Canvas2dLayerBridge used to support 2 modes for how execution of draw calls on script 

is managed with actually drawing them using skia. A deferred mode, where the 

operations are buffered in a PaintOpBuffer, and non-deferred mode where they are 

directly executed on an SkCanvas. The latter can no longer work with OOP raster, since 

skia runs in a different process. These were mostly workaround for issues, and it looks 

like all of them have been eliminated now. The only case I see now is 

Canvas2DLayerBridge::WritePixels, where we want to copy the pixels directly onto the 

canvas backbuffer and avoid an intermediate copy for deferred raster. This is not a 

concern when canvas is accelerated, we’d already need to do a copy to shared memory 

for sending those pixels to the GPU. 

For the second part here, the change is significant enough that we’d need to support both code 

paths (GPU and OOP Raster) at the same time and roll this out on each platform via finch. 

https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/canvas_2d_layer_bridge.h
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/canvas_resource_host.h?g=0&l=26
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/graphics/canvas_2d_layer_bridge.h?g=0&l=117

	OOP-R on Canvas2D 
	OVERVIEW 

