

No:-

Date:-

CSXX1924

Distributed and Parallel Computing

L-T-P-Cr: 3-0-0-3

Pre-requisites: Computer Programming, OOPS, Database Management Systems, Computer Networks

Objectives:

- Learn architecture, algorithms and computational models used in Distributed, Cloud and parallel systems.
- Understanding of various trade-offs involved in system design and performance analysis
- Understand various libraries for Distributed, Parallel and cloud computing platforms using various case studies.

Course Outcomes:

At the end of the course, a student should have:

Sl. No.	Outcome	Program Outcome
1.	Learn architecture, algorithms and computational models used in Distributed, Cloud and parallel systems.	PO1, PO2, PO12
2.	Understanding of various trade-offs involved in system design and performance analysis.	PO3, PO4, PO12
3.	Understand various libraries for Distributed, Parallel and cloud computing platforms using various case studies.	PO5, PO3, PO12

Unit 1: Overview of C, UNIX and UNIX system calls.

2 Lectures

Unit 2: Introduction: Definition of a distributed system, goals, hardware concepts, software concepts, the client-server model.

6 Lectures

Unit 3: Communication: Layered Protocols, Remote Procedure Call, Remote Object Invocation, Message-Oriented and Stream-Oriented Communication.

6 Lectures

Unit 4: Processes: Threads, Servers, Code Migration and Software Agents.

4 Lectures

Unit 5: Naming: Naming Entities, Locating Mobile Entities, Removing Unreferenced Entities.

4 Lectures

Unit 6: Synchronization: Clock Synchronization, Logical Clocks and Election Algorithms.

6 Lectures

Unit 7: Parallel Computing: Parallel Computer memory architectures, Programming Models, Shared memory model, Flynn's Programming model, Pipeline computations. Automatic vs Manual Parallelization, Data dependencies, Load balancing.

8 Lectures

Unit 8: Cloud Computing: Cloud Computing Models, Web Application Framework, Cloud Web Services, Service Oriented Architectures towards Cloud Computing.

6 Lectures

Text Books:

1. Distributed Systems: Principles and Paradigms, Andrew Tanenbaum and Maarten van Steen, Prentice Hall.
2. Distributed Systems: Concepts and Design, George Coulouris, Jean Dollimore, and Tim Kindberg