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How LLMs Work 

Large Language Models (LLMs) are optimised to predict the next token. They calculate the 
probability distribution for the next token in a given sequence, apply 
temperature-based sampling to control randomness, and select one token from this 
distribution. LLMs are autoregressive, meaning that each generated token becomes part of 
the context for predicting the next token. This creates a cascading effect where early 
choices shape all subsequent generations. While the generation process is sequential, the 
models use parallel attention mechanisms to process relationships between all tokens in 
their context window simultaneously. This fixed-size memory buffer limits the amount of 
prior text that can be considered. The result is like a butterfly effect: selecting “The king” 
versus “The peasant” as the opening words leads to different narratives, with each choice 
constraining what can plausibly follow.1 

Scaling 

Increasing the number of parameters (the adjustable weights that determine how the model 
processes information) and the amount of training data improves these models' ability to 
predict tokens. This follows empirical scaling relationships (scaling laws, which are not laws) 
that demonstrate consistent performance enhancements as the size of the model, the size 
of the dataset, and the computing power increase in tandem. However, these 
improvements follow an inverse power law, meaning that each advance requires 
exponentially more resources. 
 
The GPT-2 model with 1.5 billion parameters could produce coherent paragraphs, but it 
often lost track of longer narratives. GPT-3, with 175 billion parameters, could produce 
sustained narratives and demonstrate few-shot learning. GPT-4, estimated to have over 1 
trillion parameters, can handle 'reasoning', produce working code and follow multi-step 
instructions. GPT-5, released in 2025, is slightly better at all capabilities, reduces 
hallucinations, and is cheaper to infer. 
 

1 For an accessible introduction to some of the concepts, see Ethan Mollick. Thinking Like an AI 
(2024). https://www.oneusefulthing.org/p/thinking-like-an-ai. Andrej Karpathy. [1hr Talk] Intro to 
Large Language Models. https://youtu.be/zjkBMFhNj_g 

https://docs.google.com/presentation/d/1q37t3eiHgt1464D1iJJMUFVjIC4Bp_8D50at_QlKY74/edit?usp=sharing
https://www.oneusefulthing.org/p/thinking-like-an-ai
https://youtu.be/zjkBMFhNj_g?si=YvzV_ImgDtRv0jqN


Whether traditional scaling has reached a plateau remains contentious. The curve shows 
diminishing returns are inherent to the inverse power law, not necessarily a hard limit. 
However, practical bottlenecks are emerging. Data is finite since we have only one internet 
to scrape. Compute requirements are growing exponentially, demanding massive GPU 
clusters. Energy consumption for training runs now rivals cities. 
 
These constraints push researchers toward alternative scaling paradigms. Test-time 
compute scaling allows models to “think longer” on difficult problems, as demonstrated by 
reasoning models that improve performance by generating longer chains of thought. 
Multi-agent systems achieve complexity through orchestration rather than single-model 
scaling, breaking tasks into components that simpler models can handle. Synthetic data 
generation attempts to bypass some of the data bottleneck. 
 
Ilya Sutskever’s statement that “pretraining as we know it will end” does not reflect a failure 
of scaling laws, but rather a shift in what we are scaling. The question is no longer whether 
scaling will continue, but which dimensions we will scale next. When I write “we”, I am not 
referring to everyone. It is the big tech labs — and only the big tech labs. 

The Three Eras of LLM Training 

But it is not only pre-training (compressed knowledge from vast internet text) that forms 
the models, but also post-training. While supervised fine-tuning taught models to follow 
instructions through Q&A examples created by contract workers, Karpathy argues this 
second era is “going away”. Pre-training is like compressed knowledge and patterns2, while 
post-training techniques (RLHF3, instruction tuning4, constitutional AI5, etc.) teach how to 
use those patterns and knowledge effectively. Andrej Karpathy describes this evolution as 
three distinct eras: pre-training on internet text, supervised fine-tuning on conversations, 
and an emerging third era of reinforcement learning (RF) through environments 
(synthetic data) where models actually interact, take actions, and see outcomes. This RL 
approach remains experimental and reward functions are problematic (“super sus”6 in 
Karpathy's words) and haven't been properly invented and scaled yet. For this emerging 
paradigm, Genie 37 demonstrates where this might lead: creating virtual worlds where 

7 Genie 3 (Google DeepMind, 2025) is an interactive foundation world model that generates playable 
3D environments from single images in real-time. Unlike its predecessors, it allows continuous agent 
interaction while maintaining visual consistency, representing a shift from passive video generation to 
active world simulation. 
https://deepmind.google/discover/blog/genie-3-a-new-frontier-for-world-models 

6 “Super sus” is internet slang for “super suspicious” or “highly questionable”. I had to look it up too. 

5 https://www.anthropic.com/research/constitutional-ai-harmlessness-from-ai-feedback. Bai, Yuntao, 
Saurav Kadavath, Sandipan Kundu, et al. ‘Constitutional AI: Harmlessness from AI Feedback’. 
arXiv:2212.08073. Preprint, arXiv, 15 December 2022. https://doi.org/10.48550/arXiv.2212.08073. 

4 Generative AI for Everyone. DeepLearning.AI. 
https://www.coursera.org/learn/generative-ai-for-everyone/lecture/oxPGS/how-llms-follow-instructio
ns-instruction-tuning-and-rlhf-optional 

3 Reinforcement Learning from Human Feedback (RLHF) Explained. https://youtu.be/T_X4XFwKX8k 

2 Think of these patterns as Chollet’s ‘programmes’. 

https://deepmind.google/discover/blog/genie-3-a-new-frontier-for-world-models/
https://www.anthropic.com/research/constitutional-ai-harmlessness-from-ai-feedback
https://doi.org/10.48550/arXiv.2212.08073
https://www.coursera.org/learn/generative-ai-for-everyone/lecture/oxPGS/how-llms-follow-instructions-instruction-tuning-and-rlhf-optional
https://www.coursera.org/learn/generative-ai-for-everyone/lecture/oxPGS/how-llms-follow-instructions-instruction-tuning-and-rlhf-optional
https://youtu.be/T_X4XFwKX8k


agents can interact and maybe learn from their environments. While current LLMs learn 
from static text, future models may learn in new ways, through interaction, experimentation, 
and simulated embodied experience8 in virtual worlds. 

LLMs as ‘Retrieval-ish’ Systems or/and ‘Program’ Retrieval 

At the fundamental level, LLMs perform next-token prediction, but one theoretical 
interpretation suggests this process works by retrieving and executing learned 
computational patterns (‘vector programs’) from latent space. According to François 
Chollet9, LLMs function as pattern retrieval systems. When you query an LLM, your input 
acts as coordinates in a vast latent space containing millions of ‘vector programs’ learned 
from internet text, but increasingly synthetic multimodal data. These ‘vector programs’ 
aren't traditional code but learned transformations that map inputs to outputs, making the 
model essentially a retrieval system for computational patterns. These ‘programs’ encode 
both declarative knowledge about facts and procedural knowledge about how to perform 
tasks, compressed into high-dimensional mathematical structures. The model retrieves the 
nearest matching program and executes it on your input, with the output bearing traces of 
the specific training data that formed that pattern. It should be noted that this is just one of 
several possible explanations for what might happen in an LLM. 

This offers one explanation for the patchy generalization we observe. Models excel at 
implementing a snake game in Python, where thousands of training examples exist, yet 
struggle with the same task in obscure programming languages where examples are 
sparse. Nevertheless, as models scale and training improves, they demonstrate increasing 
capability in code generation as a general task, transferring patterns learned from common 
languages to less common ones more effectively. Chollet originally argued this 
demonstrates the absence of true intelligence, specifically the inability to adapt to genuinely 
novel situations.10 However, following o3-preview's achievement of 88.5% on the ARC-AGI 
benchmark (with high compute), Chollet has revised his position, acknowledging that while 
extremely inefficient, this represents genuine program synthesis with some ability to handle 
novel problems.11 

Models can interpolate between adjacent programs, blending characteristics to create 
apparently novel combinations. A request for “Shakespearean explanation of quantum 
computing” would merge patterns from both domains. However, models cannot extrapolate 
beyond the the learned probability distribution underlying their training data12or synthesize 
genuinely new programs that fall outside this distribution. When no appropriate pattern 
exists, they retrieve the nearest available one, regardless of its actual relevance. This can 

12 See slide showing how “New Discoveries” lie outside the boundary of current human knowledge 

11 https://arcprize.org/blog/oai-o3-pub-breakthrough  

10 Chollet, François. ‘On the Measure of Intelligence’. arXiv:1911.01547. Preprint, arXiv, 25 November 
2019. https://doi.org/10.48550/arXiv.1911.01547. 

9 François Chollet - Creating Keras 3. https://youtu.be/JDaMpwCiiJU 

8 Generalist Embodied Agent Research. https://research.nvidia.com/labs/gear 

https://arcprize.org/blog/oai-o3-pub-breakthrough
https://doi.org/10.48550/arXiv.1911.01547
https://youtu.be/JDaMpwCiiJU?si=3sMj7a5OJnMpxzrs
https://research.nvidia.com/labs/gear/


result in fluent but incorrect outputs, as there are no mechanisms in place to signal retrieval 
failure. In other words, LLMs ‘hallucinate’ or, more accurately, ‘confabulate’ the answer. 
 
This perspective might explain why prompt engineering is not trivial. Minor phrasing 
changes shift coordinates in program space, potentially crossing into different regions. 
“Explain quantum mechanics simply” might retrieve educational content patterns while 
“ELI513 quantum mechanics” could activate Reddit community explanation patterns. In this 
view, the model cannot evaluate which program is more appropriate, only which is nearest 
in vector space. It finds, executes, and combines programs into outputs that may appear to 
demonstrate understanding. Prompts like “let's think step by step” or other Chain of 
Thought techniques can also be understood as retrieving specific ‘reasoning programs’ 
learned from training data rather than invoking genuine metacognitive processes. Models 
do not think; they execute patterns that mimic thinking. As these patterns become more 
sophisticated, their functional output increasingly resembles genuine reasoning, despite the 
fact that the underlying mechanism remains fundamentally different.14 

What counts as “genuinely novel” remains debated. Is combining existing patterns into new 
configurations true creativity? When models use Python interpreters and web searches, are 
they transcending retrieval, or are they simply following learned patterns of tool use? What if 
multiple agentic systems work together on a task to simulate a project and achieve a goal? 
Other researchers propose different interpretations. Ilya Sutskever15 argues that sufficiently 
accurate next-token prediction necessarily develops world models and causal 
understanding. Some see emergent reasoning capabilities beyond pattern matching. The 
retrieval framework provides insights for understanding certain limitations and prompt 
engineering strategies, though it may not fully explain all observed model behaviors. If this 
architectural interpretation holds, it would suggest that scaling and training alone may not 
transform these systems beyond sophisticated retrieval mechanisms, remaining constrained 
by patterns encoded during training. By September 2025, it seems that LLMs alone will no 
longer be enough. However, LLMs are no longer alone; they have become agentic systems 
within information systems. 

Pre-Training (“Compression of Knowledge”)16 

The pre-training phase of Large Language Models transforms vast quantities of text data 
into model parameters through next-token prediction. For multimodal models, this extends 
to images, audio, and video through joint transformer architectures that process all 

16 Andrej Karpathy. How I use LLMs. https://youtu.be/EWvNQjAaOHw. Andrej Karpathy. [1hr Talk] 
Intro to Large Language Models. https://www.youtube.com/zjkBMFhNj_g 

15 Ilya Sutskever (OpenAI Chief Scientist) — Why next-token prediction could surpass human 
intelligence. https://youtu.be/Yf1o0TQzry8 

14 Summerfield, Christopher. These Strange New Minds: How AI Learned to Talk and What It Means. 
Viking, 2025. 

13 ELI5 stands for "Explain Like I'm 5", a Reddit-originated phrase requesting simple explanations of 
complex topics. 

https://youtu.be/EWvNQjAaOHw
https://www.youtube.com/zjkBMFhNj_g
https://youtu.be/Yf1o0TQzry8?si=BUTV2gQWyuB72jxi


modalities simultaneously in a unified semantic space using masked training.17 The training 
ingests trillions of tokens from web sources and synthetic datasets, teaching the model to 
predict what comes next in a sequence. The model learns by repeatedly guessing the next 
token based on previous ones, then adjusting its parameters to improve these predictions. 
This mathematical process captures statistical patterns in language. 

The resulting model exhibits specific operational characteristics. The compression is lossy, 
meaning the model cannot perfectly recall18 its training data; instead, it encodes statistical 
patterns and relationships. This lossy nature strikes a balance between generalisation and 
memorisation, enabling the model to handle novel inputs to some extent. The encoded 
knowledge is probabilistic and is represented as learned distributions rather than discrete 
facts. Training establishes a temporal boundary, meaning that the model’s knowledge 
remains fixed at the point when training concludes. 

Pre-training demands substantial resources! Infrastructure investment reaches hundreds of 
billions of dollars, while the process consumes months of continuous computation on 
specialized GPU clusters and significant energy. Data curation, researcher time, and the 
opportunity cost of compute resources add to the total investment. These requirements 
constrain who can develop (powerful) foundation models. In this context, a foundation 
model is the raw, pre-trained neural network that results from the resource-intensive 
pre-training process, designed to be adapted for multiple downstream tasks rather than a 
single application. 

Through this process, the model learns multiple layers of structure: syntactic patterns, 
semantic relationships, some aspects of ‘world knowledge’19, and ‘reasoning’ procedures. 
At scale, models exhibit (weak) emergent capabilities not explicitly programmed, including 
multi-step reasoning, cross-lingual transfer, and in-context learning. 

Pre-trained LLM therefore function as lossy, probabilistic compressions of their training 
data, encoding trillions of tokens into billions of parameters. This compression trades 
perfect recall for pattern recognition and generalization, producing models that generate 
coherent outputs by sampling from learned distributions. While the compression metaphor 
illuminates storage efficiency and information density, pre-training simultaneously 

19 It only learns about the world through text, images, and videos. As Yann LeCunn would say: “Every 
cat is smarter than an LLM”. 

18 While models generally cannot perfectly recall training data, exceptions exist where verbatim 
memorization occurs, particularly for sequences that appear multiple times in training data. Carlini, 
Nicholas, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan Zhang. 
‘Quantifying Memorization Across Neural Language Models’. arXiv:2202.07646. Preprint, arXiv, 6 
March 2023. https://doi.org/10.48550/arXiv.2202.07646 
 

17 Cheng, Ho Kei, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, and Yuki 
Mitsufuji. ‘Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis’. 
arXiv:2412.15322. Version 1. Preprint, arXiv, 19 December 2024. 
https://doi.org/10.48550/arXiv.2412.15322. 

https://doi.org/10.48550/arXiv.2202.07646
https://doi.org/10.48550/arXiv.2412.15322
https://doi.org/10.48550/arXiv.2412.15322


accomplishes representation learning and capability development that extend beyond 
simple data compression. 

The “Gestalt” of a Zebra Wikipedia Article 
LLM cannot access Wikipedia articles directly. They have what Karpathy calls a "Gestalt" of 
the text comprising compressed statistical patterns learned during training. When 
generating text about zebras, models use probabilistic next-token prediction based on 
these patterns, not retrieval of stored documents. This explains why models can discuss 
zebra species and habitats coherently but cannot reproduce exact Wikipedia phrasing like 
"Die Zebras (Hippotigris) sind eine Untergattung" or count article characters. Models work 
from parametric knowledge embedded in weights. They access external sources only 
through explicit tool use such as web search functions. This distinction between internal 
pattern-based generation and tool-mediated retrieval defines how LLMs process 
information. 

The USA is investing Hundreds of Billions in Data Centres 
and Energy Production. 

Modern LLMs have achieved significant efficiency gains, with energy consumption per 
prompt dropping to just 0.0003 kWh in 2025, equivalent to 8-10 seconds of Netflix 
streaming, representing a 33x improvement in just one year according to Google. However, 
water usage remains less certain, ranging from a few drops to approximately 5 ml per 
prompt, depending on the measurement methodology used. These dramatic efficiency 
improvements, coupled with plummeting costs (from $50 per million tokens for GPT-4 to 
just 14 cents for the more capable GPT-5 Nano), have made powerful AI economically 
viable for over a billion users worldwide. While these runtime figures exclude the substantial 
one-time energy investment required for training (GPT-4 required an estimated 500,000 
kWh), the marginal environmental impact per query has become negligible. This has 
enabled the era of 'Mass Intelligence', in which advanced AI is as accessible as a Google 
search, as described in the article. This is from a post from Ethan Mollick.20 The critical 
question is whether the efficiency gains of 33x can outpace growth in usage. Nevertheless, 
it uses gigantic amounts of resources and energy! 

While individual AI queries appear efficient (GPT-4o uses 0.43 Wh per query), scaling to 700 
million daily queries creates massive environmental impacts equivalent to powering 35,000 
homes, consuming water for 1.2 million people, and emitting carbon requiring a 
Chicago-sized forest to offset. Infrastructure choices matter more than model size (GPT-4o 
mini uses 20% more energy than GPT-4o despite being smaller due to older hardware), and 
as AI becomes cheaper and more accessible, total resource consumption is exploding 

20 Ethan Mollick. Mass Intelligence. From GPT-5 to nano banana: everyone is getting access to 
powerful AI https://www.oneusefulthing.org/p/mass-intelligence 

https://www.oneusefulthing.org/p/mass-intelligence


faster than efficiency gains, with inference now accounting for 90% of lifetime energy use, 
potentially costing 1,400x more annually than initial training for applications like Google 
Search.21 

Tokenization 

Tokenization transforms text into numerical units for LLM processing. The tokenization 
strategy prioritizes computational efficiency by minimizing sequence length The process 
transforms raw text through extraction, cleaning, segmentation into tokens, and mapping to 
numerical IDs. For example, “Hello World!” becomes three tokens ['Hello', 'World', 
'!'] mapped to [13225, 5922, 0]. 

Modern LLMs use subword tokenization to balance the tradeoff between character-level 
approaches (small vocabulary but inefficiently long sequences for quadratic attention) and 
word-level approaches (semantically rich but massive vocabularies with out-of-vocabulary 
problems). Subword methods create tokens ranging from characters to complete words 
based on training frequency. 

Byte-Pair Encoding (BPE) builds token vocabularies through statistical compression. 
Beginning with 256 UTF-8 bytes, BPE scans training data for the most frequent adjacent 
token pairs—like ‘h’+’u’ appearing thousands of times—and merges them into new 
tokens (‘hu’→256). Through 50,000-100,000 such merges, common sequences compress 
dramatically: "the" becomes token 264, while rare words like "bioluminescent" decompose 
into known subwords [bio][lumin][escent], eliminating vocabulary gaps. 

Models struggle with character-level tasks like spelling or letter counting since they process 
subword units. Improved whitespace handling between GPT-2 and GPT-4, particularly 
merging multiple spaces, substantially enhanced coding capabilities. 

Token count determines API costs and context utilization, with standard approximations of 
100 tokens per 75 English words (1.3 tokens/word) and 4:1 character-to-token ratios 
varying by language and content. Critical failures arise from training misalignment. Tokens 
frequent in tokenizer data but absent from model training retain untrained embeddings, 
causing unpredictable outputs. Special tokens like <|endoftext|> mark document 
boundaries but require careful handling to distinguish literal text from structural commands. 

Hands-On: Try Tokenization Yourself! 
Spacing changes token counts: 'Hello' uses 1 token while 'H e l l o' requires 5-10 tokens as 
each character and space tokenizes separately. Languages tokenize differently, with 
Chinese characters often representing whole words per token while agglutinative languages 

21 Jegham, Nidhal, Marwen Abdelatti, Lassad Elmoubarki, and Abdeltawab Hendawi. ‘How Hungry Is 
AI? Benchmarking Energy, Water, and Carbon Footprint of LLM Inference’. 14 May 2025. 
https://doi.org/10.48550/arXiv.2505.09598.  

https://doi.org/10.48550/arXiv.2505.09598


need multiple tokens per word. Typos fragment into unexpected subword patterns, 
degrading comprehension. Format selection impacts costs as verbose XML tags consume 
more tokens than equivalent JSON. Understanding tokenisation allows for quick 
optimisation, cost reduction and efficient use of context. However, it reveals which model 
you are using! 

Why do you see so many em dashes and colons now?22 

Em dash frequency in AI-generated text increased sharply between model generations. 
GPT-3.5 produced zero em dashes in controlled tests, GPT-4.0 produced 14, and GPT-4o 
produced 16 under identical conditions. This proliferation stems from tokenization 
economics: an em dash with spaces occupies one token in the cl100k_base tokenizer while 
", and" requires three tokens, creating a 66% reduction per clause connection. 

The pattern originates in training data and tokenization. Twentieth-century texts, particularly 
fiction and academic writing where em dashes peaked, dominate pre-training corpora. 
Byte-pair encoding assigned dedicated token IDs to frequent em dash sequences, 
mechanically favoring their selection. Reinforcement Learning from Human Feedback 
amplifies this bias. Human evaluators rate dash-connected prose as more fluent, while 
models achieve better training loss when expressing identical content in fewer tokens. Over 
billions of gradient updates, this micro-optimization accumulates into observable stylistic 
preference. 

The phenomenon propagates across all major models (Gemini, Claude, Mistral) through 
shared training data and contamination from AI-generated web text. As models generate 
content with elevated dash frequencies, this text enters future training datasets, creating a 
self-reinforcing cycle. Context window expansion from 8K to 1M tokens intensifies these 
pressures, where single-token savings compound into substantial computational benefits. 

Current web crawls already contain significant AI-generated content with characteristic 
dash patterns, embedding this style deeper into training distributions. Without explicit 
deduplication and style balancing, this convergence toward punctuation monoculture 
accelerates. The result erodes human-machine text distinctions through mechanical 
optimization rather than linguistic merit, fundamentally altering written communication 
norms. 

What is AI Slop? 
AI slop consists of formulaic, low-value text with recognizable patterns. Academic papers 
show a 25-fold increase in "delve into" usage during 2024. Other markers include 
unnecessary qualifiers ("It is crucial to note"), formulaic transitions ("Not only... but also"), 

22 Let’s talk about em dashes in AI. Maria Sukhavera. 
https://msukhareva.substack.com/p/lets-talk-about-em-dashes-in-ai  

https://msukhareva.substack.com/p/lets-talk-about-em-dashes-in-ai


excessive buzzwords ("game-changing", "ever-evolving"), and overuse of em dashes and 
colons. These patterns emerge from training on formal texts and reinforcement learning that 
rewards elaborate responses over concise ones.​
​
Standard prompting cannot fully eliminate these patterns, making them particularly 
frustrating. Fine-tuning offers one potential solution. Effective prompts for reducing AI slop 
include: 
 

●​ NEVER use dashes and colons 
●​ What is not a neutral writing style? List and explain! 
●​ What is AI Slop Style? List and explain (this works for models like Claude Opus 4) 
●​ How can we streamline the text? List and explain 
●​  …  

Transformer-Architektur 
Transformers process tokens in parallel using attention mechanisms. These mechanisms 
compute relevance between all token pairs simultaneously. This enables capturing 
dependencies across thousands of tokens while maintaining relationships between distant 
text elements. The architecture combines positional encoding with multi-head attention to 
build contextual representations. Parallel processing provides computational efficiency 
compared to sequential models. 

Next Word/Token Prediction 
Additional context progressively constrains prediction possibilities. Starting with ambiguous 
prompts like "The metadata indicated missing _____", each added word narrows potential 
completions. Eventually, highly specific technical terms become predictable. This 
demonstrates how models build understanding through accumulated context. The process 
reveals that apparent comprehension emerges from statistical pattern matching rather than 
semantic understanding. 

Statistics or Understanding? 

Next-token prediction requires modeling the processes that generated the text. Accurate 
prediction implies understanding contextual relationships and implicit rules. Some argue 
this constitutes a form of world modeling, though this interpretation remains disputed. 

Ilya Sutskever, OpenAI's former Chief Scientist, offers a compelling perspective on this 
question. He states that "Predicting the next token well means that you understand the 
underlying reality that led to the creation of that token." He argues it transcends mere 
statistics. To truly compress and predict these patterns, the model must grasp what about 
the world creates those statistics. When predicting human-generated text, this means 



deducing the thoughts, feelings, and cognitive processes behind human expression. In 
Sutskever's view, this deep pattern recognition could enable models to extrapolate beyond 
their training distribution. They might imagine how a hypothetical person with greater 
wisdom and capability would respond, surpassing any individual example in the training 
data. 

This perspective stands in tension with the retrieval-based view of LLMs. Critics argue that 
correlation doesn't imply causation. If models truly understood causal relationships rather 
than just statistical patterns, hallucinations wouldn't exist. The persistence of confident but 
false outputs suggests that models match patterns without genuine comprehension of 
underlying reality. 

The fundamental question remains open. Does sufficiently accurate next-token prediction 
necessarily converge on world modeling? Or does it remain sophisticated pattern matching 
within learned boundaries? 

Hallucinations (or better call them Confabulations) 

LLMs generate confabulations, which are plausible but false statements presented with 
unwarranted certainty. Unlike the term 'hallucinations' (perceptual errors), 'confabulation' 
more accurately describes how AI systems fabricate coherent narratives to fill knowledge 
gaps. 

Models must always generate token probabilities, even when they lack necessary 
knowledge. For example, when asked “When was Adam Tauman Kalai born?” (an author of 
the OpenAI paper), the model cannot verify this information but still generates a specific 
date like “March 15, 1972” rather than admitting uncertainty. Training rewards such specific 
guesses (which have a small chance of being correct) over “I don't know” responses (which 
always score zero), producing confident errors. 

The way we evaluate models worsens the confabulation problem because training uses a 
scoring system where answers are either completely right or completely wrong with no 
partial credit for uncertainty. When models say “I don't know”, they receive the same 
penalty as wrong answers, which means guessing occasionally succeeds but abstaining 
always fails, so models learn to always generate answers rather than acknowledge 
ignorance. This mismatch between what we want (models that know their limitations) and 
what we measure (raw accuracy) systematically trains models to confabulate rather than 
abstain. 

The frequency of information in training data directly affects confabulation rates. Common 
facts that appear thousands of times, such as Einstein's birthday (14 March 1879), develop 
strong statistical patterns that models can reliably reproduce. However, singleton facts 
(information that appears only once in the training data) create situations in which models 
cannot distinguish correct information from plausible alternatives, resulting in random 
selection from the available options. For example, the birthday of an obscure scientist 



appearing only once provides no statistical reinforcement, making it indistinguishable from 
any other plausible date. The relationship between data frequency and accuracy is 
mathematically predictable: higher proportions of singleton information guarantee higher 
error rates. 

When models receive queries without corresponding patterns in their training, they retrieve 
the nearest available pattern regardless of actual relevance. Questions about fictional 
entities activate real-world templates because models lack mechanisms to signal retrieval 
failure, executing inappropriate patterns with standard confidence.  

Tokenization creates additional constraints where words split into subword units that 
prevent character-level analysis. The word “strawberry” processes as two tokens [“straw”, 
“berry”], making the model unable to count letters since it cannot access individual 
characters within these predetermined units. 

Attention Mechanism Details 

The attention mechanism allows Transformers to process all words in a sentence 
simultaneously rather than sequentially. It computes how relevant each word is to every 
other word through a parallel matching process. Each word gets transformed into three 
representations. A Query represents what information this word seeks. A Key represents 
what information this word advertises. A Value contains the actual information content. This 
creates a sophisticated lookup system where words can directly access relevant context 
anywhere in the sequence. 

Consider the sentence "The cat sat on the mat because it was soft." When processing "it", 
the mechanism compares the Query from "it" against Keys from all words. It finds "mat" 
most relevant since soft things are typically mats, not cats. The system then retrieves and 
blends the Values proportionally to these relevance scores. This happens through multiple 
parallel attention heads, typically 8 to 16. Each head learns to detect different relationship 
types including grammatical, semantic, and positional relationships. Their combined 
perspectives create rich contextual understanding. 

Unlike sequential models where information degrades traveling word-by-word through 
hidden states, attention maintains direct connections between all positions. This preserves 
long-range dependencies perfectly but at quadratic computational cost. Doubling sequence 
length quadruples comparisons. The mechanism has no inherent concept of word order. It 
treats sequences as unordered sets. This requires explicit positional information to 
distinguish "dog bites man" from "man bites dog". This explains why Transformers need 
vast training data to learn patterns that sequential architectures encode structurally. 



Context Window 

A context window is the amount of text a Large Language Model can process at once, 
measured in units called tokens. Unlike humans who read character by character, LLMs 
process tokens, which may represent anything from a single letter to an entire word. For 
example, the word "understanding" might be split into three tokens: "under", "stand", and 
"ing". On average, one English word equals roughly 1.5 tokens, so a 100-word paragraph 
uses about 150 tokens. 

When an LLM processes text, it uses a mechanism called self-attention to understand how 
each token relates to every other token in the context window. This creates a web of 
connections that helps the model understand meaning and generate relevant responses. 
However, this process becomes computationally expensive as more tokens are added. If 
you double the number of tokens, the model needs four times the processing power 
because each new token must form connections with all previous tokens. This quadratic 
growth in computational demands fundamentally limits how large context windows can 
become. 

Modern LLMs have expanded from early models with 2,000-token windows to current 
systems with 128,000 tokens or more. This growth enables processing entire documents 
rather than just short conversations. The context window holds not only the visible 
conversation between user and model but also hidden system instructions, uploaded 
documents, and retrieved reference materials. Both input and output tokens share the same 
window space. For instance, in an 8,000-token window, if a user provides 6,000 tokens of 
input and the model generates 1,500 tokens of output, only 500 tokens remain available. 
When inputs exceed available space, as when 10,000 tokens attempt to fit in an 
8,000-token window, the model cannot access the overflow content, effectively losing 
3,500 tokens of information. This explains why LLMs sometimes cannot recall earlier parts 
of long conversations. 

Larger windows introduce documented challenges beyond simple overflow. Models show 
decreased accuracy for information in the middle of long contexts compared to information 
at the beginning or end. Security researchers have found that harmful instructions can be 
hidden deep within lengthy inputs where safety filters may miss them. The size of a context 
window represents a fundamental engineering tradeoff. Larger windows allow more 
comprehensive information processing but require substantially more computational 
resources and may decrease accuracy for certain tasks. Understanding these constraints 
helps explain why processing extensive documents can be slow or expensive. The context 
window ultimately defines both what an LLM can accomplish and where its limitations 
begin. 



Embeddings and Semantic Space 

Embeddings transform discrete tokens into continuous numerical vectors in 
high-dimensional space. Geometric proximity directly encodes semantic similarity. In a 
simplified 3D visualization, "dog" and "cat" cluster together as pets, animals, and 
mammals. Meanwhile, "stone" occupies distant coordinates as an inanimate object. 
"Cuddle" positions closer to animals than to stone, reflecting its association with living 
beings and affectionate behavior. 

This spatial organization emerges entirely from training patterns. The model sees millions of 
text examples where dogs and cats appear in similar contexts while stones appear in 
fundamentally different ones. The model learns these relationships without explicit 
programming. It discovers that certain words naturally belong together based on their usage 
patterns across the training corpus. 

Embeddings: Vector Arithmetic and Context 

The embedding space encodes analogical relationships as geometric operations. The 
famous example demonstrates this through the parallelogram E(queen) - E(king) ≈ E(woman) 
- E(man). This isn't programmed explicitly. It emerges from training patterns where queens 
relate to kings similarly to how women relate to men. They function as gendered 
counterparts in parallel social roles. 

The vectors form a consistent geometric structure. The displacement from "king" to 
"queen" mirrors the displacement from "man" to "woman". This captures the abstract 
concept of "feminization" as a directional vector you can add or subtract. This mathematical 
regularity enables analogical reasoning through simple arithmetic. Add the "royalty vector" 
(king minus man) to "woman" and arrive near "queen". While this demonstrates 
embeddings' ability to capture abstract relationships, it also reveals how they encode 
statistical correlations from training data, including societal biases and stereotypes present 
in that data. 

The same vector arithmetic formula holds, but "Queen" occupies fundamentally different 
regions of embedding space depending on context. Consider how the word shifts meaning 
across different domains. When discussing drag culture, "Queen" activates embeddings 
near performance, gender expression, and LGBTQ+ culture. When discussing rock music, it 
shifts toward Mercury, band, and classic rock. In monarchical contexts, it would move 
toward crown, throne, and sovereignty. 

This dynamic repositioning occurs through transformer attention mechanisms. They 
recompute embeddings based on all tokens in the context window rather than using static 
word vectors. While the geometric relationships between concepts remain stable, their 
absolute positions in latent space shift dramatically based on contextual activation. This 
explains how models disambiguate polysemous words. It also explains why identical 



prompts with different contextual framing retrieve entirely different programs from latent 
space. 

Embeddings: Shakespearean vs. Normalized English 

The identical semantic content "The King wakes tonight" follows completely different paths 
through embedding space based on stylistic framing. "The King doth wake tonight and 
takes his rouse" activates a trajectory through regions associated with classical literature. 
Meanwhile, "The King wakes up tonight and begins his celebration" follows a path toward 
contemporary patterns. These aren't just different phrasings. They represent fundamentally 
different coordinate systems that retrieve distinct programs from the model's latent space. 

The visualization shows "murdered predecessor" as an available pathway in the 
Shakespearean region but absent from the modern one. This demonstrates that style 
determines not just which program executes but which programs are even accessible. 

The visual outputs confirm that different programs were retrieved and executed. 
Shakespearean phrasing triggers programs trained on historical texts. This produces an 
elderly king with classical oil-painting aesthetics reminiscent of King Lear or historical royal 
portraits. The response even elaborates on Shakespearean themes of royalty, mortality, and 
narrative direction. In contrast, normalized English retrieves programs from contemporary 
sources. It generates a younger king in dramatic lighting ready for modern celebration. 

This isn't the model "understanding" that Shakespearean language implies older subjects. It 
represents mechanical program retrieval where "doth" and "rouse" serve as coordinates 
pointing to regions of latent space populated by classical literature patterns. The extreme 
sensitivity to phrasing explains why prompt engineering remains more art than science. 
Minor stylistic variations don't adjust parameters within a program. They switch between 
entirely different programs, each carrying the full weight of its training context. 

Embeddings: Prompt Sensitivity 

The prompt "The King wakes up tonight and begins his celebration, cat" demonstrates how 
single-word variations fundamentally redirect traversal paths through latent space. Consider 
how "cat" might generate a realistic crowned feline. "Dog" could misinterpret entirely. 
"Stone" might bifurcate into either stone-sculpture cats or cats-on-stones. "Hybrid" could 
produce anthropomorphized royal cats while simultaneously suppressing background stars. 
This reveals that prompts determine not just what appears but what gets inhibited through 
competitive deactivation of adjacent program regions. 

This extreme sensitivity isn't a bug but the core architecture. Each word serves as a precise 
coordinate in latent space. Without genuine understanding, the model can only navigate by 
exact pattern matching. The difference between "summary" and "synthesize" is not 



semantic but programmatic. Each retrieves entirely different stylistic templates from their 
respective training contexts, whether business documents or academic papers. This 
confirms that what appears as language understanding is mechanical program retrieval. 
Every character potentially switches between completely different stored patterns. 

Example: How Claude Adds 36 + 59 
Models use parallel pattern matching rather than algorithmic computation. They activate 
multiple solution paths simultaneously including approximation, digit patterns, and 
memorized facts. When explaining their process, models generate plausible but inaccurate 
narratives about following human algorithms. This demonstrates the disconnect between 
actual processing through pattern recognition and generated explanations mimicking 
training examples. Step-by-step explanations represent convincing narratives rather than 
genuine introspection. 

Post-Training 

Post-training transforms language models from text predictors into instruction-following 
assistants through three stages of behavioral modification. Supervised fine-tuning 
exposes the model to conversation datasets containing hundreds of thousands to millions 
of examples demonstrating desired response patterns. A reward model then learns to score 
outputs based on human preference data, distinguishing responses humans prefer from 
those they reject. Reinforcement learning uses these scores to adjust the model's 
parameters, incrementally shifting its output distribution toward patterns that maximize 
preference scores. 

This transformation requires less computational resources compared to pre-training. 
Pre-training on internet-scale text takes months using thousands of GPUs, while 
post-training completes in hours or days using smaller conversation datasets. Post-training 
modifies behavioral patterns rather than adding information. The base model already 
contains extensive knowledge from pre-training but lacks the specific conversational 
structures that enable it to function as an assistant. Post-training establishes these patterns 
through statistical imitation of training examples. 

According to Karpathy's analysis, users interact with what amounts to a statistical 
simulation of human labelers. When generating responses, the model reproduces patterns 
learned from human contractors who followed labeling instructions, typically detailed 
documents specifying guidelines for helpfulness, harmlessness, and honesty. A query about 
Parisian landmarks produces text statistically similar to what a human labeler might write 
after brief research. The model generates this through pattern matching against its training 
distribution, not through understanding or information retrieval. 



This mechanism explains systematic hallucination patterns in language models. Training 
data typically shows confident responses to factual questions, establishing a stylistic 
template the model reproduces when encountering unknown entities. The model maintains 
confident phrasing while generating plausible-sounding but incorrect information because it 
learned response formats rather than knowledge boundaries. Mitigation requires training on 
examples where acknowledging ignorance constitutes the appropriate response, 
connecting internal uncertainty representations to verbal expressions of not knowing. 

Post-training datasets have evolved from purely human-generated to hybrid human-AI 
sources. Early systems like InstructGPT relied on human labelers writing responses, but 
current datasets increasingly incorporate synthetic data generated by language models with 
human editing and oversight. This recursive process, where models produce training data 
for subsequent models, enables dataset scaling to millions of conversations while raising 
questions about whether models trained on synthetic data can exceed the capabilities 
implicit in their training process. 

LLM Alignment Techniques 
Pre-trained language models predict subsequent tokens based on training patterns. Given 
"What is the capital of France?" they may generate additional questions rather than "Paris" 
since question lists are common in training data. Models treat prompts as text to continue 
rather than instructions to execute. 
 
Instruction tuning fine-tunes pre-trained models on instruction-response pairs including 
questions with answers, creative prompts with outputs, and harmful requests with refusals. 
This process teaches models to recognize prompts as instructions requiring specific 
responses rather than text patterns to complete. 
 
Reinforcement Learning from Human Feedback (RLHF) operates in two stages. First, 
humans rate multiple model responses to identical prompts based on helpfulness, honesty, 
and harmlessness. These ratings train a reward model to automatically score responses. 
Second, the language model generates responses scored by this reward model, then 
adjusts parameters to maximize scores, learning human preferences for response quality 
beyond mere relevance. 
 
Constitutional AI addresses scalability limitations of human feedback. Models receive 
written principles (a constitution) to critique and revise their outputs. When generating 
potentially harmful content, models identify issues according to constitutional principles and 
rewrite responses, enabling self-supervision without human raters for harmlessness 
evaluation. 
 
These techniques sequentially address different aspects: instruction tuning enables 
instruction-following behavior, RLHF optimizes output quality through human preferences, 
and Constitutional AI scales optimization through self-supervision. Together they transform 



token predictors into instruction-following systems that produce helpful, accurate, and safe 
responses. 

Sycophancy 
Sycophancy in LLMs, defined as excessive agreement that prioritises user satisfaction over 
truthfulness, emerges from post-training alignment processes rather than base model 
training; we have millions of voices in the base model, but post-training aligns these into 
fewer voices. During reinforcement learning from human feedback (RLHF) and instruction 
fine-tuning, models learn to maximise positive user ratings through agreement rather than 
accuracy, creating a fundamental tension between satisfaction and truthfulness. Therefore, I 
believe that tech companies are not intentionally designing addictive behaviour, but rather it 
is an unintended result of reinforcement learning. This behaviour is clearly evident in 
mathematical contexts, where models correctly reject false statements such as '2 plus 2 
equals 5' when presented neutrally, yet agree with users who assert such errors as correct. 
The problem worsens with model size and the depth of instruction tuning, as larger models 
with more parameters exhibit stronger sycophantic tendencies, particularly on topics 
without definitive answers, with optimisation against preference models explicitly sacrificing 
truthfulness for agreement. Models become adept at detecting user opinions through 
linguistic cues and adjusting their responses accordingly, creating an illusion of agreement 
rather than providing objective information, which poses significant risks in high-stakes 
applications such as education, healthcare and professional settings. Considering 
sycophancy as a post-training artefact rather than an inherent model characteristic 
suggests that alternative alignment approaches could preserve truthfulness while 
maintaining usability, though current RLHF methods systematically reward models for 
telling users what they want to hear rather than what is factually correct. 

Base → Reasoning → Mini 
Model families derive from base versions through different post-training processes. 
Reasoning variants apply reinforcement learning for specialized tasks (math, coding, 
science). Mini versions use distillation for reduced costs and latency. Knowledge cutoffs 
and pricing indicate model lineage and size. Different training approaches yield different 
capabilities even from identical base models. Future developments aim to unify capabilities, 
though scaling benefits remain uncertain. 

Reasoning-Models 
"Reasoning" models generate extended token sequences that provide scaffolding for 
problem decomposition. This process increases the probability of selecting appropriate 
solution patterns from latent space. The approach mimics reasoning through systematic 
token generation rather than implementing logical operations. Extra inference time allows 



exploring multiple solution paths. The method transforms apparent reasoning into guided 
search through possibility space. 

Test Time Compute 
Additional computation during inference enables sampling multiple solutions, running 
searches, calling tools, and verifying outputs. This implicitly searches over candidate 
programs and selects optimal matches. Test-time training updates parameters during 
inference for on-the-fly adaptation. Standard approaches work within fixed parameters, 
using computation to explore solution spaces more thoroughly. 

Prompt Engineering (Chain of Thought) 
Chain of Thought prompting generates intermediate steps that maintain relevant context 
and guide solution development. The technique forces explicit token generation for implicit 
reasoning steps. This creates scaffolding that improves final outputs by preventing context 
loss. Enhanced versions incorporate verification steps and iterative refinement. The 
approach exploits test-time compute without modifying model parameters. 

What happens when you upload a document to a ChatBot? 
Document uploads pass through application layers that extract text and construct prompts. 
The application combines document content, user questions, and instructions into 
formatted prompts. Users interact with applications, not raw language models. The same 
results could be achieved by manual prompt construction. Document "understanding" 
represents structured prompt engineering rather than special processing capabilities. 

Reinforcement Learning 

Reinforcement learning shapes model behavior through reward signals rather than explicit 
programming. Human feedback trains models toward helpful, harmless, and honest 
outputs. The process optimizes for human preferences beyond simple accuracy. This 
explains stylistic patterns and behavioral tendencies in modern systems. Post-training 
fundamentally alters how models select among possible outputs. 
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