

Function ldap Date LGTM

Author(s) Xu Yan, Software Engineer, Baidu
Research,
yanxu05@baidu.com​
Helin Wang, Software Engineer,
Baidu U.S.A.,
helinwang@baidu.com​
Yi Wu, Software Engineer, Baidu
Research, wuyi05@baidu.com ​
Xi Chen, Software Engineer,
Baidu U.S.A.,
chenxi44@baidu.com​
Weibao Gong, Software Engineer,
Baidu Research,
gongweibao@baidu.com ​
Xiang Li, Tech Lead Manager,
CoreOS, xiangli.cs@gmail.com ​
Yi Wang, Tech Lead of
PaddlePaddle, Baidu U.S.A.,
yi.wang.2005@baidu.com

CNCF (mktg/pr) Kaitlyn/Sarah C. SC reviewed 11/30

K8s-docs Review Zach Corleissen

ZC edited 12/2

PM Review PM-group

Review & Publish hrdinsky or sarahnovotny

Blog Title: PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes
Authors: Xu Yan, Software Engineer, Baidu Research, yanxu05@baidu.com​
Helin Wang, Software Engineer, Baidu U.S.A., helinwang@baidu.com ​
Yi Wu, Software Engineer, Baidu Research, wuyi05@baidu.com ​
Xi Chen, Software Engineer, Baidu U.S.A., chenxi44@baidu.com​
Weibao Gong, Software Engineer, Baidu Research, gongweibao@baidu.com ​
Xiang Li, Tech Lead Manager, CoreOS, xiangli.cs@gmail.com ​
Yi Wang, Tech Lead of PaddlePaddle, Baidu U.S.A., yi.wang.2005@baidu.com
Date/Time to publish:
Staging:
Twitter: @Kubernetesio:

Editor's note: Today's post is a joint post from the deep learning team at Baidu and the etcd team
at CoreOS.

PaddlePaddle Fluid: Elastic Deep Learning on Kubernetes

Two open source communities—PaddlePaddle, the deep learning framework originated in
Baidu, and Kubernetes®, the most famous containerized application scheduler—are
announcing the Elastic Deep Learning (EDL) feature in PaddlePaddle’s new release
codenamed Fluid.

Fluid EDL includes a [Kubernetes
controller](https://github.com/kubernetes/community/blob/master/contributors/devel/controllers.
md), [*PaddlePaddle
auto-scaler*](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale), which
changes the number of processes of distributed jobs according to the idle hardware resource in
the cluster, and a new fault-tolerable architecture as described in the [PaddlePaddle design
doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/cluster_train/README.m
d).

Industrial deep learning requires significant computation power. Research labs and companies
often build GPU clusters managed by SLURM, MPI, or SGE. These clusters either run a
submitted job if it requires less than the idle resource, or pend the job for an unpredictably long
time. This approach has its drawbacks: in an example with 99 available nodes and a submitted
job that requires 100, the job has to wait without using any of the available nodes. Fluid works
with Kubernetes to power elastic deep learning jobs, which often lack optimal resources, by
helping to expose potential algorithmic problems as early as possible.

Another challenge is that industrial users tend to run deep learning jobs as a subset stage of the
complete data pipeline, including the web server and log collector. Such general-purpose
clusters require priority-based elastic scheduling. This makes it possible to run more processes
in the web server job and less in deep learning during periods of high web traffic, then prioritize
deep learning when web traffic is low. Fluid talks to Kubernetes' API server to understand the
global picture and orchestrate the number of processes affiliated with various jobs.

In both scenarios, PaddlePaddle jobs are tolerant to a process spikes and decreases. We
achieved this by implementing the new design, which introduces a master process in addition to
the old PaddlePaddle architecture as described in a [previous blog
post](http://blog.kubernetes.io/2017/02/run-deep-learning-with-paddlepaddle-on-kubernetes.htm
l). In the new design, as long as there are three processes left in a job, it continues. In extreme
cases where all processes are killed, the job can be restored and resume.

We tested Fluid EDL for two use cases: 1) the Kubernetes cluster runs only PaddlePaddle jobs;
and 2) the cluster runs PaddlePaddle and Nginx jobs.

In the first test, we started up to 20 PaddlePaddle jobs one by one with a 10-second interval.
Each job has 60 trainers and 10 parameter server processes, and will last for hours. We
repeated the experiment 20 times: 10 with FluidEDL turned off and 10 with FluidEDL turned on.
In Figure one, solid lines correspond to the first 10 experiments and dotted lines the rest. In the
upper part of the figure, we see that the number of pending jobs increments monotonically
without EDL. However, when EDL is turned on, resources are evenly distributed to all jobs. Fluid
EDL kills some existing processes to make room for new jobs and jobs coming in at a later point
in time. In both cases, the cluster is equally utilized (see lower part of figure).

![Figure
1](https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/doc/autoscale/experiment/res
ult/case1.png "Figure 1. Fluid EDL evenly distributes resource among jobs.")

In the second test, each experiment ran 400 Nginx pods, which has higher priority than the six
PaddlePaddle jobs. Initially, each PaddlePaddle job had 15 trainers and 10 parameter servers.
We killed 100 Nginx pods every 90 seconds until 100 left, and then we started to increase the
number of Nginx jobs by 100 every 90 seconds. The upper part of Figure 2 shows this process.
The middle of the diagram shows that Fluid EDL automatically started some PaddlePaddle
processes by decreasing Nginx pods, and killed PaddlePaddle processes by increasing Nginx
pods later on. As a result, the cluster maintains around 90% utilization as shown in the bottom
of the figure. When Fluid EDL was turned off, there were no PaddlePaddle processes
autoincrement, and the utilization fluctuated with the varying number of Nginx pods.

![Figure
2](https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/doc/autoscale/experiment/res
ult/case2.png "Figure 2. Fluid changes PaddlePaddle processes with the change of Nginx
processes.")

We continue to work on FluidEDL and welcome comments and contributions. Visit the
[PaddlePaddle repo](https://github.com/PaddlePaddle/cloud), where you can find the [design
doc](https://github.com/PaddlePaddle/cloud/blob/develop/doc/autoscale/README.md), a
[simple
tutorial](https://github.com/PaddlePaddle/cloud/blob/develop/doc/autoscale/example/autoscale.
md), and [experiment
details](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment).

- Xu Yan (Baidu Research)
- Helin Wang (Baidu Research)
- Yi Wu (Baidu Research)
- Xi Chen (Baidu Research)
- Weibao Gong (Baidu Research)

- Xiang Li (CoreOS)
- Yi Wang (Baidu Research)

