

UNIVERSITY OF MITROVICA "ISA BOLETINI"

Course Curriculum Model (Syllabus)				
Fakulty:	Faculty of Mechanical and Computer Engineering			
Department:	Computer Science and Engineering			
Level:	VI			
Code of the course:	201-CSE			
Course:	COMPUTING II			
Course Status:	Obligatory	(mandatory)		
Semester:	III	(autumn)		
Number of hours per	3+2			
week:				
ECTS:	6			
Time / location:				
Year of studies:	II			
Lecturer:	Prof. Ass. Dr. Muzfer Shala			
Assistent:	MSc. Agon Bajgora			
Contact details:	Lecturer	Assistant		
Email:	muzafer.shala@umib.net	agon.bajgora@umib.net		
Telefon:	+38349441338	+38345188550		

	On this course about C# Programming student will continue with the most complicated concepts of the		
Content	basics of programming, where more specifically are reviewed: data structures and implementation with C#		
	and in the .NET platform. Further we look into linear data structures and their implementation in .NET		
	Framework, list structures, linked list, dynamic self-stretching array, stack, tail, deck, trees, binary trees,		
	balanced trees, black and red trees, B-trees, graphs, oriented, disoriented and weighed graphs. The study of		
	the classic algorithms for crawling tree-like structure data will be done: breadth first search (BFS),		
	depth-first search (DFS) and some algorithms on graphs. Then we review the data structure dictionary,		
	associative array and multitude and their implementations in .NET. The special attention will be payed to		
	the hashtables and their implementations, we study some algorithms for hashing, resolving collisions and		
	some specifics with hashtables in .NET and C#. Will be done the comparison of the basic data structures in		
	programming and analyze their effectiveness in terms of basic operations such as searching, inserting,		
	deleting, etc. We look into important concepts of object-oriented programming such as abstraction,		
	encapsulation, inheritance and polymorphism. To the students are given the recommendations for writing		
	quality programming code and for effective programming problem solving with focus on testing all		
	possible scenarios, coming from the problem.		
Purpose	Intermediate problem solving and computer programming concepts, including algorithmic strategies,		
	recursion, and effective design and use of data structures and application programming interfaces (APIs)		

Accessibi lity

Upon successful completion of this course, students will:

- 1. Identify and explain a programming development lifecycle, including planning, analysis, design, development, and maintenance.
- 2. Demonstrate a basic understanding of object-oriented programming by using structures and classes in software projects.
- 3. Use object-oriented programming techniques to develop executable programs that include elements such as inheritance and polymorphism.
- 4. Document and format code in a consistent manner.
- 5. Apply basic searching and sorting algorithms in software design.
- 6. Apply single- and multi-dimensional arrays in software.
- 7. Use a symbolic debugger to find and fix runtime and logical errors in software.
- 8. Demonstrate a basic understanding of programming methodologies, including object oriented, structured, and procedural programming.

9. Describe the phases of program translation from source code to executable code

Program

weeks	Lecture	
First week:	Course Introduction	
Second week:	veek: Linear Data Structures	
Third week:	Trees	
Fourth week:	Graphs	
Fifth week:	Dictionaries, Hash-Tables and Sets	
Sixth week:	Data Structures and Algorithm Complexity	
Seventh week:	Object-Oriented Programming Principles	
Eighth week:	Object-Oriented Programming Principles	
Ninth week:	High-Quality Programming Code	
Tenth week:	Lambda Expressions and LINQ	
Eleventh week:	Methodology of Problem Solving	
Twelfth week:	Sample Programming Exam – Topic #1	
Thirteenth week:	Sample Programming Exam – Topic #2	
Fourteenth week:	Sample Programming Exam – Topic #3	
Fifteenth week :	Projects review	

Literatu **Principal literature:** Fundamentals of Computer Programming with C#: Object-Oriented Programming, Data Structures, re by Svetlin Nakov, Vesselin Kolev, Nakov's Team **Recommended Literature:** Teaching Lecture Flipped classroom methodo Discussion logy Group work Exercises Homework Real world projects Contribution to student workload (which should correspond to student learning outcomes - 1 ECTS credit = 25 hours) **Activity Hours** Days/weeks Total Lectures 3 15 45 1 Exercise sessions (with TA) 15 15 Practical work 1 15 15 Office hours 0 0 0 Fieldwork 0 0 0 Midterms, seminars 0 0 0 2 Homework 15 30 Self-study 1 15 15 Final exam preparation 1 15 15 Time spent in exams 2 2 4 11 Projects, presentations, etc 11 Total 150 Evaluati on **Teaching methodology:** (according to the Statute and Regulation for studies of UMIB) Tests / Colloquia Practical test during exercises 30% 20% **Projects** Work in the classroom 20% 30% Final exam

(Name Surname)
(Signature)