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We would like to know the particle energy and center-of-mass energy obtained by
various particle accelerators. However, data showing progress in particle accelerators
typically uses a calculated quantity called “effective energy”. This allows comparisons
between older accelerators (like electron accelerators with stationary targets) and newer
accelerators (like electron-positron or proton-antiproton colliders). The effective energy
is the energy that is required for a moving particle colliding with a stationary proton,
such that the energy in the center of mass frame is equivalent to the actual energy in
the accelerator. So, for accelerators with a stationary target, the effective energy is the
same as the particle energy. For a collider, we need to perform a lorentz transform from
the frame in which one particle is stationary into the reference frame in which the center
of mass is stationary, in order to obtain center-of-mass energy and particle energy.

| make the following assumptions:

1. For non-colliders, the energy given is the particle kinetic energy’

2. For colliders, the energy given is the particle kinetic energy such that the center
of mass energy for that particle on a stationary proton is the same as the center
of mass energy of the collisions that actually occur in the accelerator (the
‘equivalent energy”)

So our task is to use these values to find this particle energy.

Proton-proton and electron-electron Collisions

We'll start with the simpler case, which is for colliders, because this is just a collision
between particles of equal mass. We have a particle of mass Mand speed u incident on
another particle of mass M and velocity zero. We want to perform a lorentz transform on
the velocities such that the total momentum of the system is zero:

y'Mu' — vav =0 =>yu = Y v

' We can see that the charts are not using total energy (including rest energy) because they start at
energies substantially lower than the rest mass of the proton



With the lorentz factory = (1 — uz/cz)_l/zz, and corresponding formulas relating y_to v

and y'to u'. Here | have assumed that the particles are moving in opposite directions,
and written this equation in terms of speed, rather than velocity. We can infer from this
that u' = v, which we could have intuited anyway from the symmetry of the system. We
don’t need to do a full Lorentz transform; we can just use the relativistic velocity addition
formula®:

1 u—v

u = B
1—uv/c

=7V

After some algebra, we use this to write v/cin terms of u/c:

vic=(1 -1 - uz/cz)c/u

That square root term is just 1/y, and we can invert the equation for gamma to write u/c
in terms of gamma:

uf/c =\1 — 1/y2

Combining these and inserting them into the equation for y' we find:
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_ [1 _ _a-1/y ]

1-1/y"

We can use this to find the center-of-mass frame kinetic energy, using the usual
relativistic energy equation:

T=E — M’ = (y — 1)Mc2(kinetic energy)

For small values of gamma, the kinetic energy is the usual classical expression:

1 2
T=7Mu

2 This is the usual lorentz factor for special relativity https://en.wikipedia.org/wiki/Lorentz_factor
% https://en.wikipedia.org/wiki/Velocity-addition_formula#Special_relativity



This approximation is reasonably accurate for our purposes (<5% error)uptoy = 1.03.

For very large values of gamma, we might expect problems with precision?, since

1 — 1/y2is so close to unity when gamma is very large. In this case, we can neglectl/y2
terms in, and we find a much simpler expression®:

Y ~y/2

Since the particles have the same mass, this straightforwardly gives us the total energy
and the particle energy:

"= - 1)mc2 (particle kinetic energy)

otal = &' - 1)‘mcz + (' — 1)mc2 = 2T' (center-of-mass kinetic energy)

Electron-Proton Collisions

For unequal masses, we have the zero-momentum equation:

y'Mu' — ymv = 0

With the proton to electron mass ratio « = M/m = 1836. This, unfortunately, does not
immediately reduce to equal velocities. To do anything useful with this, we need to
choose appropriate energy regimes and make the appropriate approximations. | have
tabulated these in the following table:

Yy u/c v/c(proton) v/c(collider)
<1.05 <.3 <<1 <1.5

1.1-3 Use exact <<1 No approx.
3-10 =1 <<1 No approx.

4 Google sheets seems to handle precision very well, so this turns out to be less of a problem than | would

have thought

® | am uncertain, but | think the authors of many accelerator energy plots may just use this equation for all

colliders.




10-200 <<1 ~\y/2 =1
200-1000 Use exact ~ \/m =1
1000-4000 Use exact ~ \W Use exact
>4000 ~1 =1 v ~Aly/2 Use exact

Additionally, | use the substitutions b =1 — u/c,b' =1 — u'/c, and bv =1-v/c,

because this allows us to neglect terms of order b or higher in many cases (but not all!)
when the corresponding velocity is approximately 1. In particular, we can often use

yzl/\/ﬁ.

The velocity addition formula in terms of b’s is

T bv_b
For the lowest energies, we observe that the system is already essentially in
center-of-mass frame, due to the high mass of the proton. Nearly all of the kinetic
energy of the electron is lost in the collision, and we do not need to perform a transform
(these are the accelerators that the authors are trying to allow us to make comparisons
to by using equivalent energy in the first place!). As it turns out, this takes us up to
approximately y = 200 before the error reaches 5%, so half the table is largely
unneeded. You can see the values for kinetic energy remaining after the collision in the
data tables.

For energies that are higher than this, but still relatively low, we use the approximations
listed in the table for values of gamma between 1000 and 40005, and find from
momentum conservation, after some algebra, that:

b = 2b
ax/ﬁ—l

¢ Keep in mind we can always use fewer approximations.



Inserting this into the velocity addition formula, and doing some algebra, we find:
20’2 —b)A —b) =1+ b/b
«(2-b)(1—-b) = /b,

We want bv in terms of b. This is annoying to solve by hand, so | just plugged it into

Wolfram Alpha with the appropriate values for the handful of accelerators at appropriate
energies.

Once we have b and bv we can use the velocity addition formula to find b', and then we

can use this to find and sum the energies of the lorentz-transformed proton and
electron:

T = (1 - 1/\/1 ~@1-b ')Z)mec2 and T = (1 - 1/\/1 ~(1-b )Z)mpcz

The particle energy is T, and the center-of-mass energy is T + Tp.

Above this energy, the accelerators are all lepton-lepton colliders’, so we can use the
equal-mass expressions from the previous section.

| expect they're all electron-positron colliders, but | am uncertain
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