

X11 PlatformEvent Migration
This Document is Public

Authors: nickdiego@igalia.com
Contributors: nickdiego@igalia.com

Reviewed by: rjkroege@chromium.org, sadrul@chromium.org
Revision number: 1

Last Updated: 2019-09-04

Summary

This document contains research notes about X11 PlatformEvent Migration - which is a
sub-task of larger X11 Migration to Ozone. Such transition involves, among other things,
getting rid of major differences in Ozone and non-Ozone X11 ports; PlatformEvent is one of
those fundamental differences. So, the goal of this task is to refactor Aura/X11 to redefine
PlatformEvent as the same type used in Ozone (currently ui::Event*).

Platforms
Linux

Team
Igalia team: msisov@igalia.com nickdiego@igalia.com adunaev@igalia.com

Launch bug
965991

mailto:nickdiego@igalia.com
mailto:nickdiego@igalia.com
mailto:rjkroege@chromium.org
mailto:sadrul@chromium.org
https://docs.google.com/document/d/1oFm6-FI1NyBf9cNGGv9pNWAt8dxybIbeK5DZP1Qu2Zs/edit#heading=h.5ugemo7p04z9
mailto:msisov@igalia.com
mailto:nickdiego@igalia.com
mailto:adunaev@igalia.com
http://crbug.com/965991

Analysis
After analysing current PlatformEvent usage in Aura/X11, the task may be broken down as
follows:

●​ Refactor PlatformEventDispatcher implementations to handle ui::Event
(basically DesktopWindowTreeHostX11);

●​ Convert old PlatformEventDispatcher implementations which deal with
X11-specific events into XEventDispatchers instead;

●​ Cleanup ui::XWindow events processing;
●​ Figure out and implement missing features in X11EventSource as well as on

X11EventSourceDefault delegate impl
■​ Make XEvent => ui::Event translation code re-usable (so that tests can use

it instead of ui::*Event native event ctors);
■​ Make it possible to observe and override XEventDispatchers

●​ Switch Aura/X11 to X11EventSourceDefault x11 event source delegate
implementation

●​ Fix tests

Status
An exploratory migration CL has been started as proof-of-concept of the above analysis as
well as a way to identify possible unforeseen issues. Some preliminary fixes/CLs have been
landed as well as missing features and issues have been found.

Open issues

Below these issues are listed and detailed so that proper solutions can be proposed and
discussed.

Native Event

ui::Event and its derived classes have constructors taking a native event as input (i.e:
PlatformEvent). Platform-specific information is then extracted from that native event
and converted into that Event’s counterparts and that PlatformEvent instance is made
available to other components through the Event::native_event() method. Most ports
(e.g: Aura/X11, Aura/Windows, CrOS) currently use this method to access native event
specific info, i.e: Aura/X11 uses it to check some XEvent flags to decide what to do in certain
situations.

https://chromium-review.googlesource.com/c/chromium/src/+/1747274/27
https://chromium-review.googlesource.com/c/chromium/src/+/1760426
https://chromium-review.googlesource.com/c/chromium/src/+/1779280

In Ozone Event::native_event() returns a ui::Event* (PlatformEvent definition here),
which does not provide any way to retrieve the real native event object (e.g: XEvent* for
X11), so the issue here is to figure out what should be done when XEvent (or other native
raw events, e.g: MSG in Ozone/Windows, etc) info access is required in Ozone or in this case
where Aura/X11 is being migrated to use the same PlatformEvent as Ozone.

To better understand the issue, all the Event::native_event() references in the code base
are listed below, grouped by platform:

Aura/X11

1.​ GtkUi: KeyEvent => GdkEvent translation (here) => Already has a non-USE_X11 ifdef (fixed)
2.​ Helper code here and here, mostly unused? => Dead code, remove it.
3.​ Lazily Extract DomKey at KeyEvent (here)
4.​ ui::Event => WebInputEvent conversion (here)
5.​ Several parts of ui::Event implementation, especially in *Event initialization

CrOS
1.​ Aura: WindowTargeter::FindTargetForLocatedEvent() (here)
2.​ Ash: ExtendedMouseWarpController::WarpMouseCursor() (here)
3.​ Ash: UnifiedMouseWarpController::WarpMouseCursor() (here)

Windows
1.​ Several parts of WebInputEvent conversion code (e.g: this one)
2.​ ui::KeyEvent construction code (e.g: here)
3.​ ...

Possible solutions

1.​ Get rid of all Event::native_event() usages
a.​ Feasible for X11? Could cause regressions?

2.​ Refactor Ozone, creating a real PlatformEvent (something like OzoneEvent, which
could be extended? by each ozone backend exposing platform-specific metadata)

a.​ Suggested by sky@ at crrev.com/c/1757487
b.​ Large change?

3.​ Extend ui::Event API to store/expose native event as a runtime rather than
compile-time defined Event::native_event() API (similar to runtime properties
used in Aura/Views code)

a.​ Proof of concept at crrev.com/c/1757487

https://cs.chromium.org/chromium/src/ui/events/platform_event.h?l=30&rcl=d2539b49b3e7af7af32cb17d1b7d636ad1f7ce77
https://cs.chromium.org/chromium/src/chrome/browser/ui/libgtkui/gtk_key_bindings_handler.cc?l=159&rcl=583f206b3d724e5560f7a1ba1527dcd8af571609
https://cs.chromium.org/chromium/src/chrome/browser/ui/libgtkui/gtk_key_bindings_handler.cc?l=179-187&rcl=583f206b3d724e5560f7a1ba1527dcd8af571609
https://cs.chromium.org/chromium/src/ui/events/x/events_x.cc?l=174&rcl=a8e4940de44338f6cbe592b149fec6b0768e4980
https://cs.chromium.org/chromium/src/ui/events/x/events_x.cc?l=200&rcl=a8e4940de44338f6cbe592b149fec6b0768e4980
https://chromium-review.googlesource.com/c/chromium/src/+/1785182
https://cs.chromium.org/chromium/src/ui/events/event.cc?targetos=linux&g=0&l=992
https://cs.chromium.org/chromium/src/ui/events/blink/web_input_event.cc?targetos=linux&g=0&l=396-407
https://cs.chromium.org/chromium/src/ui/aura/window_targeter.cc?l=226-242&rcl=fc8c600021685b619d1e3b5d9de9789d56154b78
https://cs.chromium.org/chromium/src/ash/display/extended_mouse_warp_controller.cc?l=151-152&rcl=77143a09e3f3a6762156a282499b0de4d2399ae6
https://cs.chromium.org/chromium/src/ash/display/unified_mouse_warp_controller.cc?l=79-82&rcl=583f206b3d724e5560f7a1ba1527dcd8af571609
https://cs.chromium.org/chromium/src/ui/events/blink/web_input_event.cc?l=322-345&rcl=327438427b99771066c21c7c9bff4e6aefcc3dc3
https://cs.chromium.org/chromium/src/ui/events/event.cc?l=848-853&rcl=670989a4d049026ff138337738e317621c4b5bef
http://crrev.com/c/1757487
http://crrev.com/c/1757487

4.​ Other suggestions? rjk@ sadrul@
5.​ Have the native_event() be null on ozone/drm (break the CrOS points above.) Then

native_event() can be used only for a “native event that’s not the ui::Event”. So it can
be !null with ozone/x11 or ozone/wayland or ozone/win etc.

6.​ Make ui::Event be immutable but able to wrap another ui::Event. So methods like
Event::set_location() would become const Event& Event::MakeWithLocation().

Chosen solution

As per sadrul@’s suggestion, a variant of approach 1 has been selected, which consists of
getting rid of Event::native_event() usage in Aura/X11 code only (at least for now).
Below are listed the changes needed to achieve it:

1.1.​ Validate and fix up missing bits of GtkUi code that converts ui::KeyEvent =>
GdkEvent so that it does not require native_event()/XEvent anymore;
Status: Merged

a.​ GdkEventKey::group is currently not set (as noted by sadrul@) which
possibly affects kbd layout handling; fix it up.
Solution adopted: to pass it through Event::Properties API if it’s really needed?

1.2.​ Reuse (if possible) fixup 1 for KeyEvent=>GdkEventKey in X11/Gtk
InputMethodContext impl
Status: Merged

a.​ GdkEventKey::window is currently not accessible through ui::Event API.
Solution adopted: set Event::target() as the root aura::Window to which that event
is targeted. Some modifications at Aura level were necessary, mainly because
InputMethod::DispatchKeyEvent() is called in PRE_DISPATCH event processing
phase.

b.​ Use gdk_keymap_translate_keyboard_state() to get keyval as in fixup 1 ?

1.3.​ Factor DOM Key extraction logic out of ui::KeyEvent into platform code
Status: Merged

a.​ It would not happen “lazily” anymore? Where to move it into exactly?
X11Window? X11EventSource? Figure it out.

https://crrev.com/c/1789603
https://cs.chromium.org/chromium/src/chrome/browser/ui/libgtkui/x11_input_method_context_impl_gtk.cc?l=191-273&rcl=323726c628efb5efbdd86fabbc22f0e3aa7a49e7
https://crrev.com/c/1789603
https://developer.gnome.org/gdk3/stable/gdk3-Keyboard-Handling.html#gdk-keymap-translate-keyboard-state
https://crrev.com/c/1813417

1.4.​ Get rid of XEvent usage in ui::MouseEvent => WebMouseEvent
Status: Merged

a.​ Fix it at X11Window/X11EventSource level / at event translation time (in
Ozone)? Use Event::Properties to pass that flag?

1.5.​ Refactor ui::*Event initialization code which uses native_event() to use local
object/pointer instead of native_event() function;
Status: CL 1 (Merged) | CL 2 (Merged)

1.6.​ Fix regressions;

Follow-up tasks

1.​ After getting 1.1 and 1.2 it was possible to use libgtkui to support IME in Ozone/X11 (as
it does not use XEvent directly anymore. Merged.

2.​ Move InputMethodContext implementation out of GtkUi into lower level layer
(closer/into platform code). E.g: //ui/base, //ui/ozone/platform/** ?

a.​ Perhaps postpone this until X11 is fully migrated to Ozone?
b.​ While there’s Aura/X11 and Ozone/X11 it should be somewhere in //ui/base ?

https://crrev.com/c/1813857
https://crrev.com/c/1816777
https://crrev.com/c/1816779
https://crrev.com/c/1798263

	X11 PlatformEvent Migration
	Analysis
	Status
	Open issues
	Native Event
	Aura/X11
	CrOS
	Windows
	Possible solutions
	Chosen solution
	
	Follow-up tasks

