
Shaping Ideographic Description
Sequences (v1) — TSWG 2020-01
Fredrick R. Brennan <copypaste@kittens.ph>
July 21, 2020

I have one main desire for text shaping: the creation of a standard for an
OpenType table that implements a Chinese character description language.
Despite the excellent and wonderful work done by Ken Lunde, Qin Lu, and many,
many others over the years, it is still not possible to type an ideograph not in
Unicode until it gets in Unicode, which is a long process for most ideographs. You
might think, surely no popular ideograph is left out. Actually, many popular
ideographs remain unencoded. Indeed, an ideograph so popular it has a lengthy
description of itself on Wikipedia (not Wiktionary), � (U+030EDE; Pinyin: biáng),
has only been officially part of Unicode since 13.0. This year! It was only
proposed in 2015, in L2/15-223. I have been lamenting this in public since at 1

least October 2018. 2

Right now, thanks to a long series of proposals to the ISO/IEC JTC 1/SC 2 and
UTC beginning with one from China on November 7, 1995, X3L2/95-111, 3

“Ideographic Structure Symbol (additional request)”, Ideographic Description
Characters (IDC’s) exist.

We can see from an October 22, 1998 proposal, SC2 N3186, from Japan's
liaison to SC2, “The IDS describes the ideograph in the abstract form. It is not
interpreted as a composed character and does not have any rendering
implication.” However, this has changed. Chapter 18, Section 2, page 735 of 4

The Unicode Standard v13.0 reads in part: “An implementation may render a
valid Ideographic Description Sequence either by rendering the individual
characters separately or by parsing the Ideographic Description Sequence

4 In linked PDF, page 28.
3 This proposal seems unfortunately lost to time.
2 Brennan, Fredrick (2018). “Answer to ‘What are the disadvantages of typography?’”. Quora.
1 This document is for CJK Unified Ideographs Extension H, but U+030EDE ended up in Extension G.

1

mailto:copypaste@kittens.ph
http://www.unicode.org/L2/L2015/15223-irg-n2091-ext-h-utc.pdf
https://en.wikipedia.org/wiki/Ideographic_Description_Characters_(Unicode_block)#History
https://www.unicode.org/L2/L1998/02n3186.pdf
http://www.unicode.org/versions/Unicode13.0.0/ch18.pdf
https://www.quora.com/What-are-the-disadvantages-of-typography

and drawing the ideograph so described.” [emphasis mine] There was a lot of
precedent, for this, though. Indeed, John Jenkins was already doing it in 1999. 5

Indeed, no less than Dr. Lunde himself has released fonts which do this, first
being one just for biáng on March 24, 2014. That font replaces the IDC 6

sequence ⿺辶⿳穴⿰月⿰⿲⿱幺長⿱言馬⿱幺長刂心 with biáng. However, this is
very much an “old-style” GSUB simple substitution, stuck in ccmp, and not what I
propose. I propose extending OpenType shaping to make a best effort on
arbitrary IDC’s. Of course, fonts would need to opt in, and as the Unicode
Standard says, encodings are always preferred to IDC’s. Indeed, human
designers adding ccmp’s are preferred, but unrealistic given an unlimited number
of IDC’s exist. I will save more details for later if requested, but here’s a sketch.

The shaper needs to do three main things, using ⿰⿱口止⿱夂口 (路) as an
example:

●​ Set up necessary glyph classes for all IDC’s. Essentially, one class for the
eleven IDC “functions”, one mega class of all “normal” IDC arguments the
font supports containing the variation that takes up the full ideograph. (口,
止, …) Then, mega classes containing the same number of glyphs for all
IDC argument types. So, for 口:

○​ 口_Plain.
○​ ⿰: 口_Left; 口_Right.
○​ ⿱: 口_Above; 口_Below.
○​ ⿲: 口_LeftOf3; 口_HMiddleOf3; 口_RightOf3.
○​ ⿳: 口_TopOf3; 口_VMiddleOf3; 口_BottomOf3.
○​ ⿴: 口_Surrounding; 口_Surrounded.
○​ ⿵: 口_SurroundingFromAbove; 口_SurroundedFromAbove.
○​ ⿶: 口_SurroundingFromBelow; 口_SurroundedFromBelow.
○​ ⿷: 口_SurroundingFromLeft; 口_SurroundedFromLeft.
○​ ⿸: 口_SurroundingFromUpperLeft; 口_SurroundedFromUpperLeft.
○​ ⿹: 口_SurroundingFromUpperRight; 口

_SurroundedFromUpperRight.
○​ ⿺: 口_SurroundingFromLowerLeft; 口_SurroundedFromLowerLeft.

6 Lunde, Ken (2014). “IDS + OpenType: Pseudo-encoding Unencoded Glyphs”. Adobe, CJK Type Blog.

5 John H. Jenkins (1999). “New Ideographs in Unicode 3.0 and Beyond”. San Jose, CA: 15th International
Unicode Conference. pp. 12–21.

2

https://blogs.adobe.com/CCJKType/2014/03/ids-opentype.html
http://mirror.informatimago.com/next/developer.apple.com/fonts/WhitePapers/IUC15Han.pdf

○​ ⿻: 口_OverlaidA; 口_OverlaidB.
●​ Do necessary substitutions:

○​ sub ⿱ @_Plain' by @_Above;
○​ sub @_Above @_Plain' by @_Below;
○​ sub ⿰ ⿱ @_Above' @_Below' by @_AboveInTop

@_AboveInBottom;
○​ … and so on.

■​ It’s immediately clear that there’s some arbitrary recursion limit
here, as we must define classes for all types, and in any
event, make glyphs for them. This is where we must extend
the world of normal OpenType for best results.

●​ On ⿰, defined with width 0, and with its two anchors, “L” and “R”, attach ⿱
_InLeft to “L” and ⿱_InRight to “R”. On ⿱_InLeft, with its two anchors, “T”
and “B”, attach 口_TopInLeft to “T” and 止_BottomInLeft to “B”. On ⿱
_InRight, attach 夂_TopInRight and 口_BottomInRight. Voilà, 路.

It would be nice if we could determine the start and end of a discrete IDC
describing one character as our font should be able to handle rows of them. ⿰ is
essentially a “function” with two “position arguments”. So, in C notation, do {⿰
(⿱(口, 止), ⿱(夂, 口))} while (0). 7

It would also be nice if we didn’t need so many classes. My friend Simon Cozens
wrote a program called fontFeatures which implements a file format analogous
to, but better than, Adobe Feature Files (.fea), called “FEE”. This gets us much 8

of the way there, at least in terms of removing the tedium of writing these deeply
nested class definitions like
@_LeftInRightInBottomInBottomOf3InOverlaidA. 😵! Let’s not forget our
good friend biáng. In an OpenType font that could shape arbitrary IDS's,
assuming it had no special glyph for biáng, (presumably, many such fonts would
have special glyphs for common IDS's that look better,) and assuming that we
change nothing about the standard to help, the glyph sequence would need to be
so long I put it in its own section. (§ Biáng as input to a shaper)

8 Font Engineering (with) Extensibility

7 In case you forgot, a do {} while (cond) loop is guaranteed to run at least once regardless of
while condition.

3

https://github.com/simoncozens/fontFeatures

It would be nice if we could tell Fontconfig, CoreText, etc., what runs our font can
actually handle, perhaps via a new OpenType name ID, (in the form of, I don't
know, a PECL compatible regexp? Some kind of formal grammar? Comments
welcome.), so we get skipped even if we have all the glyphs for a run but we
can't handle it. We don't want Fontconfig to pass HarfBuzz a run our font can't
handle. For example, imagine a simple version of the font with everything
implemented up to a maximum recursion depth of 2. Fontconfig will just see we
have glyphs for ⿰, ⿱, et cetera, and all the radicals, and assume we should
handle the run. So, we will spit up junk back to the user when really we should've
just been skipped.

It would be very nice if OpenType had an ability to do simple linear scales of
referenced glyphs. If I'm not mistaken, PostScript Type 3 could. Now, of course,
I'm not saying most classes should be implemented via scales. They shouldn't!
However, we'd need far fewer glyphs if we could do even the most simple of
rectangular scales of even up to ±20%. But, my ask is really, if we're dreaming
big dreams: allow us to define anchor classes of a glyph at a certain point along
their linear interpolation gradient. Imagine a variable font with an axis for each of
the twenty-six basic ways to set any given ideograph with IDS's. That is to say,
when I add an anchor to the base glyph, besides position, I can also set any or
all of its variable font axes.

4

Biáng as input to an arbitrary IDS shaper
Note: This is just an example. Per the Unicode Consortium, IDS's should not be
used for existing characters in documents once they have encodings.

Expected output:
Input IDS: ⿺辶⿳穴⿲月⿲⿱幺長⿱言馬⿱幺長刂心 9

List of glyphs after OpenType shaping:
⿺ 辶_SurroundingFromLowerLeft
​ ⿳ 穴_TopOf3InSurroundedFromLowerLeft
​ ​ ⿲ 月_LeftOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ ⿲ ⿱ 幺_AboveInLeftOf3InVMiddleOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ 　 　 長_BelowInLeftOf3InVMiddleOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ 　 ⿱ 言_AboveInVMiddleOf3InVMiddleOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ 　 　 馬_BelowInVMiddleOf3InVMiddleOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ 　 ⿱ 幺_AboveInRightOf3InVMiddleOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ 　 　 長_BelowInRightOf3InVMiddleOf3InHMiddleOf3InSurroundedFromLowerLeft
​ ​ 　 刂_RightOf3InHMiddleOf3InSurroundedFromLowerLeft
​ 心_BottomOf3InSurroundedFromLowerLeft

9 A normalization step is required. Details TBD.

5

https://twitter.com/ken_lunde/status/1285731265199710209

	Shaping Ideographic Description Sequences (v1) — TSWG 2020-01
	Biáng as input to an arbitrary IDS shaper

