
Part I

Here is the pickcode to start. There is a new class -
TestBankAccounts which I created for you to test
some new methods out. You will need to uncomment
lines in Main and TestBankAccounts for testing
purposes.

1.​ Together we are going to add an acct number
that every account has, it will increment one
after the other. Create a static method
getNumOfAccounts

2.​ Suppose the bank wants to keep track of how much money is in all
BankAccounts. In BankAccount:

○​ Declare a private static variable to represent this sum.
○​ Add code to the constructor and necessary methods(deposit...) that will

manage this variable.
○​ Add a static method public static double getTotalMoney that returns the

total amount of money in all BankAccounts. Think about why this method
should be static – its information is not related to any particular
BankAccount.

○​ Test this by uncommenting a line in printInfo of TestBankAccounts

3.​ Add a method public void close() to your BankAccount class. This method should
close the current BankAccount by appending (means adding to end) “CLOSED”
to the BankAccount name and setting the balance to 0. (The BankAccount
number should remain unchanged.) This is going to affect how much money the
bank has. Deal with this.

○​ Test this by uncommenting line in Main and also testCloseAccount of
TestBankAccounts

4.​ Add a method: public static BankAccount consolidate(BankAccountacct1,BankAccountacct2)
to your BankAccount class that creates a new BankAccount object whose

https://app.pickcode.io/lesson/bankaccounts2-lesson-cm6aylo412cn6hl71ks9ogj2y-2025-03-07-11-25-36

balance is the sum of the balances in acct1 and acct2 and closes acct1 and
acct2. The new BankAccount should be returned. Two important rules of
consolidation:

○​ Create getter methods in BankAccount - getName, getAcctNum,
getBalance

○​ header would look like: public static BankAccount consolidate(BankAccount acct1, BankAccount acct2)

○​ Only BankAccounts with the same name can be consolidated. The new
BankAccount gets the name on the old BankAccounts but a new
BankAccount number. The new interest rate is 0.

○​ Two BankAccounts with the same number cannot be consolidated.
Otherwise this would be an easy way to double your money! Return null if
they cant do it.

○​ So if they can be consolidated:
i.​ Find total in both accounts double total =...
ii.​ Find name of either account; String name=...
iii.​Close old accounts
iv.​Create new account with name and total (and interest of 0) -> ie:

BankAccount combined=new BankAccount(___, ___)
v.​ Return that BankAccount

○​ To test, uncomment in main and bank account

Check these conditions before creating the new BankAccount. If either condition fails,
do not create the new BankAccount or close the old ones; print a useful message and
return null.

Part II Transfering funds

5.​ Add a method public boolean transfer(BankAccount receivingAcct, double amount) to
the BankAccount class that allows the user to transfer funds from one bank
BankAccount to another. If you call acct1.transfer(receivingAcct,957.80) should transfer
$957.80 from acct1 to receivingAcct. Be sure to clearly document which way the
transfer goes!

○​ Test this out
6.​ Add a static method to the BankAccount class that lets the user transfer money

between two BankAccounts without going through either BankAccount. You can
(and should) call the method transfer just like the other one – you are overloading
this method. Your new method should take two BankAccount objects and an

amount and transfer the amount from the first BankAccount to the second
BankAccount. The signature will look like this:​
​ public static boolean transfer(BankAccount sendingAcct, BankAccount receivingAcct, double amount)Test this​

These are some headers below for BankAccount:

public static BankAccount consolidate(BankAccount acctOne, BankAccount

acctTwo) {

​ ​ // TODO Auto-generated method stub

​ ​ return null;

​ }

​ public boolean transfer(BankAccount receivingAcct, double amount)

​ {

​ ​ // TODO Auto-generated method stub

​ ​

​ }

​ public static boolean transfer(BankAccount sendingAcct, BankAccount

receivingAcct, double amount)

​ {

​ ​ // TODO Auto-generated method stub

​ ​

​ }

Exceeds

Start with this Bank class. This class will be an interface for bank workers. When the
constructor is called print out a menu of choices for the user. Those choices

●​ a. create new account
●​ b. select individual account
●​ c. consolidate accounts (this will only work if there are atleast 2 accounts and you

have one free)
●​ d. transfer funds
●​ e. list open accounts
●​ f. list bank info

https://docs.google.com/document/d/14nrWuhYcPotnsBl_GQwF-fWhLASxFUvrL05KhLVNY0Y/edit

●​ g. exit

If b is chosen

●​ a. make deposit
●​ b. make withdrawl
●​ c. close
●​ d. exit to main menu

Have the ability to have at least 3 accounts.

