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We would like to know the particle energy and center-of-mass energy obtained by 
various particle accelerators. However, data showing progress in particle accelerators 
typically uses a calculated quantity called “effective energy”. This allows comparisons 
between older accelerators (like electron accelerators with stationary targets) and newer 
accelerators (like electron-positron or proton-antiproton colliders). The effective energy 
is the energy that is required for a moving particle colliding with a stationary proton, 
such that the energy in the center of mass frame is equivalent to the actual energy in 
the accelerator. So, for accelerators with a stationary target, the effective energy is the 
same as the particle energy. For a collider, we need to perform a lorentz transform from 
the frame in which one particle is stationary into the reference frame in which the center 
of mass is stationary, in order to obtain center-of-mass energy and particle energy. 
 
I make the following assumptions: 

1.​ For non-colliders, the energy given is the particle kinetic energy  1

2.​ For colliders, the energy given is the particle kinetic energy such that the center 
of mass energy for that particle on a stationary proton is the same as the center 
of mass energy of the collisions that actually occur in the accelerator (the 
“equivalent energy”) 

 
So our task is to use these values to find this particle energy.  

Proton-proton  and electron-electron Collisions 
 
We’ll start with the simpler case, which is for colliders, because this is just a collision 
between particles of equal mass. We have a particle of mass and speed  incident on 𝑀 𝑢
another particle of mass  and velocity zero. We want to perform a lorentz transform on 𝑀
the velocities such that the total momentum of the system is zero:​
 

 γ'𝑀𝑢' − γ
𝑣
𝑀𝑣 = 0  ⇒ γ'𝑢' = γ

𝑣
𝑣 

1 We can see that the charts are not using total energy (including rest energy) because they start at 
energies substantially lower than the rest mass of the proton 



 

With the lorentz factor , and corresponding formulas relating  to  γ = (1 − 𝑢2/𝑐2)−1/22 γ
𝑣

𝑣

and to . Here I have assumed that the particles are moving in opposite directions, γ' 𝑢'
and written this equation in terms of speed, rather than velocity. We can infer from this 
that , which we could have intuited anyway from the symmetry of the system. We 𝑢' = 𝑣
don’t need to do a full Lorentz transform; we can just use the relativistic velocity addition 
formula : 3

 
 𝑢' = 𝑢−𝑣

1−𝑢𝑣/𝑐2 = 𝑣

 
After some algebra, we use this to write in terms of : 𝑣/𝑐 𝑢/𝑐
 

 𝑣/𝑐 = (1 − 1 − 𝑢2/𝑐2)𝑐/𝑢
 
That square root term is just , and we can invert the equation for gamma to write  1/γ 𝑢/𝑐
in terms of gamma: 
 

 ​𝑢/𝑐 = 1 − 1/γ2

​
Combining these and inserting them into the equation for  we find:​γ'
​

​γ' = 1 − (1−1/γ)2

1−1/γ2
⎡⎢⎢⎣

⎤⎥⎥⎦

−1/2

​
We can use this to find the center-of-mass frame kinetic energy, using the usual 
relativistic energy equation: 
 

(kinetic energy) 𝑇 = 𝐸 −  𝑀𝑐2 = (γ − 1)𝑀𝑐2

 
For small values of gamma, the kinetic energy is the usual classical expression: 
 

 𝑇 = 1
2 𝑀𝑢2

 

3 https://en.wikipedia.org/wiki/Velocity-addition_formula#Special_relativity 
2 This is the usual lorentz factor for special relativity https://en.wikipedia.org/wiki/Lorentz_factor 



This approximation is reasonably accurate for our purposes (<5% error) up to . γ ≈ 1. 03
 
For very large values of gamma, we might expect problems with precision , since 4

is so close to unity when gamma is very large. In this case, we can neglect1 − 1/γ2 1/γ2

terms in, and we find a much simpler expression : 5

 
 γ' ≈ γ/2

 
Since the particles have the same mass, this straightforwardly gives us the total energy 
and the particle energy: 
 

 (particle kinetic energy) 𝑇' = (γ' − 1)𝑚𝑐2

 

 (center-of-mass kinetic energy) 𝑇
𝑡𝑜𝑡𝑎𝑙

= (γ' − 1)𝑚𝑐2 + (γ' − 1)𝑚𝑐2 = 2𝑇'

Electron-Proton Collisions 
 
For unequal masses, we have the zero-momentum equation: 
 

 γ'𝑀𝑢' − γ
𝑣
𝑚𝑣 = 0

 
With the proton to electron mass ratio . This, unfortunately, does not α ≡ 𝑀/𝑚 ≈ 1836
immediately reduce to equal velocities. To do anything useful with this, we need to 
choose appropriate energy regimes and make the appropriate approximations. I have 
tabulated these in the following table: 
 

 γ  𝑢/𝑐 (proton) 𝑣/𝑐 (collider) 𝑣/𝑐  γ
𝑣

<1.05 <.3 <<1 <1.5 ≈1 

1.1-3 Use exact <<1 No approx. ≈1 

3-10 ≈1 <<1 No approx. ≈1 

5 I am uncertain, but I think the authors of many accelerator energy plots may just use this equation for all 
colliders. 

4 Google sheets seems to handle precision very well, so this turns out to be less of a problem than I would 
have thought 



10-200 ≈1 <<1  γ' ≈ γ/2 ≈1 

200-1000 ≈1 Use exact  γ' ≈ γ/2 ≈1 

1000-4000 ≈1 Use exact  γ' ≈ γ/2 Use exact 

>4000 ≈1 ≈1  γ' ≈ γ/2 Use exact 

 
 
 
Additionally, I use the substitutions , , and , 𝑏 = 1 − 𝑢/𝑐 𝑏' = 1 − 𝑢'/𝑐 𝑏

𝑣
= 1 − 𝑣/𝑐

because this allows us to neglect terms of order or higher in many cases (but not all!) 𝑏2

when the corresponding velocity is approximately 1. In particular, we can often use 
 .  γ ≈ 1/ 2𝑏

 
The velocity addition formula in terms of ’s is 𝑏
 

 𝑏' = 1 −
𝑏

𝑣
−𝑏

𝑏
𝑣
+𝑏−𝑏

𝑣
𝑏

 
For the lowest energies, we observe that the system is already essentially in 
center-of-mass frame, due to the high mass of the proton. Nearly all of the kinetic 
energy of the electron is lost in the collision, and we do not need to perform a transform 
(these are the accelerators that the authors are trying to allow us to make comparisons 
to by using equivalent energy in the first place!). As it turns out, this takes us up to 
approximately  before the error reaches 5%, so half the table is largely γ = 200
unneeded. You can see the values for kinetic energy remaining after the collision in the 
data tables. 
 
For energies that are higher than this, but still relatively low, we use the approximations 
listed in the table for values of gamma between 1000 and 4000 , and find from 6

momentum conservation, after some algebra, that: 
 

 𝑏' = 2𝑏
α 2𝑏−1

 

6 Keep in mind we can always use fewer approximations. 



Inserting this into the velocity addition formula, and doing some algebra, we find: 
 

 2α2(2 − 𝑏
𝑣
)(1 − 𝑏

𝑣
)2 = 1 + 𝑏/𝑏

𝑣

 
We want  in terms of . This is annoying to solve by hand, so I just plugged it into 𝑏

𝑣
𝑏

Wolfram Alpha with the appropriate values for the handful of accelerators at appropriate 
energies.​
​
Once we have  and  we can use the velocity addition formula to find , and then we 𝑏 𝑏

𝑣
𝑏'

can use this to find and sum the energies of the lorentz-transformed proton and 
electron: 
 

 and  𝑇
𝑒

= 1 − 1/ 1 − (1 − 𝑏 ')2( )𝑚
𝑒
𝑐2 𝑇

𝑝
= 1 − 1/ 1 − (1 − 𝑏

𝑣
)2( )𝑚

𝑝
𝑐2

 
The particle energy is  and the center-of-mass energy is . 𝑇

𝑒
𝑇

𝑒
+ 𝑇

𝑝

 
Above this energy, the accelerators are all lepton-lepton colliders , so we can use the 7

equal-mass expressions from the previous section. 

7 I expect they’re all electron-positron colliders, but I am uncertain 
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