
Partitioned Service Workers Design
(public version)

This Document is Public

Authors: wanderview@chromium.org​
April, 2021

One-page overview

Summary
This design describes our proposal for partitioning service workers in 3rd party contexts.
The motivation for these changes can be found in the explainer.

Platforms
Mac, Windows, Linux, Chrome OS, Android, Android WebView.

Team
mailto:service-worker-discuss@chromium.org

Bug
crbug.com/1191114

Code affected
Service workers

mailto:wanderview@chromium.org
https://github.com/wanderview/quota-storage-partitioning/blob/main/explainer.md
mailto:service-worker-discuss@chromium.org
http://crbug.com/1191114

Design
This design describes our proposal for partitioning service workers in 3rd party contexts.
The motivation for these changes can be found in the explainer.

Assumptions and Dependencies

StorageKey
This design assumes that there will be a StorageKey type as outlined in the Storage
Partitioning Design. This type will include both the origin and information about the top
level window of the tab. The top-level window information may be the window's site
(scheme+etld+1) or the first-party-set owner.

Since we have not decided whether to commit to one or the other this design will be
written to support either interchangeably. This is somewhat easy since they can both be
expressed as a URL-like string.

This design assumes that the StorageKey will be accessible from the
RenderFrameHostImpl, DedicatedWorkerHost, and SharedWorkerHost. This is largely true
today if the key ends up being the top-level site. If first-party-set is used for the key,
however, additional plumbing may be needed.

Exposing StorageKey on the ServiceWorkerHost will be part of this design.

Feature Flag
In addition to sharing the StorageKey with the overall Storage Partitioning effort, we will
also share a single feature flag for enabling or disabling partitioning. It's important that we
either partition all APIs or none of them in order to avoid confusing websites.

QuotaManager
This design also depends on the QuotaManager and QuotaClient internal APIs being
updated to accept a StorageKey. This will be necessary to properly integrate with the
quota system. This work is part of the Storage Partitioning Design.

Service Worker Overview
The service worker subsystem has code stretching across the browser process, renderer
process, and the storage service. The following diagram provides a high level view of this
code.

https://github.com/wanderview/quota-storage-partitioning/blob/main/explainer.md
https://docs.google.com/document/d/1w5NcObenLz0sVvku8RlB42lrGdk2CNqlKqCKUe97e_Q/edit?resourcekey=0-OFhKpPLPCF7dochUyn9plQ#bookmark=id.ycv5h8qnd9qb
https://docs.google.com/document/d/1w5NcObenLz0sVvku8RlB42lrGdk2CNqlKqCKUe97e_Q/edit?resourcekey=0-OFhKpPLPCF7dochUyn9plQ#bookmark=id.ycv5h8qnd9qb
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/renderer_host/render_frame_host_impl.h;l=255;drc=903e69dab4088d75c658e9d21cc50a4696264eff
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/worker_host/dedicated_worker_host.h;l=50;drc=cf85b1e8e21631bf2cab52fa2dd139f4ad582611
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/worker_host/shared_worker_host.h;l=62;drc=09a4396a448775456084fe36bb84662f5757d988
https://github.com/privacycg/first-party-sets
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_host.h;l=48;drc=ee8814f71f2ffd5f330ed9a65df95558f8cde32b
https://docs.google.com/document/d/1w5NcObenLz0sVvku8RlB42lrGdk2CNqlKqCKUe97e_Q/edit?resourcekey=0-OFhKpPLPCF7dochUyn9plQ#bookmark=id.m98iqflj1a1q

Much of this effort will focus on integrating the StorageKey into these classes. To that end
the diagram has been color coded by how the code interacts with the StorageKey.

Classes marked in orange need to be conceptually locked to a single StorageKey. These
classes already have a url::Origin associated with them directly or indirectly. We will
need to augment or replace these origin attributes with StorageKey.

The classes marked green represent code that will need to understand StorageKey. For
some classes this will simply be a pass-through. For others, like the
ServiceWorkerDatabase, we will need to make more extensive changes to persist the
StorageKey on disk.

Classes marked in blue should not need to be modified.

ServiceWorkerContainerHost
The creation of the ServiceWorkerContainerHost is the entrypoint for most of the service
worker machinery at runtime. An instance is created for each window, iframe, and worker
in the browser. This is done via the ServiceWorkerMainResourceLoaderInterceptor. The

interceptor creates an empty ServiceWorkerContainerHost at first. Later, the
updateUrls() method is called to identify the newly created context.
The updateUrls() method currently sets the load URL, net::SiteForCookies, and
optionally a top-frame url::Origin. This is where we will introduce the StorageKey; either
by deriving from the currently available information or requiring it to be passed in.

For example, one of the places updateUrls() is called is from
ServiceWorkerControlleeRequestHandler::InitializeContainerHost(). In this case
there is a network::ResourceRequest available which in turn exposes a
NetworkIsolationKey. We should be able to convert the NetworkIsolationKey to a
StorageKey.

Once we have the StorageKey in ServiceWorkerContainerHost it can be directly passed
on to the ServiceWorkerObject and ServiceWorkerRegistrationObject instances as well.

The StorageKey also allows ServiceWorkerContainerHost to use it when executing mojo
methods invoked from the web API. For example, navigator.serviceWorker.register()
invokes ServiceWorkerContainerHost::Register(). The StorageKey can be
automatically included and passed along in the call to
ServiceWorkerContextCore::RegisterServiceWorker() in order to properly persist the
key with the new registration. This also applies to other methods like
GetRegistrations(), etc.

The fact that the StorageKey is locked to ServiceWorkerContainerHost in the browser
process is an important security feature. It prevents a compromised renderer process
from lying to us about the StorageKey in order to bypass partitioning.

In addition, adding StorageKey to ServiceWorkerContainerHost helps implement the
Clients API. This API allows a service worker to find window and worker contexts in order
to message them, etc. This operation is ultimately supported by
ServiceWorkerContextCore::GetClientContainerHostIterator() which iterates over a
map of ServiceWorkerContainerHost objects. Currently this only filters on origin, but we
will be able to also now filter on the StorageKey of the host object.

ServiceWorkerRegistry
The ServiceWorkerContextCore and ServiceWorkerRegistry are mainly singleton classes
that handle operations across many different origins, registrations, etc. In general the
StorageKey will need to be plumbed through the majority, if not all, of these operations.

The ServiceWorkerRegistry is responsible for creating ServiceWorkerVersion and
ServiceWorkerRegistration objects. It also depends on the ServiceWorkerDatabase and
ServiceWorkerScriptCache for persisting data to disk.

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_main_resource_loader_interceptor.cc;l=154;drc=702f0f497201729fbe3f11c02f4c069e20560f22
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_container_host.cc;l=828;drc=702f0f497201729fbe3f11c02f4c069e20560f22
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_controllee_request_handler.cc;l=185;drc=702f0f497201729fbe3f11c02f4c069e20560f22
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_container_host.cc;l=154;drc=702f0f497201729fbe3f11c02f4c069e20560f22
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_container_host.cc;l=207;drc=702f0f497201729fbe3f11c02f4c069e20560f22
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_container_host.cc;l=248;drc=702f0f497201729fbe3f11c02f4c069e20560f22
https://w3c.github.io/ServiceWorker/#clients-interface
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_context_core.cc;l=355;drc=702f0f497201729fbe3f11c02f4c069e20560f22

ServiceWorkerVersion
Some of the core capabilities of the ServiceWorkerRegistry is to register new service
workers and to look up old existing workers. When this happens it instantiates a
ServiceWorkerVersion object. Each service worker registration supports the concept of a
changing worker script. When this happens the registration progresses through installing,
waiting, and activated phases. The ServiceWorkerVersion object represents a particular
instance of the worker script for a registration.

Currently the ServiceWorkerVersion contains a url::Origin member. This will need to
be enhanced with a StorageKey passed from the ServiceWorkerRegistry. This is then
used to pass back into the registry for various operations; e.g. triggering an update check.

The ServiceWorkerVersion also implements methods like GetClients() in order to
support the Clients API. These methods will need to pass on the StorageKey into the
associated algorithm in order to compare to the key associated with each
ServiceWorkerContainerHost.

Again, having the StorageKey bound in the browser process object helps secure the clients
API by preventing the renderer from lying about the value.

The ServiceWorkerVersion will also need to pass the StorageKey to the
EmbeddedWorkerInstance when starting the worker thread. This will then pass just the
top-level site from StorageKey into the IsolationInfo as the top-level origin. This
information is necessary to properly isolate information in the network layer, http cache,
cookies, etc.

Note, we pass just the top-level site here even though IsolationInfo wants the full origin.
We do this because the service worker may be started for pages embedded under different
origins that are same-site, but we can only possibly remember the top-level origin for the
page that originally registered the service worker. Indeed, pages with different top-level
origins could all be controlled by the service worker at the same time. In truth we only
isolate by site, so we pass the site instead of the origin here. This will produce the most
predictable outcome.

If a user attempts to block cookies for a particular subdomain of the top-level origin,
however, we may miss blocking those cookies. Of course, even if we passed the full
top-level origin we still risk missing cookies to block if the target subdomain differs from
the one that registered the service worker and we also have less predictable behavior.

Currently we get the top-level site from StorageKey. If the StorageKey changes to contain
the first-party-site owner instead we may need to persist and plumb the

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/embedded_worker_instance.cc;l=779;drc=9438fb3fff97c803d1ead34c0e4f223db168526f

top_level_origin_ member from ServiceWorkerContainerHost. We may also need to
perform these changes if we decide it's better to use the top-level origin of the page that
registered the service worker.

clients.openWindow()
One special API that requires particular attention is clients.openWindow(). This can be
called after a user clicks on a notification triggering a notificationclick event in the
service worker. When called, openWindow() will create a new top level window for the
given URL. Typically this involves creating a new browser tab, etc.

We must be careful not to allow a partitioned service worker to create an unpartitioned top
level window. This would allow the service worker to exfiltrate data out of the partition
defeating our privacy goals.

Therefore, this design proposes that clients.openWindow() should reject with an
InvalidAccessError exception if the StorageKey indicates the service worker is in a
partition. This check should be added in the ServiceWorkerVersion::OpenNewTab()
method in the browser process.

This may seem to block a useful feature, but as discussed below under "related APIs", the
notification permission is currently not granted in 3rd party contexts. Therefore this
scenario should not really happen. We should add the check, however, as an extra safety
belt in case the permission is relaxed in the future.

If 3rd party notifications do get allowed in the future we can revisit this decision and
explore relaxing the openWindow() block. For example, we could pursue creating a top
level window that is also partitioned. That would be a bit weird, though, so we don't want
to take on that work until necessary.

ServiceWorkerHost
In addition to basic `StorageKey` plumbing, the `ServiceWorkerHost` will also need to be
modified to return the correct `NetworkIsolationKey`. This should be computable from the
information stored in the `StorageKey`.

ServiceWorkerQuotaClient
The ServiceWorkerQuotaClient lives in the browser process and implements the abstract
QuotaClient interface. It uses ServiceWorkerContextCore to send quota related requests
down to the ServiceWorkerRegistry and ServiceWorkerStorage set of objects.

In general QuotaClient interface methods that operate on origins will need to be modified
to operate on StorageKey partitionings instead. This work to update the interface is

https://w3c.github.io/ServiceWorker/#clients-openwindow
https://notifications.spec.whatwg.org/#activating-a-notification
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_version.cc;l=1397;drc=9438fb3fff97c803d1ead34c0e4f223db168526f
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_host.cc;l=114;drc=efb0f6367a11f87129195032753f332b925ecf5f
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_quota_client.h;l=25;drc=c602148054ec392d0cae679171d81d71f7b04974
https://source.chromium.org/chromium/chromium/src/+/master:components/services/storage/public/mojom/quota_client.mojom;l=19;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee

covered under the Storage Partitioning effort. The service worker effort will mainly need to
implement the modified interface and pass the StorageKey on to the context and registry
classes.

ServiceWorkerDatabase
The ServiceWorkerDatabase class is responsible for persisting all registration information
to disk. This is done by storing the data in a leveldb database. Our main goal will be to
enhance places where the origin is stored in the database with the StorageKey.

The origin shows up in rows with two different kinds of keys. These keys are prefixed with
eitherREG: and INITDATA_UNIQUE_ORIGIN:.

The REG: prefix keys map to a protobuf value containing the main registration info. The
overall structure of the REG: key is currently:

"REG:" + <origin> + "\x00" + <registration id>

There are a few ways to modify this key to support our needs. While not strictly necessary,
though, we would like to modify the key in a way that keeps 1st-party registrations
unmodified. This means that 1st-party key entries will be backward compatible with the
legacy code. This is an important advantage if we find we need to rollback for problems
encountered during deployment.

Therefore we propose to change the key to:

"REG:" + <origin> + ["," + <storage key>] + "\x00" + <registration id>

Basically we append a comma and the storage key to the origin when partitioned. If the
registration is for a 1st-party context then we do not append anything and the key looks
like it did previously.

Note, by "storage key" here we mean only the non-origin parts of the StorageKey. We do
not want to duplicate the origin in the leveldb key.

This gets us mostly backward compatible. Entries for 1st party service workers will work
with the old code. Some operations, such as GetOriginsWithRegistrations, may need to
be modified to be more forgiving of invalid origins. This can be done in advance of storing
any data in the new database schema, however.

Another advantage of this key structure is we don't need to run any migration on the
overall service worker database. 1st party service workers continue to be stored and

https://docs.google.com/document/d/1w5NcObenLz0sVvku8RlB42lrGdk2CNqlKqCKUe97e_Q/edit?resourcekey=0-OFhKpPLPCF7dochUyn9plQ#bookmark=id.m98iqflj1a1q
https://github.com/google/leveldb/blob/master/doc/index.md
https://source.chromium.org/chromium/chromium/src/+/master:components/services/storage/service_worker/service_worker_database.cc;l=148;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:components/services/storage/service_worker/service_worker_database.cc;l=371;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee

loaded as they used to. We only need to start storing entries in the new format when we
enable partitioning.

The `REG:` entries are used when finding a service worker with a matching scope. The
`StorageKey` will have to be plumbed through
`ServiceWorkerStorage::FindForClientUrlInDB()` and passed to
`ServiceWorkerDatabase::GetRegistrationsForOrigin()`. The `StorageKey` will then be
passed to `CreateRegistrationKeyPrefix()` to be used to create the key prefix used to seek
into the leveldb. The iteration through the known registrations may have to be modified to
ignore partitioned entries when the feature flag is disabled.

The other relevant database entry looks like:

"INITDATA_UNIQUE_ORIGIN:" + <origin>

These entries have an empty value. They essentially exist as keys in order to index the
known origins in the database.

To be consistent with the proposal for the previous entry type we propose that these keys
also get an appended command and storage key when partitioned. If the entry is for a
1st-party origin then nothing is appended.

Again, only the non-origin parts of the storage key are appended to avoid duplication.

"INITDATA_UNIQUE_ORIGIN:" + <origin> + ["," + <storage key>]

It's somewhat unfortunate that the key still has the string "origin" in it when it might be
better named "partition", but it does not seem worth triggering a full migration of the
database for this one issue.

In addition to these two keys we must also modify the value of another entry type. The
REGID_TO_ORIGIN entry maps the registration id to an origin value. Again we propose to
append ,<storage key> to the value to be consistent with the other changes.

Note, this proposal favors minimal migration and backward compatibility at the cost of
increased complexity. The code must understand what it means when there is or is not a
comma delimited value. Another approach would be to use a more fixed schema structure
where we always have a key field for the partition key. This would require migrating the
database structure. The downsides of a migration are that it is a costly one-time operation
that can be noticeable to users and it requires a reverse migration process if we need to
rollback.

Given the incremental nature of the data we are adding it does not seem worth it to do a
migration here. In addition, the service worker pattern scopes effort will likely be
performing a database schema migration later this year. We can make more structural
changes to better accommodate partitioning at that time if necessary.

ServiceWorkerScriptCache
The diagram greatly simplifies the ServiceWorkerScriptCache and its related operations.
Because of the way disk operations are located in the storage service and script loading
operation is in the browser process there are actually a number of different mojo
interfaces at work.

For the purposes of this design, however, the important thing to understand is that each
script stored in the cache is given a unique 64-bit integer id. The registration then stores a
mapping of script URLs to cache identifiers. This mapping is maintained in the
ServiceWorkerScriptCacheMap in the browser process. Each ServiceWorkerVersion
owns a separate ServiceWorkerScriptCacheMap for its particular resources.

What this all means is that there is no additional work to partition the
ServiceWorkerScriptCache and its associated code. Since each ServiceWorkerVersion
already stores its own mapping of resource URL to unique identifier the script cache gains
partitioning automatically due to the ServiceWorkerVersion being partitioned.

Related APIs
There are a number of APIs associated with service workers. We analyze these below, but
in general they do not need modification. They generally associate data with the
registration and our proposed changes above partition registrations. Therefore these APIs
get partitioning for "free".

Push Notifications
The push notification API allows pages to subscribe for push notifications using an existing
service worker registration. This invokes the PushMessagingManager::Subscribe()
method which tasks a service_worker_registration_id identifying the associated
registration. Later this id value is used to look up the registration in
PushMessagingRouter::StartServiceWorkerForDispatch() in order to fire a PushEvent
on the worker.

Since this system uses a unique identifier to find the associated registration there should
not need to be any modifications to support partitioning. The registrations will already be
partitioned resulting in different identifiers.

https://docs.google.com/document/d/17L6b3zlTHtyxQvOAvbK55gQOi5rrJLERwjt_sKXpzqc/edit#bookmark=id.9ibi9lgj0c5p
https://w3c.github.io/push-api/#pushmanager-interface
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/push_messaging/push_messaging_manager.cc;l=297;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/push_messaging/push_messaging_router.cc;l=94;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee

In addition, this code is unlikely to be exercised for 3rd party partitioned service workers
anyway. Currently we do not allow 3rd party contexts to request the push notification
permission.

As discussed above, notifications also interact with the clients.openWindow() API. To be
extra cautious we will add a check in clients.openWindow() and reject the operation if it's
called in a partitioned service worker.

Background Sync
The background sync API allows a page to register a callback to be invoked when the
browser detects the network connection has come back online.

When the SyncManager.register() method is called a mojo message is sent to
OneShotBackgroundSyncServiceImpl::Register() in the browser process. This method
includes the registration identifier, similar to push notifications above. The registration id is
persisted and later used Later BackgroundSyncManager::FireReadyEventsImpl() uses
this identifier to find the registration by calling
ServiceWorkerContextCore::FindReadyRegistrationForId().

Again, similar to push notifications above this should automatically work correctly with
partitioned service workers because the identifiers will be associated with specific
registrations. Since the registrations are partitioned the background sync operation will be
as well.

Also, background sync is similarly prevented from granting necessary permissions in 3rd
party contexts. So this code is unlikely to get exercised unless that restriction is relaxed.

Background Fetch
The background fetch API allows a page to initiate large downloads that run in the
background. When the downloads complete they may fire events on the service worker.

Initiating a background fetch triggers BackgroundFetchBridge::Fetch() in the renderer
which then sends a mojo message to BackgroundFetchServiceImpl::Fetch(). This
passes the service worker registration id value and associates it with the operation. Later
the id is used to find the registration in
BackgroundFetchEventDispatcher::LoadServiceWorkerRegistrationForDispatch().

Again, similar to the other APIs this should automatically work with partitioned service
workers. Since the API is based on the identity of the associate registration and
registrations are already partitioned the partitioning policy will be honored.

https://wicg.github.io/background-sync/spec/#sync-manager-interface
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/background_sync/one_shot_background_sync_service_impl.cc;l=43;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/background_sync/background_sync_manager.cc;l=1855;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/background_sync/background_sync_manager.cc;l=1953;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://wicg.github.io/background-fetch/#background-fetch-manager
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/modules/background_fetch/background_fetch_bridge.cc;l=55;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/background_fetch/background_fetch_service_impl.cc;l=121;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/background_fetch/background_fetch_event_dispatcher.cc;l=269;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee

This API is slightly different, however, in that it is usable from a 3rd party context. It does
not require a permission and therefore is not blocked.

Payments
Payments API appears to also be based on registration identifiers, so it should also just
work with partitioning.

Primary Use Case Coverage
This section ties the proposed changes above to the primary use cases for service workers.

Registering a New Service Worker
When a page wants to register a service worker they call the
navigator.serviceWorker.register() method. This will send a mojo message to the
ServiceWorkerContainerHost which will then use its StorageKey to invoke
ServiceWorkerContextCore::RegisterServiceWorker().

Controlling a Context on Navigation
Another primary use case is controlling a new window when the browser navigates to its
document URL.

Service workers tap into the navigation process via the
ServiceWorkerMainResourceLoaderInterceptor which calls into
ServiceWorkerControlleeRequestHandler::MaybeCreateLoader(). This code then
invokes ServiceWorkerContainerHost::UpdateUrls() via InitializeContainerHost().

At this point the ServiceWorkerContainerHost now has its load URL and StorageKey. The
ServiceWorkerControlleeRequestHandler then attempts to find a matching registration
by calling ServiceWorkerRegistry::FindRegistrationForClientUrl(). The StorageKey
will need to be passed into this method to correctly partition the resulting controlling
service worker.

Clients.matchAll()
When the service worker clients.matchAll() API is called a mojo message is sent to the
ServiceWorkerVersion::GetClients() method. This will use the
ServiceWorkerVersion's associated StorageKey to iterate through the
ServiceWorkerContainerHost list to find matching clients in the same partition.

Clients.claim()
When the service worker clients.claim() API is called a mojo message is sent to the
ServiceWorkerVersion::ClaimClients() method. This will use ServiceWorkerVersion's
associated StorageKey to find the associated ServiceWorkerRegistration by calling

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/payments/service_worker_core_thread_event_dispatcher.cc;l=180;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_controllee_request_handler.cc;l=116;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_controllee_request_handler.cc;l=130;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_controllee_request_handler.cc;l=171;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://w3c.github.io/ServiceWorker/#clients-matchall
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_version.cc;l=1351;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://w3c.github.io/ServiceWorker/#clients-claim
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_version.cc;l=1322;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee

ServiceWorkerContextCore::GetLiveRegistration(). Finally the code invokes
ServiceWorkerRegistration::ClaimClients() which iterates over all the
ServiceWorkerContainerHost instance objects. This iteration will use the passed in
StorageKey to filter on only clients in the same partition.

Clients.openWindow()
When the service worker clients.openWindow() API is called a mojo message is sent to
the ServiceWorkerVersion::OpenNewTab() method. This will check the
ServiceWorkerVersion's associated StorageKey to determine if the service worker is
partitioned. If it is, then clients.openWindow() will reject the operation with an
InvalidStateError.

Metrics

Success metrics
This feature is targeted towards restricting functionality in 3rd party contexts and is not
intended as a performance improvement. Therefore most of the success criteria will be
based on functional testing and external reports of compatibility issues.

Regression metrics
Our main regression metric will be the
`PageLoad.Clients.ServiceWorker2.PaintTiming.NavigationToFirstContentfulPaint`
histogram. We will look at two parts of the histogram:

1.​ We will look for decreases in the total count in order to assess if there is a stability
issue leading to fewer service worker controlled loads.

2.​ We will look at the median and P95 percentiles in order to determine if there is a
loading performance regression.

In addition to this UMA histogram we will also monitor crbug reports for web compatibility
problem reports.

Experiments
No planned experiments beyond a finch controlled rollout.

Rollout plan
Service worker partitioning should be rolled out simultaneously with storage partitioning.
A site may get confused if only some APIs are isolated while others are not.

https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_context_core.cc;l=718;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_registration.cc;l=279;drc=33c7ce4d629b7811df93f53f983a0bbd0364cfee
https://w3c.github.io/ServiceWorker/#clients-openwindow
https://source.chromium.org/chromium/chromium/src/+/master:content/browser/service_worker/service_worker_version.cc;l=1397;drc=9438fb3fff97c803d1ead34c0e4f223db168526f

To that end the service worker rollout will be controlled via the base::Feature flag defined
by the storage partitioning effort. It should roll out slowly in order to give developers time
to file compatibility bug reports.

In addition, we should include a planned rollback of the feature while in the canary/dev
phase of the rollout. The purpose of this will be to prove to ourselves that the feature can
be safely turned down without corrupting user data, etc.

Finally, the rollout should include an enterprise policy to allow admins to disable the
feature. After a number of milestones this policy will then be removed.

Core principle considerations

Speed
The main performance consideration for this effort is how service workers operate within
the critical path of navigation. We must be able to quickly find if there is a service worker
matching a particular URL. This design adds a new piece of information to this lookup
process.

To maintain speed of navigation we index the StorageKey information in the leveldb
database by including it in the REG: key. This will allow us to find matching service worker
registrations in the same order of complexity as before.

There will be additional registrations stored in the database, but this can already occur
today via the user visiting more origins. The quota system will clear partitions in much the
same way as origins are cleared today helping to contain the size of the database. While
there will be some increase, it should not be significant for lookup times since we are using
a database index.

Security
In general the APIs considered here are all protected by the same-origin policy. This design
does not weaken this policy. It further increases separation between different contexts by
partitioning APIs within the same-origin when loaded under different top-level sites.

This helps improve the security posture of these APIs by preventing information leakages
across host/embedder boundaries. For example, it will prevent history sniffing attacks
using service workers controlling an embedded iframe.

https://www.chromium.org/developers/enterprise-changes
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_1C-2_23104_paper.pdf

In addition, this design also enables us to begin passing top-level site information into the
network stack for fetches initiated by the service worker. This enables network level
isolation and its associated security benefits.

Privacy considerations
Similar to the security section above, this design helps improve the privacy characteristics
of the APIs being modified. Partitioning these APIs by the top-level site when used in 3rd
party contexts will prevent state from being shared in order to track the user across
different host pages.

Also, this design allows us to pass top-level site information into the network stack in order
to gain privacy benefits from isolation in the http cache and other network stack level state.

The design does not fully support passing top-level origin to the network stack due to the
service worker potentially servicing requests with multiple different values. This will have
some impact on cookie blocking and other network hooks that can specify exact origins.
While the design does not fully support this, we do support cases where these hooks match
against the top-level site which is an incremental improvement over previous status quo
where no top-level information was passed.

Testing plan
The implementation of this design should include web-platform tests to verify correctness.
We plan to specify this behavior and therefore should build tests that can be run in other
browsers.

We will use unit tests to cover any parts of the implementation that cannot be easily
verified in wpt.

Followup work
After launch we will eventually need to clean up the enterprise policy and feature flag. In
addition, there will be follow-up work to implement partitioning for other APIs; e.g.
SharedWorker, BroadcastChannel, etc.

	Partitioned Service Workers Design
	(public version)
	One-page overview
	Summary
	Platforms
	Team
	Bug
	Code affected

	Design
	Assumptions and Dependencies
	StorageKey
	Feature Flag
	QuotaManager

	Service Worker Overview
	ServiceWorkerContainerHost
	ServiceWorkerRegistry
	ServiceWorkerVersion
	clients.openWindow()

	ServiceWorkerHost
	ServiceWorkerQuotaClient
	ServiceWorkerDatabase
	ServiceWorkerScriptCache
	Related APIs
	Push Notifications
	Background Sync
	Background Fetch
	Payments

	Primary Use Case Coverage
	Registering a New Service Worker
	Controlling a Context on Navigation
	Clients.matchAll()
	Clients.claim()
	Clients.openWindow()

	Metrics
	Success metrics
	Regression metrics
	Experiments

	Rollout plan
	Core principle considerations
	Speed
	Security

	Privacy considerations
	Testing plan
	Followup work

