Heap Dump Format

Authors: ruuda@, petrcermak@, primiano@

Parent doc: Heap Profiling in Memory-Infra

Problem: The heap profiler captures a lot of data, too much to dump into the trace log. How to
condense this data into a format that maximises the detail and minimises trace size?
Approach: Given what we want to see, what data do we need?

Recorded heap
What we want to see

What to dump
Appendix: Exact trace log format
Appendix: How to determine level of detail

Recorded heap

Rows represent backtraces, columns represent types.

/ 2 3 5 17
/BrMain 7 11 13 2 33
/BrMain/Init 151 5 3 83 242
/BrMain/MsgLp 307 2 281 11 601
/RdMain 3 7 17 2 29
/RdMain/RTask 211 3 5 337 556
/RdMain/FnA 2 0 7 11 20
/RdMain/FnB 13 3 2 5 23
/ColdFn 2 5 7 17
Cum / 698 39 340 461 1538
Cum /BrMain 465 18 297 96 876
Cum /RdMain 628

Cumulative cells (grey/pink) can be computed. White/yellow cells is what is recorded. Grey and
white cells are dumped, yellow/pink cells are not.


https://docs.google.com/document/d/1xMbBA0w5UunhTzZkdUfFIS63nRNjU6PP3wd2vf1_Ca8

What we want to see

Small values and long tails are not interesting, to save space, merge those into <other>. We do
want to break down large values. Blue is by backtrace, red is by type.

/ 1538 / 1538
BrMain 876 T 698
Init 242 BrMain 465
T 151 Init 151
W 83 MsgLp 307
<other> 8 <other> 7
MsglLp 601 RdMain
T 307 RTask 211
Vv 281 <other> 18
<other> 13 <other> 4
<other> 33 Vv 340
T 465 BrMain 297
Init 151 MsgLp 281
MsgLp 307 <other> 16
<other> 7 <other> 43
Vv 297 W 461
MsgLp 281 BrMain 96
<other> 16 Init 83
W 96 <other> 13
Init 83 RdMain
<other> 13 RTask 337
<other> 18 <other> 18
RdMain 628 <other>
RTask 556 <other> 39
T 211
W 337
<other> 8
<other> 72
T
W
<other>
<other> 34

Bad things about this example:
e There never is a big self size (only big sizes are leaf nodes). In general, a backtrace
could have <self> and <other>. In this example, all <self> nodes are merged into
<other>.

Remarks:

e |n some cases here, <other> consists of only one element. In general, imagine a long
tail that is merged into <other> as well. Still, if <other> consists of one element, it
saves space to call it <other>, because it need not be dumped. (Parent minus sum of
children is size of <other>.)



Sizes displayed are always cumulative sizes; <self> is a node, not a different column. If
cumulative size is all there is, breaking down is obvious: it breaks down the total into
smaller parts that sum to the total. This works if you break down into types, or if you
break down into child stack frames.

This approach works for trees in any dimension. (Types are a tree of height 1.)

Dump format

Previous format:

e List of “entries”, with a size and optionally a backtrace and/or type.

e Allowed dumping self sizes (values in the white cells), as well as row sums and column
sums. Omitting a backtrace or type implies the size is the sum over all backtraces/types.
The tree structure of backtraces is ignored altogether.

When omitting values to reduce trace size, unknowns propagate up the tree, so unless
everything is dumped, it is difficult to get cumulative sizes.
Proposal:

e Keep the format, but change the meaning of size to mean cumulative size.

e Generate <self> nodes before dumping. For example, the backtrace /BrMain has size
876, the backtrace has size
There is no need to dump <other>, its size can be inferred.

Uniform treatment of different axes (backtrace and type, possibly more in the future).

Pseudo-format:

entries: [
{ size: 1538, bt: [] },
{ size: 876, bt: [BrMain] },
{ size: 628, bt: [RdMain] },
/* <other> backtrace under / is inferred: 1538 - 876 - 628 = 34. */
{ size: 698, bt: [], type: T },
{ size: 340, bt: [], type: V },
{ size: 461: bt: [], type: W },
/* <other> type for / is inferred: 1538 - 698 - 340 - 461 = 39. */
{ size: 242, bt: [BrMain, Init] },
{ size: 601, bt: [BrMain, MsglLp] },
/* <other> backtrace under /BrMain is inferred: 876 - 242 - 601 = 33. */
{ size: 151, bt: [BrMain, Init], type: T },
{ size: 83, bt: [BrMain, Init], type: W },
/* <other> type for /BrMain/Init is inferred: 242 - 151 - 83 = 8. */

1

e Omitting a type means cumulative size (root node for types). Backtrace will always be
specified explicitly.

e See appendix for details.



Backwards compatibility:

e Previous format always starts with { size: <total> } entry, so we can detect the old
format.

e For old traces, at import time append <self> to every backtrace (because the sizes are
self sizes with respect to backtrace). This upgrades the data to the new format.

e |f no cumulative size is present in the data, compute it as the sum of the children.

o Assumes no data is missing, which is the case for old traces.

Type info was not yet present, no need to deal with that.
Might remove this after a few releases.

Appendix: Exact trace log format

See Trace Event Format for context. In the “dumps” dictionary that is used for memory dumps,
add a “heaps” dictionary with a key for every allocator:

"dumps" {
"allocators": { ... },
"heaps": {

"partition_alloc": { <see below> },
"malloc": { <see below> }

}s

Every allocator dictionary contains an array “entries” (numbers not related to table before):

"malloc”: {
"entries": [

{ "size": "511eb9", "bt": "" },

{ "size": "4fcbf1i", "bt": "8" },

{ "size": "e398", "bt": "9" },

{ "size": "fo6", "bt": "11" },

{ "size": "8c2", "type": "21" },

{ "size": "3a", "bt": "9", "type": "513" },

A entry can have the following properties:
e size (required): hexadecimally encoded number of bytes allocated in this context.
Includes bytes allocated by more specific contexts.


https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU

bt (required): reference to the leaf node of the backtrace in the stackFrames dictionary.
(See stack traces format in Trace Event Format doc.) For an empty backtrace (root
node), this is the empty string.

type (optional): reference to the type name in the typeNames dictionary. The typeNames
dictionary is similar to stackFrames, but it does not have a hierarchical structure. When
type is not specified, size is cumulative over all types. (When types are considered a
tree of height 1, this is the root node.)

Appendix: What to dump

Pseudo algorithm:

1

Compute cumulative sizes of all nodes, across all axes.
Example: total size is 1538
For every axis, break down the total size.
Example:
o Bytype: 1538 = 698 (T) + 39 (U) + 340 (V) + 461 (W)
o By backtrace: 1538 = 876 (/BrMain) + 628 (/RdMain) + 17 (/<self>) +
17 (/ColdFn)
Sort child nodes by size, determine cutoff point. (Or perhaps select children in a smarter
way.) Dump cumulative sizes for selected nodes.
Example: dump types T, V, W, backtraces /BrMain, /RdMain
Recurse on dumped nodes.
Example: split T, V, W, by backtrace. Split /BrMain, /RdMain by backtrace and type.


https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/edit#heading=h.yr703knxre9f

	Heap Dump Format 
	Recorded heap 
	What we want to see 
	Dump format 
	Appendix: Exact trace log format 
	Appendix: What to dump 

