
1

Subscan - Data Dashboard
Customization Toolset

Proposer Subscan

Beneficiary 14RYaXRSqb9rPqMaAVp1UZW2czQ6dMNGMbvukwfifi6m8ZgZ

Date 28th November, 2022

Requested DOT 201,600 USD (EMA7 Price: 37,183.847 DOT)

Contact yakio.liu@subscan.io

https://polkadot.subscan.io/account/14RYaXRSqb9rPqMaAVp1UZW2czQ6dMNGMbvukwfifi6m8ZgZ
https://polkadot.subscan.io/account/14RYaXRSqb9rPqMaAVp1UZW2czQ6dMNGMbvukwfifi6m8ZgZ
https://polkadot.subscan.io/tools/price_converter?value=201600&type=time&from=USD&to=DOT&time=1670464800

2

Table of Content

Summary​ 3

Context of the Proposal​ 4

Problem Statement​ 4

Proposed Solutions​ 6

Main Features​ 7

Editor​ 7

Parser​ 16

Management Tool​ 19

Future Plan​ 20

Payment Conditions & Budget​ 23

Editor​ 23

Parser​ 24

Management Tool​ 25

Developer Documentation & Tutorial​ 26

Total​ 27

3

Summary

This proposal aims to provide ecological users with an open-source toolset, which covers all

processes of custom data dashboard and is suitable for mainstream front-end frameworks.

Users can use it to conveniently generate, configure, and manage data widgets and inject them

into any project that needs to display blockchain data.

The toolset contains three parts: Editor, Parser, and Management Tools. The editor is used to

generate and configure data widgets. The parser is used to parse and display widgets.

Management Tool is used for widgets management. They all follow the License apache 2.0.

We provide it with a wealth of widgets (covering more than 90% of the Subscan explorer

component library) and support commonly used data sources in the blockchain, such as HTTP

API, GraphQL, State, LocalStorage, etc. Any developer (even users without a development

background) can use it to customize blockchain data views easily.

1) Using this toolset, users can easily create a user-friendly explorer UI with any open-source

explorer solution (such as Subscan Essentials).

2) Using this toolset, you can customize widgets with custom data sources, such as API /

GraphQL(Subquery), that can be integrated into your websites, Dapps, or any other web views.

In the future, Subscan will develop and deploy free online services based on this toolset. It will

enable users to create and submit widgets to Subscan explorer. Our ideal goal is to create a

Dune-like data visualization publishing and collaboration platform.

Context of the Proposal

Subscan Essentials has awarded the W3F grant in 2020, which is aimed at Substrate

developers and provides solutions for Substrate based blockchain data indexing and parsing.

https://www.apache.org/licenses/LICENSE-2.0
https://www.subscan.io/
https://github.com/subscan-explorer/subscan-essentials
https://subquery.network/
https://github.com/subscan-explorer/subscan-essentials

4

As the core code of subscan, it has been used by many explorers of the Substrate ecosystem

and welcomed by the community.

During these two years, we have kept close contact with the developers of the Substrate

ecosystem. While receiving applause, we also found many shortcomings. The community

urgently needs a developer-friendly, extensible and economical explorer solution to help

them grow better. Subscan hopes to solve this problem and provide better public products and

infrastructure for the Substrate ecosystem.

Problem Statement

The blockchain explorers in the current Substrate ecosystem usually have the following

problems:

1) Unfriendly to developers

In consideration of generality, the UI/UX design of many open source explorers (including

Subscan Essentials) is kind of simple. To achieve a high-quality user experience, developers

always have to invest more manpower in design and front-end, which means that for a network

to obtain a user-friendly explorer, it will take 2-3 employees weeks, if not months, which is

costly for a small team.

It is more meaningful for them to focus on the project rather than the user experience of the

infrastructure. Therefore, a developer-friendly, efficient, and Low-Code explorer editing tool is

necessary.

2) Lack of extensibility

As the explorer that integrates the most Substrate networks, Subscan has witnessed the

development of the Substrate ecosystem. More and more projects are built based on

5

Substrate. They have made outstanding achievements in different professional directions, such

as Defi, contract, privacy, storage, cross-chain bridges, etc. The core functions of these projects

are not substrate-native modules, they are usually customized according to specific business

requirements. The project team hopes that these functions can be integrated into explorer.

Unfortunately, there are many open source explorers in the Substrate ecosystem (including

Subscan Essentials), which only provide basic functions, such as viewing blocks, accounts,

extrinsics, events, etc., and lack in-depth support for custom modules. Moreover, there is a

lack of flexible and configurable explorer frameworks in the ecosystem, so it will be difficult for

developers to customize some functions for their own networks.

3) The cumbersome development process brings cost waste

To cover the growing development and operation costs of Subscan, we had to charge new

networks for integration and feature customization. Compared with other ecological explorers'

prices, although the price of Subscan is very cost-effective, it is still a problem for some

start-up projects.

Especially for the development of custom functions, we need to communicate requirements,

reorganize and learn the on-chain logic, back-end data indexing and parsing, front-end display,

etc., which is a very long process. Therefore, every time we support a new module, we have to

pay a lot of labor costs and time. At the same time, it also brings a lot of economic burden to

consumers. We realize that in the long run, this is not a healthy development path - even if we

increase employees, we cannot customize functions for 100 networks simultaneously. And as

the project team(consumer) is most familiar with functions, they deserve to have a more

economical way to get custom features.

6

Proposed Solutions

There is an old saying in China that “Give a man a fish, and you feed him for a day; teach a man

to fish, and you feed him for a lifetime.” (授人以鱼不如授人以渔). Since no explorer can meet

the above requirements at the same time. To solve these problems, we propose an innovative

solution, that is, to develop an open, extensible, developer-friendly, and economical tool -

Subscan Explorer Widget Low Code Editor & Parser, and provide online platform services.

By using this tool, users can build explorers and develop custom views more conveniently and

efficiently. Around the management platform, all substrate developers can participate in the

construction of a shared and collaborated blockchain data ecology.

Use Case:

1) Using this Toolset, users can easily create a user-friendly explorer UI with any open-source

explorer solution (such as Subscan Essentials).

2) Using this Toolset, you can create custom data widgets with custom data sources such as

API / GraphQL(Subquery), which can be integrated into your websites, Dapps, or any other web

views that need to display blockchain data.

E.g., This is a Crowdloan Dashboard on Darwinia's official website, and it took typically 2-3

weeks to develop. Using this toolset, it may take only 15 minutes to configure and generate the

core data view widget.

https://github.com/subscan-explorer/subscan-essentials
https://subquery.network/
https://darwinia-network.github.io/home-v1/plo_contribute

7

Main Features

Toolset contains three parts: Editor, Parser, and Management Tools. The editor is used to

generate and configure data views. The parser is used to parse and display views. Management

Tool is used for view management. They all follow the License apache 2.0.

The Editor

The Editor is the interface to create, configure, and export Widgets. We have rich built-in

widgets and support commonly used data sources, such as HTTP API, GraphQL, State,

LocalStorage, etc. Any developer (even users without coding background) can use it through

simple learning and easily customize the blockchain data view.

https://www.apache.org/licenses/LICENSE-2.0

8

1)​ Data Binding

The Editor has a built-in responsive state structure to fulfill the interactive mode of "data-view"

binding. When the state of a component changes, all components referencing the state will be

updated automatically.

For example, if we want the label to render the currently selected page number by the

pagination component, we only need to fill in {{ pagination.currentPage.toString() }} in the page

number label display value. When clicking on a different page number, the page number label

will display the value in real-time.

2)​ Type safety

Typescript has become the mainstream language that supports type verification for front-end

developers. Type safety can improve the development experience and code quality. Typescript

and JSON schema is widely applied in the Editor to achieve an excellent Type system. For

example, if a component requires a Number type, but the provided value is a String, then the

editor will throw an exception in real time to remind developers and users.

9

3)​ Excellent scalability

After sufficient market research, Subscan analyzed common blockchain data display scenarios

and business requirements and selected and crafted a batch of built-in Widgets. These

Widgets not only simply display data, but also offer excellent user experience. They have a

wide range of usage scenarios. They can be used to build explorers conveniently and quickly,

and are also suitable for any scenario where data needs to be displayed.

In this proposal, we will provide the following 9 components. More components will be

released when they are ready. Good community-created widgets will be promoted and

included in the built-in widget library.

10

●​ Text: Title, Heading1, Heading2, 、Normal text (font, size, color), Links.

●​ Table

11

●​ Status data (Icon+Title+Data)

●​ Detail Panel

12

●​ Tab

●​ Timeline

13

●​ Line chart (single & multiple)

●​ Stacked chart

14

●​ Circular ratio chart

Use Case：​

The following takes the Table as an example to show the configuration process in a real-world

environment:

Step1: Drag the Table component into the editing canvas:

15

Step2: Configure the Table in inspect tab

16

4)​ Support multiple data sources support​

Editor supports common data sources, such as HTTP API, GraphQL, State, LocalStorage, etc.

The Parser

The Parser is like a video player, and JSON data is the video source file. Subscan widget data is

in flat JSON format to avoid deep nesting. You can use the Editor to generate and export JSON

data for the Parser to quickly render Widgets on your own site.

1)​ Adapt to mainstream front-end frameworks​

If your site is based on react, we provide a React version SDK, you can use it like a normal

17

component. If your app is developed based on Vue, there is also an almost perfect alternative

solution.

React SDK：

Vue：

18

Example of integration in a Vue application:

2) Backward compatibility

Each Widget JSON data contains metadata, which is used to record the version number, name,

description, etc. Through these metadata, the Parser can accurately obtain the parsing rules of

the Widget and display the Widget of the corresponding version. In the latest version of the

Parser, it can perfectly adapt to the widget of the historical version.

3) Customize

Dark Mode: Dark mode is a display mode with high contrast or inverse color mode. This mode

is becoming more and more popular among users. It is believed to reduce eye strain and make

reading easier than traditional black-on-white text.

19

Theme style: The tool provides a set of outstanding default styles. On this basis, the Parser

provides an interface so the site can personalize the color theme of the widget, making it more

colorful and better reflecting the brand style.

Management Tool

A local management tool is necessary for each user. We think downloading every widget and

editing original files is not user-friendly.

1) Widget Storage

Users can view all widgets created or edited in their local history in the Widget Management

tool. It will greatly reduce the obstacles caused by repeated import and export and file

management. Here you can also quickly create new Widgets or delete unnecessary Widgets.

2) Widget Management

Users can perform operations such as duplicating, exporting, editing information and content,

deleting, and previewing their widgets.

Duplicate function: create a copy of Widget

20

Export function: download the source code file of Widget, which is convenient for Widget to

communicate and share among different users, or apply the code to your own website.

Edit information: used to mark your own Widget(Network, function name)

Editor: enter the editor state to edit the Widget

Preview: Create a temporary link to view the display of the Widget on the web page and adjust

the page size to observe the adaptation of various screen sizes.

Future Plan

We are very optimistic about the future of this toolset and have many plans that we would like

to share with the community, although these are not included in this proposal.

1) Open Platform Integration

A hosted version of the management tools will be integrated into the Subscan Open Platform.

Web3 users can access it without deployment headaches.

2) Widget Management

Users can create, delete, duplicate, share, import, export, preview, etc., on the platform.

Since different users in the same organization have different data research focuses, Widget

Management provides a collaboration platform. Users can share Widgets with others in the

same organization, and they can view or duplicate Widgets from other users in the same

organization. It will significantly enhance the user's ability to create visual data.

3) Subscan Integration

21

We strongly encourage users to share their data visualization with other partners in the

ecosystem. Therefore, Subscan explorer will integrate widgets provided by users.

After the user publishes widgets to the Subscan or other websites, there is also a version

control system to facilitate the user to view the historical version, version backtracking, update,

etc.

4) Security

To ensure the safety and reliability of Widgets published by users, we will also provide a

backstage management platform for auditing the security of Widgets.

22

It can avoid the possibility of some malicious attacks and reduce the risk to the entire system.

We will continue to conduct security audits on the Widgets submitted by users and feedback

suggestions to users.

5) More Widgets

We will continue to add more Widget components to enrich the way user data is presented.

In the future, we will allow users to customize their own Widgets vision to enhance the

adaptability of Widgets.

6) Data Visualization Platform

In the future when more users are familiar with the Widget editor, we will develop a Dune-like data

visualization publishing and collaboration platform. On this platform, all community users can

publish their own analysis reports with widgets. The platform will provide various points of view for

all ecological participants.

23

Payment Conditions & Budget

Editor

1) Task list:

​ Market research, user demand research

​ Feasibility Analysis / Prototyping

​ UI/UX Design

​ Data and protocol standard formulation

​ Data component standard formulation

​ Framework design and development scaffolding construction: typescript, eslint, store,

and common hooks required for front-end engineering

​ Adapt to common front-end frameworks such as React and Vue

​ Common components development: Text, Table, Status data, Tab, Timeline, Charts

​ Import/export widgets configuration

​ Support data source- GraphQL API

​ Support data source- Subscan API

​ Type safety validation and exception reminder

​ Safety check for user input in editor

​ Testing and bug fix

2) Timeline:

9.5 Weeks: November 1, 2022 - January 6, 2023

3) Detail:

24

Position Workload (Day) Daily salary (USD) Amount Budget (USD)

Front-end developer 45 600 3 81,000

UI/UX designer 18 500 1 9,000

Product manage 22 500 1 11,000

Test Engineer 19 450 1 8,550

Project manager 18 500 1 9,000

Subtotal: $118,550

Parser

1) Task List：

​ Widget JSON data format validation

​ Adapt to common front-end frameworks such as React and Vue

​ Build widget viewer

​ UI/UX Design

​ Support dark mode

​ Support custom theme style

​ Testing and bug fix

2) Time Line:

5 Weeks: January 2, 2023 - February 3, 2023

3)Detail:

25

Position Workload (Day) Daily salary (USD) Amount Budget (USD)

Front-end developer 18 600 3 32,400

Product manager 8 500 1 4,000

UI/UX designer 6 500 1 3,000

Test Engineer 10 450 1 4,500

Project manager 12 500 1 6,000

Subtotal: $49,900

Management Tool

1) Task list:

​ Management platform business research

​ Feasibility Analysis / Prototyping

​ Framework design and development scaffolding construction: typescript, eslint, store,

and common hooks required for front-end engineering

​ Design file for management tool

​ Widgets management

​ Adaptation with Editor

​ Testing and bug fix

2) Timeline:

3 Weeks: January 25, 2023 - February 20, 2023

26

3)Detail:

Position Workload (Day) Daily salary (USD) Amount Budget (USD)

Front-end developer 14 600 2 16,800

UI/UX designer 5 500 1 2,500

Product manager 4 500 1 2,000

Test Engineer 5 450 1 2,250

Subtotal: $23,550

Developer Documentation & Tutorial

1) Task List:

​ Editor developer documentation

​ Parser developer documentation

​ Management tool developer documentation

​ Editor user tutorial

​ Management platform user tutorial

​ Editor video tutorial

​ Management tool video tutorial

2) Timeline:

2 Weeks: February 15, 2023 - February 28, 2023

27

3)Detail:

Position Workload (Day) Daily salary (USD) Amount Budget (USD)

Front-end developer 6 600 1 3,600

UI/UX designer 4 500 1 2,000

Product manager 8 500 1 4,000

Subtotal: $9,600

Total

The total amount above is $201,600, and the amount of DOT will be converted based on the

EMA7 price on the day of the official submission.

2022-12-08 01:55:42 (+UTC), Block #13260191

DOT EMA7 Price (USD): 5.421;

Number of DOT: 37,183.847

https://polkadot.subscan.io/tools/price_converter?value=201600&type=time&from=USD

&to=DOT&time=1670464800

https://polkadot.subscan.io/tools/price_converter?value=201600&type=time&from=USD&to=DOT&time=1670464800
https://polkadot.subscan.io/tools/price_converter?value=201600&type=time&from=USD&to=DOT&time=1670464800

	Subscan - Data Dashboard Customization Toolset
	Table of Content
	Summary
	Context of the Proposal
	Problem Statement
	Proposed Solutions
	Main Features
	The Editor
	The Parser
	Management Tool

	Future Plan
	
	Payment Conditions & Budget
	Editor
	Parser
	Management Tool
	Developer Documentation & Tutorial
	Total

