Semester Mixed Stoichiometry Practice

Chemistry

Date _____ Hour ____

The following set of questions is a mix of the different types of stoichiometry problems that we have encountered throughout the second semester. This includes the following types of stoichiometry problems:

Standard Stoichiometry

Solutions

Limiting Reactants

Gases

Thermochemical Equations

You may use any of the following formulas or conversion factors to solve these problems on a separate sheet of paper:

$$1 \text{ mol } X = MMg X$$

$$M = \frac{moles\ of\ solute}{Lites\ of\ solution}$$

$$Celsius + 273 =$$

Kelvin

MM = molar mass on the periodic table

1 mol
$$X = 6.02x10^{23}$$
 particles X

$$PV = nRT$$

$$R = 0.082 \frac{L^*atm}{K^*mol}$$

Particles = atoms, ions, formula units, or molecules

mol X : # mol Y

mol X : ## kilojoules of heat

is the coefficient from the original chemical equation

is the coefficient from the original chemical equation
is the amount of heat energy from the original chem equation.

1. When ethanol (C₂H₅OH) is burned, it reacts with oxygen (O₂). It also releases 1,369 kJ of heat energy to the surroundings and produces CO₂ gas and H₂O gas.

$$C_2H_5OH(1) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$$

- a. Calculate how much heat energy (in kJ) is released when 12.5 moles of ethanol burns.
- -17,100 kJ
- b. Calculate how many moles of carbon dioxide are produced if 787 kJ of heat energy are produced.

 1.15 mol CO,
- c. Calculate how much heat energy (in kJ) is released when 124.7 grams of oxygen are reacted. -1778 kJ
- 2. A combination reaction occurs between solid magnesium metal (Mg) and diatomic oxygen gas (O₂). Solid magnesium oxide (MgO) is produced.

$$2~Mg_{~(s~)} + ~O_{2~(g)} \, \rightarrow \, 2~MgO_{~(s)}$$

- a. 17.54 moles of solid magnesium reacts completely with excess oxygen gas. Complete a BCA table.
- b. Using your BCA table and dimensional analysis, calculate the **grams** of MgO produced.

707.0 grams MgO

3. Aqueous solutions of sulfuric acid and sodium hydroxide undergo a double-replacement reaction to form aqueous sodium sulfate and liquid water.

$$H_2SO_{4(aa)} + 2 NaOH_{(aa)} \rightarrow Na_2SO_{4(aa)} + 2 H_2O_{(l)}$$

a. Complete the BCA table when 55.89 g of Na₂SO₄ is **produced** by this reaction. Remember BCA tables can only contain moles!

0.3935 mol Na₂SO₄

b. Calculate the number of molecules of NaOH that reacted.

4.738 x 1023 molecules NaOH

4. Dicarbon octohydride (C_2H_8) combusts completely with excess oxygen (O_2) to form carbon dioxide (CO_2) & water (H_2O) .

$$\mathrm{C_2H_8}_{(\mathrm{g})} + 4~\mathrm{O_2}_{(\mathrm{g})} \longrightarrow 2~\mathrm{CO_2}_{(\mathrm{g})} + 4\mathrm{H_2O}_{(\mathrm{g})}$$

a. How many particles of CO₂ are produced if 3 moles of C₂H₈ undergo complete combustion. Complete a BCA table.

5. 10.6g of Li and 3.83g of N_2 react to form Li₃N.

$$6 Li + N_2 \rightarrow 2 Li_3N$$

a. What is the maximum amount of moles of lithium nitride that can be made?

0.274 moles of Li₃N

b. What is the maximum amount of <u>molecules</u> of lithium nitride that can be made?

1.65x10²³ molecules Li₃N

- c. What is the limiting reactant?
- d. How many moles of limiting reactant are used?

 $0.137 \text{ moles } N_2$

e. How many <u>particles</u> of limiting reactant are used?

 $8.25x10^{22}$ molecules N_2

- f. What is the excess reactant?
- g. How much excess reactant remains in moles?

0.708 moles of $L\dot{t}$

h. How much excess reactant remains in grams?

4.91 grams of Li

6. Calcium nitrate (Ca(NO₃)₂) and sodium phosphate (Na₃PO₄) undergo a double-replacement reaction according to the following balanced equation:

$$3 \; Ca(NO_3)_{2 \, (aq)} + 2 \; Na_3 PO_{4(aq)} \, \rightarrow Ca_3(PO_4)_{2(s)} + 6 \; NaNO_{3(aq)}$$

- a. Suppose 2.75 L of 0.325M Ca(NO₃)₂ reacts completely with all of the Na₃PO₄. Complete a BCA table.
- b. How many grams of the precipitate will be produced in this reaction?

 $92.4 \text{ g } Ca_3(PO_4)_2$

- c. If the final product contains 3.50L of aqueous NaNO₃, what is the molarity of the NaNO₃ solution?
- d. If the scientist was using $0.575M \text{ Ca}(\text{NO}_3)_2$ instead, what volume, in liters, would be necessary to produce the same amount of $\text{Ca}_3(\text{PO}_4)_2$ that you calculated in your BCA table.

 1.55 L Ca(NO_3)_2
- 6. Potassium chlorate decomposes into potassium chloride and oxygen gas, according to the following chemical equation:

$$2 \text{ KClO}_3(s) \rightarrow 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$$

- a. What mass of potassium chlorate reacted in order to produce 3.90 L of O2 gas at 23.8°C and 0.997 atm?
- 7. A hydrocarbon, C₂H₂, combusts according to the following chemical equation:

$$2 C_2 H_{2(g)} + 5 O_{2(g)} \rightarrow 2 H_2 O_{(g)} + 4 CO_{2(g)}$$
 (760 mmHg = 1 atm)

- a. How many grams of C_2H_2 are needed to produce 26.5 liters of carbon dioxide gas at 40.0°C and 788 mmHg?
- 8. Nitrogen monoxide gas and liquid water can be reacted to form oxygen gas and ammonia. In the process, 1170 kJ of heat energy are gained.

$$1170 \text{ kJ} + 4 \text{ NO(g)} + 6 \text{ H}_2\text{O(l)} \rightarrow 4 \text{ NH}_3(g) + 5 \text{ O}_2(g)$$

a. Calculate how much heat energy (in kJ) is needed to produce 7.6 moles of ammonia.

2200 kJ

b. Calculate the amount of heat energy required (in kJ) to react 78.98 g of nitrogen monoxide gas.

770. kJ

c. CHALLENGE Use dimensional analysis to calculate how many kilograms of water vapor are needed to absorb 15,980 J of heat energy. Remember: 1000 g = 1 kg and 1000 J = 1 kJ 0.001476 kg