Database Connection Pool

1. psycopg (database adapter):

The psycopg connection pool changes, but only slightly, the business of obtaining a
connection, compared to not using the pool. We still need to return connections to the pool,
otherwise (if you call getconn more times than putconn) we will empty it.

Regarding the implementation of pooling in databases. | approached the maintainer of the
psycopg. And he said that a good 90% of the pool code is independent of psycopg and from
postgres. As such we can start from the psycopg pool implementations and move most of
the implementation to a base class, while leaving subclasses to deal with the different
databases.

But there is a concern as well with psycopg, it's a database adapter and Django
implementation would be an ORM one and it makes little difference on the API design level.
Django connections wrap psycopg connections, then the ORM builds on top of them. | think
that there is only a minimal place where to create a psycopg connection in a different way
(from the pool rather than from scratch) and the rest should remain pretty unchanged.

Although maybe, if we create a pool of Django connections, then we might not even need to
have different subclasses per different backend. If the DB API connection and the Django
connection wrapping it are tightly paired. A way to implement it would still be to take the
psycopg pool code and adapt it where necessary.

2. Peewee ORM:

Peewee ORM has a pool implementation, but | have not seen any async version of it. The
pool implementation had some psycopg2 imports which were mostly to check the possible
status of a transaction.

try:
from psycopg2.extensions import TRANSACTION_STATUS_IDLE
from psycopg?2.extensions import TRANSACTION_STATUS_ INERROR
from psycopg?2.extensions import TRANSACTION_STATUS_UNKNOWN
except ImportError:
TRANSACTION_STATUS_IDLE =\
TRANSACTION_STATUS_INERROR =\
TRANSACTION_STATUS_UNKNOWN = None

They had another import as well:

import heapq

| had talked with the maintainer of peewee to ask if it is possible to wrap Django around the
peewee pool implementation. The maintainer said there's no chance of integrating the two,
especially because asgi and async don't provide a notion of a context local, which was
doubtful. We can use the contextvars module to address that issue. (this is a kind of race
condition issue) And | guess there are other ways to make the threads safe. And it might
work if we can emulate what peewee does with thread locals. Peewee ORM implementation
has an advantage and a disadvantage. The advantage is that it has a common component
with Django, it has thread locals for its connection pools, and Django's built-in connection
pooler relies on thread-local storage. The disadvantage is that thread-local storage does not
work well with asynchronous code.

Peewee can still be worked around. But | still think that we should use the contextvars
module over thread local storage because the main difference is the variables are
isolated per context rather than per thread, where the context is either per thread or
per asyncio Task.

Peewee ORM has different classes for each database implementation. We can implement
that on the API design level and then we need to create an "asynchronous pool class’, which
could be achieved with the help of psycopg's AsyncConnectionPool

The "asynchronous pool class’ can be assigned as a main class and then we can mix
individual database class with the “asynchronous pool class’:

> class AsyncPooledPostgresqglDatabase = AsyncPooledDatabase + PostgresqlDatabase

3. Pgbouncer(Pooling Middleware):

pgbouncer is a lightweight connection pooler for PostgreSQL that can be used to improve
the performance and scalability of PostgreSQL database connections. When using Django
with ASGI, persistent database connections can be a challenge since ASGl is an
asynchronous framework and Django's built-in connection pooler, which relies on
thread-local storage, does not work well with asynchronous code. To use pgbouncer with
Django's persistent database connections under ASGI, we need to configure Django to use
a custom database backend that supports pgbouncer. One such backend is the
django-db-pool package, which provides a custom backend that can be used with
pgbouncer.

i) We need to install the package:

pip install django-db-pool

ii) Next, we need to update our Django settings to use the "dbpool.postgrespool” backend
instead of the default “django.db.backends.postgresql” backend:

DATABASES = {
'default; {

https://www.psycopg.org/psycopg3/docs/api/pool.html#psycopg_pool.AsyncConnectionPool
https://github.com/gmcguire/django-db-pool

'ENGINE": 'dbpool.postgrespool’,
'NAME": 'your_database _name’,
'USER'": 'your_database_user’,
'PASSWORD': 'your_database_password',
'HOST": 'your_database_host',
'PORT": 'your_database_port',
'OPTIONS": {
‘connection_pool_class": 'pgbouncer.pool.PooledConnection’,
'max_overflow'": 10,
'pool_size'": 5,
'pool_timeout": 30,

In the above code, the "OPTIONS" dictionary contains the configuration options for
“django-db-pool’. The “connection_pool_class’ option specifies that we want to use
‘PooledConnection’ from the “pgbouncer’ package as the connection pool implementation.
The "max_overflow™ option specifies the maximum number of connections that can be
created beyond the pool size, and the “pool_size™ option specifies the number of
connections that should be kept in the pool. The “pool_timeout™ option specifies the number
of seconds a connection can be idle before it is closed and removed from the pool.

Once we have configured Django to use django-db-pool, we can use Django's persistent
database connections as usual. The connection pooler will manage the connections to
PostgreSQL and ensure that they are properly reused and released, improving the
performance and scalability of your application. But there are some difficulties around this
implementation. The author of “django-db-pool’ has specifically mentioned that code has
not been rigorously tested in high-volume production systems.

The package is dependent on a few things, connection pooling is implemented by thinly
wrapping a psycopg2 connection object with a pool-aware class. The actual pool
implementation is psycop2g's built-in ThreadedConnectionPool, which handles thread safety
for the pool instance.

But | think to use pgbouncer with Django's persistent database connections under ASGI, we
need to configure Django to use a custom backend that supports pgbouncer.

4. SQLAIchemy (Database toolkit for python):

SQLAIchemy has a more advanced database connection pooling implementation. Django
ORM and SQLAIchemy are both Object Relational Mappers (ORMs) that provide
abstractions for working with relational databases. However, they have different design goals
and implementation details, so they cannot be simply wrapped around each other.

That being said, Django 3.1 introduced support for ASGI (Asynchronous Server Gateway
Interface) through the ASGI application instance, which is responsible for asynchronously

https://github.com/gmcguire/django-db-pool

handling HTTP requests and responses. To use ASGI with Django, we need to use an ASGI
server such as Daphne, Uvicorn or Hypercorn, and an ASGI middleware that can handle
Django's database connections asynchronously.

Another similar approach could be to use an asynchronous database library like
SQLAIchemy Core. SQLAIchemy Core provides an async API that allows for non-blocking
database access, which is better suited for ASGI.

To use SQLAIchemy with Django, we can create a custom database backend that uses
SQLAIchemy as the underlying database driver.

1. We need to install some requirements:

pip install sglalchemy databases

2. Create a custom database backend in Django that uses SQLAIchemy:

from django.db.backends.base.base import BaseDatabaseWrapper
from databases import DatabaseURL
from sqglalchemy import create_engine

class AsyncSQLAIchemyDatabaseWrapper(BaseDatabaseWrapper):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.database url = DatabaseURL(self.settings_dictNAME")
self.engine = create_engine(str(self.database_url))

def get_new_connection(self, conn_params):
return self.engine.connect()

def init_connection_state(self):
pass

def create_cursor(self, name=None):
return self.connection

def _close(self):
self.connection.close()

3. Configure Django to use the custom database backend by updating the 'DATABASES®
setting in your “settings.py’ file:

DATABASES = {
'default': {
'ENGINE": 'path.to.AsyncSQLAIchemyDatabaseWrapper',
'NAME'": 'your_database_name',

}

There are some packages that | have seen that use SQLAIchemy to implement the same,
1. django-db-connection-pool
2. diango-dbpool-backend

3. django-postgrespool

What is the issue with the persistent database connections under
ASGI?

The issue could be traced down to the AsyncToSync function, when a thread already has a
running async loop, AsyncToSync can’t run things on that loop if it's blocked on
synchronous code that is always above you in the call stack. According to the documentation
of ASGl, the only real solution is to have a variant of ThreadPoolExecutor that executes
any thread_sensitive code on the outermost synchronous thread - either the main thread
or a single spawned subthread. And if the outermost layer of the program is synchronous,
then all async code run through AsyncToSync will run in a per-call event loop in arbitrary
subthreads, while all thread_sensitive code will run in the main thread. Now my conclusion
would be that there is a per-call event loop, there are many connections to the database
through async code and it is not possible for async code to maintain persistent connections.

Summary

Django’s persistent database connections rely on the underlying database driver to manage
the connection pool. When using ASGI, the database driver needs to support asynchronous
I/0, and Django needs to use an ASGI-compliant database backend.

Thanks,

Kaushik

https://github.com/altairbow/django-db-connection-pool
https://github.com/jinzo/django-dbpool-backend
https://github.com/lcd1232/django-postgrespool2
https://github.com/django/asgiref#:~:text=AsyncToSync%20lets%20a%20synchronous%20subthread%20stop%20and%20wait%20while%20the%20async%20function%20is%20called%20on%20the%20main%20thread%27s%20event%20loop%2C%20and%20then%20control%20is%20returned%20to%20the%20thread%20when%20the%20async%20function%20is%20finished.

	Database Connection Pool

