
Heap Dump Format 
Authors: ruuda@, petrcermak@, primiano@ 
Parent doc: Heap Profiling in Memory-Infra 
Problem: The heap profiler captures a lot of data, too much to dump into the trace log. How to 
condense this data into a format that maximises the detail and minimises trace size? 
Approach: Given what we want to see, what data do we need? 
 
 

Recorded heap 
What we want to see 
What to dump 
Appendix: Exact trace log format 
Appendix: How to determine level of detail 

 
 

Recorded heap 
Rows represent backtraces, columns represent types. 
 

 /T /U /V /W Cum / 

/ 2 3 5 7 17 

/BrMain 7 11 13 2 33 

/BrMain/Init 151 5 3 83 242 

/BrMain/MsgLp 307 2 281 11 601 

/RdMain 3 7 17 2 29 

/RdMain/RTask 211 3 5 337 556 

/RdMain/FnA 2 0 7 11 20 

/RdMain/FnB 13 3 2 5 23 

/ColdFn 2 5 7 3 17 

Cum / 698 39 340 461 1538 

Cum /BrMain 465 18 297 96 876 

Cum /RdMain 229 13 31 355 628 

 

Cumulative cells (grey/pink) can be computed. White/yellow cells is what is recorded. Grey and 
white cells are dumped, yellow/pink cells are not.  

https://docs.google.com/document/d/1xMbBA0w5UunhTzZkdUfFIS63nRNjU6PP3wd2vf1_Ca8


What we want to see 
Small values and long tails are not interesting, to save space, merge those into <other>. We do 
want to break down large values. Blue is by backtrace, red is by type. 
 
/             1538 

  BrMain       876 

    Init       242 

      T        151 

      W         83 

      <other>    8 

    MsgLp      601 

      T        307 

      V        281 

      <other>   13 

    <other>     33 

    T          465 

      Init     151 

      MsgLp    307 

      <other>    7 

    V          297 

      MsgLp    281 

      <other>   16 

    W           96 

      Init      83 

      <other>   13 

    <other>     18 

  RdMain       628   

    RTask      556 

      T        211 

      W        337 

      <other>    8 

    <other>     72 

    T          229 

    W          355 

    <other>     44 

  <other>       34 

/             1538 

  T            698 

    BrMain     465 

      Init     151 

      MsgLp    307 

      <other>    7 

    RdMain     229 

      RTask    211 

      <other>   18 

    <other>      4 

  V            340 

    BrMain     297 

      MsgLp    281 

      <other>   16 

    <other>     43 

  W            461 

    BrMain      96 

      Init      83 

      <other>   13 

    RdMain     355 

      RTask    337 

      <other>   18 

    <other>     10 

  <other>       39 

 

 

Bad things about this example: 
●​ There never is a big self size (only big sizes are leaf nodes). In general, a backtrace 

could have <self> and <other>. In this example, all <self> nodes are merged into 
<other>. 

 
Remarks: 

●​ In some cases here, <other> consists of only one element. In general, imagine a long 
tail that is merged into <other> as well. Still, if <other> consists of one element, it 
saves space to call it <other>, because it need not be dumped. (Parent minus sum of 
children is size of <other>.) 



●​ Sizes displayed are always cumulative sizes; <self> is a node, not a different column. If 
cumulative size is all there is, breaking down is obvious: it breaks down the total into 
smaller parts that sum to the total. This works if you break down into types, or if you 
break down into child stack frames. 

●​ This approach works for trees in any dimension. (Types are a tree of height 1.) 
 

Dump format 
Previous format: 

●​ List of “entries”, with a size and optionally a backtrace and/or type. 
●​ Allowed dumping self sizes (values in the white cells), as well as row sums and column 

sums. Omitting a backtrace or type implies the size is the sum over all backtraces/types. 
●​ The tree structure of backtraces is ignored altogether. 
●​ When omitting values to reduce trace size, unknowns propagate up the tree, so unless 

everything is dumped, it is difficult to get cumulative sizes. 
 
Proposal: 

●​ Keep the format, but change the meaning of size to mean cumulative size. 
●​ Generate <self> nodes before dumping. For example, the backtrace /BrMain has size 

876, the backtrace /BrMain/<self> has size 33. 
●​ There is no need to dump <other>, its size can be inferred. 
●​ Uniform treatment of different axes (backtrace and type, possibly more in the future). 
●​ Pseudo-format:​

 

entries: [ 
  { size: 1538, bt: [] }, 
  { size: 876,  bt: [BrMain] }, 
  { size: 628,  bt: [RdMain] }, 
  /* <other> backtrace under / is inferred: 1538 - 876 - 628 = 34. */ 
  { size: 698, bt: [], type: T }, 
  { size: 340, bt: [], type: V }, 
  { size: 461: bt: [], type: W }, 
  /* <other> type for / is inferred: 1538 - 698 - 340 - 461 = 39. */ 
  { size: 242, bt: [BrMain, Init] }, 
  { size: 601, bt: [BrMain, MsgLp] }, 
  /* <other> backtrace under /BrMain is inferred: 876 - 242 - 601 = 33. */ 
  { size: 151, bt: [BrMain, Init], type: T }, 
  { size: 83,  bt: [BrMain, Init], type: W }, 
  /* <other> type for /BrMain/Init is inferred: 242 - 151 - 83 = 8. */ 
  ... 
] 

 
●​ Omitting a type means cumulative size (root node for types). Backtrace will always be 

specified explicitly. 
●​ See appendix for details. 



 
Backwards compatibility: 

●​ Previous format always starts with { size: <total> } entry, so we can detect the old 
format. 

●​ For old traces, at import time append <self> to every backtrace (because the sizes are 
self sizes with respect to backtrace). This upgrades the data to the new format. 

●​ If no cumulative size is present in the data, compute it as the sum of the children. 
○​ Assumes no data is missing, which is the case for old traces. 

●​ Type info was not yet present, no need to deal with that. 
●​ Might remove this after a few releases. 

 

Appendix: Exact trace log format 
See Trace Event Format for context. In the “dumps” dictionary that is used for memory dumps, 
add a “heaps” dictionary with a key for every allocator: 
 

"dumps" { 

    "allocators": { ... }, 

    "heaps": { 

        "partition_alloc": { <see below> }, 

        "malloc": { <see below> } 

    }, 

    ... 

} 

 
Every allocator dictionary contains an array “entries” (numbers not related to table before): 
 

"malloc": { 

    "entries": [ 

        { "size": "511eb9", "bt": "" }, 

        { "size": "4fcbf1", "bt": "8" }, 

        { "size": "e398", "bt": "9" }, 

        { "size": "f06", "bt": "11" }, 

        { "size": "8c2", "type": "21" }, 

        { "size": "3a", "bt": "9", "type": "513" }, 

        ... 

    ] 

} 

 
A entry can have the following properties: 

●​ size (required): hexadecimally encoded number of bytes allocated in this context. 
Includes bytes allocated by more specific contexts. 

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU


●​ bt (required): reference to the leaf node of the backtrace in the stackFrames dictionary. 
(See stack traces format in Trace Event Format doc.) For an empty backtrace (root 
node), this is the empty string. 

●​ type (optional): reference to the type name in the typeNames dictionary. The typeNames 
dictionary is similar to stackFrames, but it does not have a hierarchical structure. When 
type is not specified, size is cumulative over all types. (When types are considered a 
tree of height 1, this is the root node.) 

 

Appendix: What to dump 
Pseudo algorithm: 

1​ Compute cumulative sizes of all nodes, across all axes.​
Example: total size is 1538. 

2​ For every axis, break down the total size.​
Example: 

○​ By type: 1538 = 698 (T) + 39 (U) + 340 (V) + 461 (W).  
○​ By backtrace:  1538 = 876 (/BrMain) + 628 (/RdMain) + 17 (/<self>) + 

17 (/ColdFn). 
3​ Sort child nodes by size, determine cutoff point. (Or perhaps select children in a smarter 

way.) Dump cumulative sizes for selected nodes.​
Example: dump types T, V, W, backtraces /BrMain, /RdMain. 

4​ Recurse on dumped nodes.​
Example: split T, V, W, by backtrace. Split /BrMain, /RdMain by backtrace and type. 

https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit#heading=h.yr703knxre9f

	Heap Dump Format 
	Recorded heap 
	What we want to see 
	Dump format 
	Appendix: Exact trace log format 
	Appendix: What to dump 

