- 1. an irrational number that is approximately 2.718281828
- **2.** exponential growth; A function of the form $y = ae^{rx}$ shows growth when a > 0 and r > 0. In this function, $a = \frac{1}{3}$ and r = 4.
- 3. e^{8}
- **4.** e^2
- 5. $\frac{1}{2e}$
- **6.** $9e^3$
- 7. $625e^{28x}$
- 8. $\frac{64}{e^{6x}}$
- 9. $3e^{3x}$
- **10.** $2e^{4x}$
- 11. e^{-5x+8}
- 12. e^{2x+7}
- **13.** The 4 was not squared; $(4e^{3x})^2 = 4^2e^{(3x)(2)} = 16e^{6x}$
- 14. The exponent of the denominator was added, not subtracted, from the exponent of the numerator;

$$\frac{e^{5x}}{e^{-2x}} = e^{5x - (-2x)} = e^{5x + 2x} = e^{7x}$$

- **23.** D; The graph shows growth and has a y-intercept of 1.
- **24.** A; The graph shows decay and has a y-intercept of 1.
- **25.** B; The graph shows decay and has a y-intercept of 4.
- **26.** C; The graph shows growth and has a y-intercept of 0.75.
- **27.** $y = (1 0.221)^t$; 22.1% decay

28. $y = (1 - 0.528)^t$; 52.8% decay

29. $y = 2(1 + 0.492)^t$; 49.2% growth

30. $y = 0.5(1 + 1.226)^t$; 122.6% growth

domain: all real numbers, range: y > 0

domain: all real numbers, range: y > 0

35. the education fund; the education fund

37. Sample answer:
$$a = 6, b = 2, r = -0.2, q = -0.7$$

38. Let
$$m = \frac{n}{r}$$
, so $n = mr$ and $\frac{r}{n} = \frac{1}{m}$.

Substituting into $A = P\left(1 + \frac{r}{n}\right)^{nt}$ gives $A = P\left(1 + \frac{1}{m}\right)^{mrt}$ which can be written as $A = P\left[\left(1 + \frac{1}{m}\right)^m\right]^n$. By definition, $\left(1 + \frac{1}{m}\right)^m$ approaches e as m approaches $+\infty$. So, the equation becomes $A = Pe^{rt}$.

- 39. no; e is an irrational number. Irrational numbers cannot be expressed as a ratio of two integers.
- **40.** no; The value of f(x) at x = 1000 is too small for the calculator to display, so the calculator rounds the value to 0. The function $f(x) = e^{-x}$ has no x-intercept, but $f(x) \to 0$ as $x \to \infty$.
- **41.** account 1; With account 1, the balance would be $A = 2500 \left(1 + \frac{0.06}{4}\right)^{4 \cdot 10} \approx 4535.05 . With account 2, the balance would be $A = 2500e^{0.04 \cdot 10} \approx 3729.56 .
- **42. a.** ∞ **b.** -3

- **43. a.** $N(t) = 30e^{0.166t}$
 - b.

- **c.** At 3:45 P.M., it has been 2 hours and 45 minutes, or 2.75 hours, since 1:00 P.M. Using the *trace* feature of the calculator, type 2.75 to find the point (2.75, 47.356183). At 3:45 P.M., there are about 47 cells.
- **44.** 6×10^{-3}
- **45.** 5×10^3
- **46.** 2.6×10^7
- **47.** 4.7×10^{-8}
- **48.** $y = \frac{x}{3}$
 - $y = \frac{x-5}{3}$

