
pggen: Go code generation for Postgres

Working example: https://github.com/jschaf/pggen/tree/master/example/author

pggen is a binary that generates Go code that provides a typesafe wrapper to Postgres queries.
pggen has the same goals as sqlc, to “compile SQL to type-safe Go”. The sqlc documentation
provides a concise overview of the benefits of the code generation approach:

sqlc generates fully-type safe idiomatic Go code from SQL.

●​ You write SQL queries
●​ You run sqlc to generate Go code that presents type-safe interfaces to those

queries
●​ You write application code that calls the methods sqlc generated.

The primary difference between pggen and sqlc is how pggen generates the Go code. sqlc
parses the queries in Go code, using Cgo to call the Postgres parser.c code. After parsing, sqlc
infers the types of the query parameters and result columns using custom logic in Go. In
contrast, pggen gets the same type information by running the queries on Postgres and then
fetching the type information from the Postgres catalog tables. Here are the merits and
downsides of both approaches:

 sqlc pggen

Pros Standalone and lightweight. Doesn’t
require running a Postgres instance or
dealing with Docker.

Perfect type information because
Postgres reports the types by executing
the actual query.

pggen makes no assumptions about the
version so end users can “bring their own
database” with any schema and
extensions.

Easy to maintain. Postgres does all the
hard work of getting type information so
pggen doesn’t need to reimplement the
Postgres type inference semantics.

Cons Type inference is buggy. sqlc fails on a
variety of queries (CTEs, UNION, all
Postgres bugs).

Difficult to maintain because sqlc
needs to match the exact semantics of
Postgres type inference. Postgres is a

Requires running queries on a
user-provided Postgres cluster. This
makes integration more complex
compared to sqlc. To reduce the
integration complexity, pggen could
provide an up-to-date Postgres runner
through Docker.

https://github.com/jschaf/sqld/tree/master/example/author
https://sqlc.dev/
https://github.com/kyleconroy/sqlc/issues/723
https://github.com/kyleconroy/sqlc/issues/568
https://github.com/kyleconroy/sqlc/issues?q=is%3Aissue+is%3Aopen+label%3Apostgresql
https://github.com/kyleconroy/sqlc/issues?q=is%3Aissue+is%3Aopen+label%3Apostgresql

moving target that constantly evolves.

Requires vendoring all Postgres
function and extension types. As a
consequence, sqlc only supports one
version of Postgres, or a superset of
many versions.

Running queries is potentially destructive,
though the queries should only ever run
on temporary databases purposefully
created only for pggen.

I believe pggen is much simpler to both implement and maintain compared to sqlc. Trying to
implement Postgres type inference semantics in Go is both a herculean (see sqlc’s parser.go)
and Sisyphean task as Postgres is a moving target. By leveraging Postgres directly to provide
type information, pggen will always have perfect type information with no extra effort in the
implementation.

Secondary goals
●​ Support pre and post query execution hooks for cross-cutting concerns like logging and

tracing.

Non-goals
●​ pggen will not support the Go standard sql interface. pggen is built on top of pgx, and

exposes advanced pgx features like binary wire format, custom Postgres types, and
query batching.

Implementation sketch
The core task for pggen is to determine the input and output types for an arbitrary query, given a
user-provided Postgres database.

Determine query input types
Determining the query input types is straightforward. The steps are:

1.​ Prepare a query.
2.​ Query the system catalog table, pg_prepared_statements, to get an array of parameter

types for the prepared query.

As an example, we’ll use a prepared query with three parameters with different types. First,
prepare the query:

PREPARE sample_input_query AS​

https://github.com/kyleconroy/sqlc/blob/master/internal/engine/postgresql/parse.go

 SELECT book_id, $1::text AS text_col​
 FROM books​
 WHERE book_id = $2​
 AND $3 < '2020-01-04'::date;

Second, query pg_prepared_statements for the parameter types:

SELECT parameter_types​
FROM pg_prepared_statements​
WHERE name = 'sample_input_query';

The query returns: {text,integer,date} which are the correct types for the three query
parameters.

Determine query output types
Determining the query output types is a bit tricky. Stackoverflow was helpful in finding a solution.
The steps are:

1.​ Determine if the query has any output. Mutation queries without a RETURNING clause
always return sql.Result.​
Run the query using EXPLAIN (VERBOSE, FORMAT JSON). If Plan[Node Type] is Modify
Table, meaning an insert, update, or delete statement, only continue if Plan[Output] is
defined which means the statement has a RETURNING clause. Otherwise, the query has
no output.

2.​ Prepare the query.
3.​ Create a temp table by executing the prepared query using a default value or null for

each parameter.
4.​ Query the pg_attribute table to get the type information for each column in the temp

table. The columns of the temp table match the output columns of the query.

As an example, we’ll use a query with moderately complex types that takes a single parameter.
First, prepare the query.

PREPARE sample_query AS​
 SELECT book_id,​
 book_type,​
 'arbitrary_column' as text_col,​
 '2021-01-14'::date - INTERVAL '3 hour' as book_time​
 FROM books​
 WHERE book_id = $1;

Second, create a temp table using the query:

https://stackoverflow.com/questions/65733271
https://golang.org/pkg/database/sql/#Result

CREATE TEMP TABLE tmp_sample AS​
 EXECUTE sample_query (NULL);

Third, get the types from the pg_attribute table for the temp table:

SELECT attname, format_type(atttypid, atttypmod) AS type​
FROM pg_attribute​
WHERE attrelid = 'tmp_sample'::regclass​
 AND attnum > 0​
 AND NOT attisdropped​
ORDER BY attnum;

This pg_attribute query returns a table of the query result column names and their types.

attname type

book_id integer

book_type book_type

text_col text

book_time timestamp without time zone

Unresolved questions

Executing insert and update statements with a returning clause can violate
check, null, or unique constraints
pggen runs queries as prepared queries using null for each parameter. This approach (always?)
works for select-statements but can fail for update and insert queries by violating not-null
constraints, check constraints, or unique constraints on the target table. The problem is limited
in scope because pggen only needs to execute statements that contain a RETURNING clause to
get the output types. Without a returning clause, modification queries always return a command
tag type that contains the number of rows modified, so pggen doesn’t need to execute the
query.

One approach is to require the user to specify a default value in pggen.arg as a second
argument, like pggen.arg(‘user_id’, 876). As a convenience feature, pggen could use default
values for all known types. Providing a default value avoids violating not-null constraint and if
carefully chosen, also avoids check constraint and unique constraint.

Another partial solution is to constrain the query so that it doesn’t do anything by adding a LIMIT
0 clause or with a WHERE false clause. This will likely work for the vast majority of queries but it’s
always possible for this to fail in complex SQL queries. A disadvantage of this approach is that it
requires parsing the query and then manipulating the parse tree which is a large bundle of
added complexity. Parsing the query in application code also means pggen is tied to a specific
Postgres version for query parsing semantics. pggen will likely need to parse statements
anyway so this might be a reasonable tradeoff.

API Design
The API design includes both the SQL metadata format to identify ​queries and the generated
Go output code.

SQL metadata format
pggen both simplifies and extends the sqlc format described in sqlc annotations doc:

sqlc requires each query to have a small comment indicating the name and
command. The format of this comment is as follows:

-- name: <name> <command>​
-- name: GetAuthor :one

-- name: FindAuthors :many

-- name: DeleteAuthor :exec

Simplification: only offer exec command which returns
pgconn.CommandTag
Running a modification query returns two things, sql.Result and any error from running the
query. sqlc provides :exec which only returns the error, :execresult which returns both sql.Result
and the error, and :execrows which returns the sql.Result.RowsAffected() and the error.. Both
exec and execrows are minor convenience wrappers around sql.Result.

pggen slightly simplifies allowed annotations by only supporting :exec. Instead of returning
sql.Result, pggen returns pgconn.CommandTag which is the Postgres equivalent of sql.Result.

Extension: reuse result types among different queries
As an extension to sqlc, pggen provides the ability to explicitly set the output type. sqlc creates
a new struct for each query unless the query is all rows in the table. Oftentimes, queries differ
only by a where-clause but return the same set of columns. Having a different type for each
query is cumbersome since it requires manual translation to a unified struct. Instead, pggen

https://github.com/kyleconroy/sqlc/blob/master/docs/annotations.md
https://pkg.go.dev/github.com/jackc/pgconn#CommandTag

supports an optional SQL annotation on select statements to specify the name of the struct
representing a row in the query results.

-- name: FindAuthorNames :many :resultName=AuthorName

Other queries may reuse the result type (AuthorName) of FindAuthorNames like so:

-- name: FindBestSellingAuthors :many :resultFromQuery=FindAuthorNames

A query with a :resultFromQuery annotation must meet the following criteria:

●​ The columns of the query must be a subset (including a complete subset) of the columns
of the referenced query. If FindAuthorNames returns {last_name: text, id: bigint},
FindBestSellingAuthors can return any subset: {id: bigint}, {last_name: text}, or
{last_name: text, id: bigint}.

●​ Each result column must have the exact same types as the reference query.

Simplification: all query parameters must be named
sqlc allows both named and anonymous parameters but pggen only supports named
parameters in order to simplify the implementation.

-- name: GetRecord :one​
SELECT * FROM records WHERE id = $1;

​
-- name: GetRecord :one​
SELECT * FROM records WHERE id = sqlc.arg('id');

This limitation simplifies the implementation logic especially when multiple queries share the
same result type. With anonymous parameters, pggen would either need to match the order of
types or the name of the types. Both approaches are ambiguous and error prone. Instead pggen
only supports named parameters by providing marker function, pggen.arg, for parameter
names. pggen.arg takes a text parameter, the name of the column and an optional named
parameter, test_val, to specify the value to use when executing the query to infer the types.

The purpose of the test_val argument is to allow insert and update statements to pass check
constraints when modifying tables. test_val does nothing for select statements.

-- name: GetRecord :one​
SELECT * FROM records WHERE id = pggen.arg('id', test_val := 'some_id');

Generated Go code
The generated code will use pgx and mimic the sqlc output. Since pggen is a Postgres specific
code generator, there’s limited benefit to using Go’s standard SQL types. Each pggen config file
will generate:

●​ A Querier interface containing all of the SQL queries in the file querier.go.
●​ A DBQuerier struct that implements the Querier interface, also in querier.go.
●​ For each sql query file, a generated file name: basename(sqlFile).go

Postgres client tracing
To support tracing, the package pggen provides ClientTrace (trace.go), similar to
httptrace.ClientTrace.

https://github.com/jschaf/sqld/blob/master/trace.go
https://blog.golang.org/http-tracing

	pggen: Go code generation for Postgres
	Secondary goals
	Non-goals

	Implementation sketch
	Determine query input types
	Determine query output types
	Unresolved questions
	Executing insert and update statements with a returning clause can violate check, null, or unique constraints

	API Design
	SQL metadata format
	Simplification: only offer exec command which returns pgconn.CommandTag
	Extension: reuse result types among different queries
	Simplification: all query parameters must be named

	Generated Go code
	Postgres client tracing

