
[Draft Proposal] Exponential Backoff and
Jitter for Agent Reconnection

Google Summer of Code Program 2023 Project Proposal
Vandit Singh

vanditsinghkv@gmail.com
Vandit1604

 1

mailto:vanditsinghkv@gmail.com
https://github.com/Vandit1604

Table of Content​

[Draft Proposal] Exponential Backoff and Jitter for Agent Reconnection​ 1
Table of Content​ 2
Project Abstract​ 4
Project Description​ 4

Exponential Backoff​ 4
Jitter​ 5
Missing Features in Jenkins​ 6

Graphical Representation of Agent Reconnection​ 7
1. Linear Agent Reconnection​ 7
2. Exponential Agent Reconnection​ 8
3. Exponential Backoff v. Exponential Backoff with Jitter​ 9
4. Estimated Probabilities after implementing Exponential Backoff and
Jitter​ 10

Implementation of Exponential and Jitter​ 11
Overview​ 11
Phase 1: Stress Testing Framework​ 12

What is Stress testing?​ 12
Phase 2: Implementing Exponential Backoff in Remoting​ 13

i) Introducing retries and maxRetries​ 13
ii) We can keep trying to connect to the server and if the
connection succeeds we can break out of the loop​ 14
iii) Calculating Backoff delay with Jitter​ 15

Phase 3: Unification of Swarm plugin and Remoting​ 16
i. Finding Commonalities​ 17
ii. Refactoring code​ 17
iii. Updating interfaces​ 17
iv. Migration​ 17

Phase 4: Implementing a chain of Exponential Backoff and Jitter in
Remoting and more strategies like Swarm plugin​ 18

I) NONE​ 18
II) LINEAR​ 18

 2

III) BACKOFF​ 18
IV) CHAIN_BACKOFF​ 18

Project Deliverables​ 19
Proposed Timeline​ 19

Application Period Begins (March 20 - April 4, 2022):​ 19
Acceptance Waiting Period (April 5 - May 3):​ 19
Community Bonding Period (May 4 - May 28):​ 20
Coding Period (May 29 - July 14):​ 20
Final Coding Period for Standard Route (Aug 21 - Aug 28):​ 22

Future Improvements​ 23
Continued Involvement​ 23
Conflict of Interests or Commitment(s)​ 23
Major Challenges Foreseen​ 24
References​ 24
Relevant Background Experience​ 25
Personal​ 25
Availability and commitments​ 26
Experience​ 26

Open Source Contributions:​ 26
Language Skill Set​ 28
Tools Skill Set​ 28
Reference Links and Web URLs:​ 29

 3

Project Abstract

This project aims to implement Exponential Backoff and Jitter for Agent
Reconnection in Remoting Component of Jenkins to reduce the load
reconnection attempts when a large controller restarts. It also aims to add
Jitter in Swarm Plugin’s existing Exponential Backoff Strategy to reduce the
chances of collision.

Project Description

A large Jenkins controller is a controller with a large number of agents
connected to it. When the controller is restarted for any reason, The connection
between All the agents and controller break off. These agents try to reconnect
with the Controller at once causing the Thundering Herd Problem.

These reconnection attempts are not effectively handled by remoting as is
currently done as a large amount of requests causes collision and increases
load on the controller causing controller failures.
This leads to transient failures and connection between Jenkins controller and
Jenkins agent cannot be established as a result.

We can solve the Thundering Herd problem with the Exponential Backoff
Strategy.

Exponential Backoff
Exponential Backoff is an algorithm used in computer networks but in our
case it would be used to increase the wait time between the reconnection
attempts by agents. In simple terms, If an agent attempts to reconnect to a
controller and the reconnection attempts fails. The agent will wait for a

 4

https://en.wikipedia.org/wiki/Thundering_herd_problem

calculated amount of time and this time will be calculated by a predefined
formula for Exponential Backoff which is:

Backoff delay = Interval * ExponentRetry-attempt

Exponential Backoff would enable us to avoid collisions between agents'
reconnection attempts and would decrease the network congestion and load
on the controller side.

Exponential Backoff is nice and dependable. It also increases the efficiency of
agent reconnection but still there is one corner case to consider which is when
all the agents fail to connect to the controller. Then all of them will try again
simultaneously and that won’t be desirable even with the spaced intervals
calculated exponentially but if we could add or subtract a calculated random
value with each agent’s wait time/delay, synchronization will never happen
then we would be able to break the simultaneous retry attempts. This random
value is called Jitter.

Jitter
A Random value can be added or subtracted to Backoff Delay to break the
synchronization

Backoff delay with jitter = Backoff Delay ± Random no.

Exponential Backoff would enable us to avoid collisions between agents'
reconnection attempts and decrease the network congestion and load on the
controller side.

The swarm plugin already uses the Backoff Strategy to deal with the
Thundering herd problem, what it lacks right now is Jitter i.e., randomness in
reconnection attempts, there is currently no randomization between the
reconnection attempts which only reduces the number of Agents trying to

 5

reconnect at a time. Adding randomness between the reconnection attempts of
all the agents will increase the chances of connecting to a Jenkins Controller
without inducing load on it.

Including this feature in Jenkins can alleviate the load on the controller and
minimize conflicts among attempts. With this capability, Jenkins users can
proactively prevent transient failures. Currently, when agents fail to connect,
users tend to report it as a bug. However, there is a high likelihood that the
issue will not persist if they restart the process later.

I chose this project because I find networking really intriguing and learning
networking while working on something including networking would be a
win-win.

Missing Features in Jenkins
●​ Inefficient reconnection handling in remoting
●​ Chances of collision are still high even after the Backoff Strategy in

swarm. Adding jitter will reduce the collision.
●​ No implementation to deal with Thundering Herd Problem

 6

https://en.wikipedia.org/wiki/Thundering_herd_problem

Graphical Representation of Agent
Reconnection

I’ve tried to model the behaviour of the reconnection attempts that happen
currently in Jenkins and how my project will improve it.
These values are probable values and not real values. I have calculated them
according to the algorithmic trend of xretry techniques in remoting.

1.​Linear Agent Reconnection

This Graph shows how things currently work in remoting the agent
reconnection is linear it means after every attempt to connect to the controller
if connection is rejected, agent waits for 10s and then tries again.

 7

2.​Exponential Agent Reconnection

This graph shows how the agent attempting to reconnect will wait for
Exponential Intervals. This has two benefits

a.​ Collision Avoidance
b.​ Probability to reconnect is very high in initial attempts

The only corner case we have is for the last attempts the probability to connect
is very low however this is only hypothetical for now. Because if no race
condition between the agents will happen, the later retries will also connect
even with low chances. However if this problem surfaces itself, We can try

a.​ Subtracting the jitter from the delay time
b.​ Ceiling for the delay
c.​ If possible, Chains of backoff would perfectly cater this.

 8

3.​Exponential Backoff v. Exponential Backoff
with Jitter

This graph shows the difference between Exponential backoff’s performance
and Exponential Backoff with Jitter’s performance. Backing the increased time
if you see in the graph below. You’ll see that even if the time increases for later
retries the probability of collisions will remain constant at roughly around 0.1.

 9

4.​ Estimated Probabilities after implementing
Exponential Backoff and Jitter

Above graph shows the estimated probabilities after the implementation of
Exponential Backoff and Jitter. The Gray line denotes the collisions between
agent retry attempts which can be seen as very low. Black line in the above
graph shows the probability of successful connection.

 10

Implementation of Exponential and
Jitter

Overview
When communicating with external components or services, failures may occur
due to various factors such as network issues or server overload. Some of
these failures may be considered "hard" errors, indicating a permanent and
unrecoverable issue with the service that cannot be resolved through retries.

However, there are also "temporary" failures, known as transient failures, which
occur when the external service is temporarily unavailable or fails to connect.
These issues are often caused by transient problems such as network
congestion or a high number of concurrent requests. While transient failures
may cause temporary disruptions in service, they are not indicative of any
permanent problem with the service. In fact, retrying the call may result in a
successful connection as the issue may have been resolved by the time of the
subsequent call.

Retry techniques deal with transient failures very well. Some techniques work
better than others, See Tenacity docs explaining all the retry algorithms.

Now, How to deal with Transient Failures? The Solution is Retry Techniques to
make sure when you are retrying one of the times the transient failure will
cease to exist.
There are lots of retry algorithms now which one to implement?

The Final remoting component I have in my mind is to implement something
like the Swarm plugin. Currently if you see in RetryBackOffStrategy.java in
Swarm Plugin, it has Three retry logics NONE, LINEAR, EXPONENTIAL but uses
the Exponential Backoff as the default retry strategy. Implementing this is
essential for unification of retry logic in swarm and remoting.

 11

https://tenacity.readthedocs.io/en/latest/
https://github.com/jenkinsci/swarm-plugin/blob/master/client/src/main/java/hudson/plugins/swarm/RetryBackOffStrategy.java

Phase 1: Stress Testing Framework
What is Stress testing?
Stress testing helps you to evaluate the robustness and reliability of your
webserver beyond regular demand. It is usually done to guarantee that the
server does not crash while under heavy traffic, as well as to reveal crashes or
hangs caused by concurrency difficulties, resource depletion, deadlocks, and
other situations.
Apache Jmeter is a great tool for Stress testing on a controller so I'm thinking
of using it for Stress testing.
Methodology

1.​ Find the endpoint
Find the endpoint on which we will load the test and get the time
response time which in our case should increase exponentially.

2.​ Test the endpoint
Using k6 we will have an advantage, as k6 can be used with grafana to

​ have a dashboard to output the stats.
3.​ Use grafana dashboard to show the stats

The stats can be shown on terminal as well as used with grafana
dashboards to show stats.

Todo: use k6 and Jmeter and then choose one of them. Write why I chose the
tool. Its benefits and use cases.

 12

Phase 2: Implementing Exponential Backoff in
Remoting
As the retrying and connection logic of remoting lives in Engine.java after
reviewing past PRs attempting to tweak the intervals between retries, I was
convinced about that. Some methods which would be changed

●​ run()
​ Which startups up the connection between Jenkins Controller and Agents
Via Different Set of Defined Protocols and Websocket connection.

●​ runWebSocket()
This method actually establishes a WebSocket connection between a Jenkins
agent and the Jenkins controller via Channel given by ChannelBuilder which is
responsible for Communication between Agents and Controllers. Then, the
method enters a loop in which it repeatedly attempts to establish a WebSocket
connection to the Jenkins controller by creating an AgentEndpoint object and
using it to connect to the server via a ClientEndpoint. The AgentEndpoint
object is responsible for handling events that occur during the lifetime of the
WebSocket connection, such as when the connection is opened, when a
message is received, when an error occurs, and when the connection is closed.

If the WebSocket connection is established successfully, a new Channel object
is created using a ChannelBuilder. The Channel object is used to communicate
with the Jenkins controller over the WebSocket connection.

If the WebSocket connection is closed, the method attempts to reconnect to
the Jenkins controller by restarting the loop.
I’m thinking of rewriting the retrying logic like this:

i) Introducing retries and maxRetries
Introduce retries and maxRetries. As both retries and maxRetries both are self
explanatory. Taking 10 retries will be sufficient.

 13

https://github.com/jenkinsci/remoting/blob/a890642ed1e4ff717bb601812a2c19f6aba64d40/src/main/java/hudson/remoting/Engine.java#L897

int retries = 0;​
int maxRetries = 10;

ii) We can keep trying to connect to the server and if the
connection succeeds we can break out of the loop

while (true) {​
 try {​
 // connect to the server​
 hudsonUrl = candidateUrls.get(0);​
 wsUrl = hudsonUrl.toString().replaceFirst("^http",

"ws");

ContainerProvider.getWebSocketContainer().connectToServer(new

AgentEndpoint(),

ClientEndpointConfig.Builder.create().configurator(headerHandler

).build(), URI.create(wsUrl + "wsagents/"));​
​
 // if we made it here, the connection succeeded, so

break out of the loop​
 break;​
 } catch (IOException e) {

 retries=retries+1;​
 if (retries > maxRetries) {​
 throw e;​
}

If an exception is thrown while connecting to the server, we increment the
retries counter and calculate the backoff delay using the exponential backoff
formula (2 ^ retries) * 1000. We add some jitter to the backoff delay by adding a
random number between 0 and 1000 milliseconds.

 14

iii) Calculating Backoff delay with Jitter
We can calculate Backoff delay like this, for later retries time intervals can go
upto hours so I would use a min(maxDelay,Backoff_delay) to use the minimum
time so the time interval is capped and would not go till hours of wait time.

Backoff delay = Interval * Exponent Retry-attempt

// calculate the backoff delay and add jitter​
int backoff = (long) (Math.pow(2, retries) * 1000) + (long)

(Math.random() * 1000);​
LOGGER.log(Level.WARNING, String.format("Connection to failed,

will retry in %d ms (retry #%d)", backoff, retries), e);​
 try {​
 Thread.sleep(backoff);​
 } catch (InterruptedException ie) {​
 Thread.currentThread().interrupt();​
 throw new

RuntimeException("Interrupted while sleeping during backoff",

ie);​
 }​
 }​
}

The problem it can cause if an agent doesn’t get connected till 14 retry
attempts it will retry again after roughly 4 hours if we consider these
parameters of interval starting with 1 second and 2 is the base and the retries
goes from 0 to 14. Images are from Exponential Backoff Calculator

 15

https://exponentialbackoffcalculator.com/

Considering this maxRetries should be 10 or After a number of retries we can
stop using the time interval of the previous attempt but start from 0 until the
total retries become 0.
For the reviewer : Should I elaborate more on this ?
[MILESTONE 1]

Phase 3: Unification of Swarm plugin and
Remoting

After phase 2, the Process of Unification will be somewhat in the initial stage.

 16

Starting from the swarm plugin which has less complex architecture I can start
by

i.​ Finding Commonalities
As swarm plugin is a remoting wrapper and is built upon the remoting
sub-system. It has CLI and Options for choosing the retry algorithm.

ii.​ Refactoring code
●​ Refactoring code in remoting

○​ Deduplication of code in remoting

●​ Refactoring code in swarm plugin
○​ The functionalities that are available in remoting and swarm

plugins can be backported.

iii.​ Updating interfaces
We can add the functionalities already present in swarm plugin by extending
the existing interfaces in remoting. This will make sure that functionalities
present in swarm persist even after the migration to remoting.

iv.​ Migration
This stage is when the migration is almost at its completion, we would track
the bug report to see if migration has caused some issues.

Keeping in mind about the Options for Retrying logic but I would need some
guidance in this matter from the mentors so I don't break functionality for
some other plugin using swarms and its retrying logics.

i) Unification can be done by changing the methods in swarm to use the
methods from remoting if they exist or extending interfaces.

NOTE: To have backward compatibility we won’t remove the existing
implementation first just add a new one to check if everything is working.

 17

Phase 4: Implementing a chain of Exponential
Backoff and Jitter in Remoting and more
strategies like Swarm plugin

Implementing Jitter in Swarm Plugin. After the implementation of Exponential
Backoff and Jitter, I would like to add the same functionality that swarm plugin
has the Option of having 4 Retry logics.

I) NONE
Agent keeps retrying until it connects with the controller with no interval.

II) LINEAR
Agent keeps retrying, taking a time interval between. It keeps retrying until it
connects with the controller. The time interval doesn’t change with the number
of attempts.

III) BACKOFF
Agent keeps retrying after a time interval and the time interval keeps
increasing exponentially until it connects with the controller.

IV) CHAIN_BACKOFF
I want to try Introducing a chain of backoffs so an agent doesn’t get large
intervals between connections. Even though the user can retry via tha Jenkins
UI on the controller, Jenkins should be able to deal with this too. I think this
will be a great addition to the remoting but I need to research more about this.
For reviewer: This is not written in the project idea so should i write this
section in Post GSOC section?

I’m looking forward to changing the calculation of Backoff like I have done
below by introducing loops. It will shows the behavior like this

Wait 3s for 3 attempts, 7s for the next 2 attempts and 9s for all attempts
thereafter

 18

// todo: add code for chain of backoffs

I’m looking forward to implementing the option just like the Swarm plugin
using Enums and the OptionHandler approach is suitable for this as
implemented in the swarm plugin.

Project Deliverables

i) An updated remoting component with Exponential backoff and jitter
implemented.
ii) Unification of swarm plugin and Remoting.
iii) Add more reconnection strategies in remoting. [Stretch goal]

Proposed Timeline

Application Period Begins (March 20 - April 4, 2022):
I have my exams from March 21 - April 1 so I won't be able to contribute much
in this time period. However, I have pre-planned my study schedule so that I
can set aside 2 hours per day to research more about the project and
understand the complex remoting codebase.

Acceptance Waiting Period (April 5 - May 3):

●​ During this period, I'll discuss more about the project with the mentors
and Remoting developers and Swarm developers for better insight into
the project and resolve any conflicting ideas.

●​ I’ll read past discussions related to reconnection of agent to controller.

 19

●​ I think it is important to learn a bit about the workflow they expect me to
follow and the code styles I need to learn.

Community Bonding Period (May 4 - May 28):

●​ Schedule meetings with the mentors and other community members to
get to know them and discuss the project.

●​ Discuss project approach in further depth with the mentor/s. Figure out if
there is any better approach to the problem or the solution could be
improved in any way.

●​ I’ll have discussions with long time remoting and swarm plugin
developers/maintainers about my approach.

●​ I’ll set up the dev environment for testing and code changes for Coding
period 1. I plan to start early making sure I have a buffer of 10 days for
my doubts.

Coding Period (May 29 - July 14):

This is draft timeline based on my current knowledge
I would write Tests and Documentation on Weekends and Code on Weekdays

Week Task Deliverables

Week 1 & 2
[May 29 - June 10]

​Find the endpoint to
which agents request
for reconnection.

​Create benchmarking
metric using JMeter or
k6(Yet to decide)

​Setup grafana
dashboard to visualize
the information like
time taken for
reconnection
request(full loop
POST+GET request)

Benchmarking metric for
remoting to demonstrate
what happens to the
behaviour of remoting with
changes to the code.

Stress testing framework for
stress and load testing, to
check the reliability of the
remoting and agent
reconnection.

 20

Week 3 & 4
[June 11 - June 24]

​Implement Exponential
Backoff and Jitter in
remoting

​Implement Jitter in
swarm plugin

●​ Updated remoting
component

●​ Updated swarm
plugin

Week 5 & 6
(25 June - 13 July)

​Implementing retry
logic as they are
implemented in swarm
plugin using
OptionHandler class.

●​ Updated remoting

component with more
than 1 retry logic

●​ Start of unification of
swarm plugin and
remoting

Week 7 & 8
(14 July - 28 July)

​Deduplication of code
from remoting

​Refactoring code in
remoting

●​ Clean remoting code

base so we can start
working on extending
the existing interfaces

 21

Week 9 & 10
(29 July - 13
August)

​Add swarm logics in
remoting

​Extending interfaces to
have swarm
functionalities

●​ Updated Remoting

with swarm
functionalities

Week 11 & 12
(13 August - 28
August)

​Working on unification
of remoting and swarm

●​ Complete Unified
remoting and swarm
plugin

Final Coding Period for Standard Route (Aug 21 - Aug 28):

I expect the project to be completed successfully by this time. Around this
time, I want to finish any remaining formalities from the GSoC or Jenkins sides.
The code would already be published on GitHub and available to use.

 22

Future Improvements

●​ If Chains of Exponential Backoff is not implemented during the program
itself i would like to work on it after the program

●​ Improve and maintain the Stress testing framework.
●​ Adding CLI to the remoting subsystem.

Continued Involvement

●​ By contributing to Jenkins I learnt a lot of things and I would love to keep
contributing to Jenkins.

●​ I saw some discussion related to UI/UX so i’ll be more than happy to be
part of UI/UX sig.

●​ Also I plan to learn more about DevOps and Contribute to DevOps related
repositories in Jenkins.

●​ I would love to be a part of discussions going on in the community airing
opinions and reviewing. Mentoring would be another interesting role in
helping contributors. Seeing myself as a maintainer of Jenkins
repositories is a great opportunity for me and I would love to adopt a
plugin too.

Conflict of Interests or
Commitment(s)

My exams will be conducted during mid-August (the final date is not decided
yet). During my exams I won't be able to give more than 25 hours for around 2
weeks. Other than that There is no conflicts of interest for me under GSoc 2023.

 23

I commit myself entirely to Jenkins Exponential Backoff and Jitter for agent
reconnection for GSOC-2023. I will be available from June to August to work as a
committed GSoC intern with 6-7 hours/day. I’ll start work early from May. The
code I'll write will not be claimed by my university.

Major Challenges Foreseen

●​ There’s a possibility that in future the retry interval for later retries for
some agents can go above 60 mins. This behaviour is not
●​ During unification of retry logics backward compatibility could be a
challenge but we can overcome it by thorough research and guidance from the
mentors.
●​ I would like to learn more about the Stress testing framework because
right now I don't have much knowledge of it. It will be a interesting challenge
through which i can learn something new

References

●​ https://www.jenkins.io/projects/remoting/
●​ https://www.jenkins.io/doc/book/using/using-agents/
●​ https://en.wikipedia.org/wiki/Jitter#Testing
●​ https://www.baeldung.com/resilience4j-backoff-jitter
●​ https://github.com/jenkinsci/remoting/pull/379
●​ https://en.wikipedia.org/wiki/Thundering_herd_problem

 24

https://www.jenkins.io/projects/remoting/
https://www.jenkins.io/doc/book/using/using-agents/
https://en.wikipedia.org/wiki/Jitter#Testing
https://www.baeldung.com/resilience4j-backoff-jitter
https://github.com/jenkinsci/remoting/pull/379
https://en.wikipedia.org/wiki/Thundering_herd_problem

Relevant Background Experience

I have been contributing to Jenkins for roughly around 5 months. I have good
knowledge of Git and Github and I follow all the good practices.
My Journey with Jenkins started in August 2022 and I have learnt so much in
these past few months while contributing and exploring various repositories in
jenkinsci and jenkins-infra. My Jenkins muscle started with modernizing
plugins and later I was solving issues on jenkins.io. I also did some PRs on
Jenkinsci, but they were full of loopholes, so I closed them in order to give
myself more time to understand the code and improve my overall knowledge
of Jenkins and Java.
To sum it all up,I am a problem solver who never gives up. I enjoy learning new
things, and I view challenges as opportunities to grow. No matter what comes
my way, I am confident that I can overcome it and succeed in the end. I’m a
quick learner, and I'm always willing to take on new tasks as opportunities to
learn new things. I am certain that I can overcome any challenge and succeed
thanks to my perseverance and willingness to learn.

Personal

My name is Vandit Singh and I’m a Junior student of Dr. A.P.J. Abdul Kalam
Technical University (India). I’ve been contributing to Opensource for a year.
During that one year I learnt a lot of things ranging from Technical Knowledge
like good codestyles, understanding code written by someone else to how to
interact with people, How to respond to reviews and feedback. I learnt the
value of Empathy because Opensource runs on Empathy,Communication and
Code Obviously ;)
I learnt about Jenkins when I was exploring DevOps tools. After using Jenkins
for my pet project and Interacting with the Jenkins community, I started my
contributions to the community and learned a lot of things from many
knowledgeble people.

 25

Having the qualities of curiosity, hard work, and persistence can greatly
enhance a person's value. As for myself, I possess these three qualities and
have demonstrated them effectively while working on issues and pull requests.
With these qualities, I am confident that I will be able to successfully complete
the GSoC project.

Availability and commitments

My exams will be conducted during mid-August (the final date is not decided
yet).
During my exams I won't be able to give more than 25 hours for around 2
weeks. Before that I would be able to devote 30-35 hours a week(4-5 hours on
weekdays and 8-9 hours on weekends) throughout the GSoC period and as
there would be only one evaluation in between this time, I will try to finish the
task before time.

Experience

Open Source Contributions:

●​ Merged Pull Requests

1.​ jenkins-infra/jenkins.io Fix: Turn off smooth scrolling

2.​ jenkins-infra/docker-confluence-data [chore] : Redirect Launching
Agent from Console

 26

https://github.com/jenkins-infra/jenkins.io/pull/6054
https://github.com/jenkins-infra/docker-confluence-data/pull/42
https://github.com/jenkins-infra/docker-confluence-data/pull/42

3.​ jenkins-infra/jenkins.io Clarify top level Pipeline examples of options

4.​ jenkins-infra/jenkins.io FIX: Add content and links in Building and
Debugging Jenkins

5.​ jenkins-infra/docker-confluence-data chore:redirect building jenkins
wiki page to Building and Debugging jenkins.io

6.​ jenkins-infra/jenkins-io-components feat: Added 'Security' as a tab

7.​ jenkins-infra/jenkins.io Improve the explanation of section 'agent' in
pipeline syntax

8.​ jenkins-infra/jenkins.io Remove Dead link in sponsors block

9.​ jenkins-infra/jenkins-io-components fix(footer): Clean up Footer
styling

10.​jenkins-infra/jenkins.io Pipeline Syntax page - Document that
parameters become environment variables

11.​jenkins-infra/jenkins.io FIX: Nonexistent scaling of jumbotron images
breaks layout

12.​jenkins-infra/jenkins.io Patch "Fixed horizontal scroll issue on
mobile"

13.​jenkins-infra/jenkins.io added typo check and removed htaccess files

14.​jenkins-infra/jenkins.io added reference link to docs about agents

15.​jenkins-infra/jenkins.io updated the title for better search results

16.​jenkins-infra/jenkins.io Correct description of controller/built-in
node

 27

https://github.com/jenkins-infra/jenkins.io/pull/5991
https://github.com/jenkins-infra/jenkins.io/pull/5953
https://github.com/jenkins-infra/jenkins.io/pull/5953
https://github.com/jenkins-infra/docker-confluence-data/pull/41
https://github.com/jenkins-infra/docker-confluence-data/pull/41
https://github.com/jenkins-infra/jenkins-io-components/pull/56
https://github.com/jenkins-infra/jenkins.io/pull/5928
https://github.com/jenkins-infra/jenkins.io/pull/5928
https://github.com/jenkins-infra/jenkins.io/pull/5924
https://github.com/jenkins-infra/jenkins-io-components/pull/54
https://github.com/jenkins-infra/jenkins-io-components/pull/54
https://github.com/jenkins-infra/jenkins.io/pull/5919
https://github.com/jenkins-infra/jenkins.io/pull/5919
https://github.com/jenkins-infra/jenkins.io/pull/5909
https://github.com/jenkins-infra/jenkins.io/pull/5909
https://github.com/jenkins-infra/jenkins.io/pull/5892
https://github.com/jenkins-infra/jenkins.io/pull/5892
https://github.com/jenkins-infra/jenkins.io/pull/5850
https://github.com/jenkins-infra/jenkins.io/pull/5849
https://github.com/jenkins-infra/jenkins.io/pull/5841
https://github.com/jenkins-infra/jenkins.io/pull/5812
https://github.com/jenkins-infra/jenkins.io/pull/5812

●​ Open Pull Requests

1.​ jenkinsci/embeddable-build-status-plugin add test for
PublicBuildStatusAction.java

2.​ jenkinsci/casdoor-auth-plugin update parent pom to 4.53

3.​ jenkinsci/conditional-buildstep-plugin update parent pom and
spotbugs check

4.​ jenkinsci/http-request-plugin update parent pom from 4.50 to 4.51

5.​ jenkinsci/test-results-analyzer-plugin update parent pom from 4.49 to
4.51

6.​ jenkins-infra/jenkins.io Add information about implied dependencies
and detached plugin

7.​ jenkins-infra/jenkins.io Added Steps for Reporting issue on Github

8.​ jenkins-infra/jenkins.io Add updating Jenkins section in User's
Handbook

Language Skill Set

➢​ Java (4/5)
➢​ Python(3/5)
➢​ Javascript (2/5)
➢​ C (3/5)

Tools Skill Set

 28

https://github.com/jenkinsci/embeddable-build-status-plugin/pull/163
https://github.com/jenkinsci/embeddable-build-status-plugin/pull/163
https://github.com/jenkinsci/casdoor-auth-plugin/pull/3
https://github.com/jenkinsci/conditional-buildstep-plugin/pull/51
https://github.com/jenkinsci/conditional-buildstep-plugin/pull/51
https://github.com/jenkinsci/http-request-plugin/pull/125
https://github.com/jenkinsci/test-results-analyzer-plugin/pull/68
https://github.com/jenkinsci/test-results-analyzer-plugin/pull/68
https://github.com/jenkins-infra/jenkins.io/pull/5958
https://github.com/jenkins-infra/jenkins.io/pull/5958
https://github.com/jenkins-infra/jenkins.io/pull/5934
https://github.com/jenkins-infra/jenkins.io/pull/5888
https://github.com/jenkins-infra/jenkins.io/pull/5888

➢​ JUnit (3/5)
➢​ Spring Boot (4/5)
➢​ Docker (3/5)
➢​ Git (4/5)
➢​ HTML & CSS (4/5)
➢​ Linux (3/5)

Reference Links and Web URLs:

●​ LinkedIn: vandit-singh
●​ Instant Messaging: @vandit1604 (Element)
●​ Timezone: Indian Standard Time (IST), UTC+5:30
●​ Location: Ghaziabad, India

 29

https://www.linkedin.com/in/vandit-singh/

	[Draft Proposal] Exponential Backoff and Jitter for Agent Reconnection
	
	
	Table of Content​
	
	Project Abstract
	Project Description
	Exponential Backoff
	Jitter
	
	
	Missing Features in Jenkins

	
	Graphical Representation of Agent Reconnection
	1.​Linear Agent Reconnection
	2.​Exponential Agent Reconnection
	3.​Exponential Backoff v. Exponential Backoff with Jitter
	4.​Estimated Probabilities after implementing Exponential Backoff and Jitter

	
	Implementation of Exponential and Jitter
	
	Overview
	Phase 1: Stress Testing Framework
	What is Stress testing?

	
	Phase 2: Implementing Exponential Backoff in Remoting
	i) Introducing retries and maxRetries
	
	ii) We can keep trying to connect to the server and if the connection succeeds we can break out of the loop
	iii) Calculating Backoff delay with Jitter

	Phase 3: Unification of Swarm plugin and Remoting
	i.​Finding Commonalities
	ii.​Refactoring code
	iii.​Updating interfaces
	iv.​Migration

	Phase 4: Implementing a chain of Exponential Backoff and Jitter in Remoting and more strategies like Swarm plugin
	I) NONE
	II) LINEAR
	III) BACKOFF
	IV) CHAIN_BACKOFF

	Project Deliverables
	Proposed Timeline
	Application Period Begins (March 20 - April 4, 2022):
	Acceptance Waiting Period (April 5 - May 3):
	Community Bonding Period (May 4 - May 28):
	Coding Period (May 29 - July 14):
	Final Coding Period for Standard Route (Aug 21 - Aug 28):

	Future Improvements
	Continued Involvement
	Conflict of Interests or Commitment(s)
	Major Challenges Foreseen
	References
	
	Relevant Background Experience
	Personal
	

	Availability and commitments
	Experience
	Open Source Contributions:
	Language Skill Set
	
	Tools Skill Set
	Reference Links and Web URLs:

