System Description

The system is designed for processing market data, specifically focusing on stock prices
and trades. It emphasizes real-time data flow and processing, utilizing technologies like
Apache Kafka and Apache Spark. The system ingests data from various sources,
processes it in real-time, stores the processed data, and pushes updates to a
web/mobile application.

System Components

1. Data Sources: These are the sources from where market data, stock prices, and
trades are ingested. The specific technology used for this is not mentioned in the
diagram.

2. Kafka Streaming Cluster: This component handles data ingestion in real-time. It
uses Apache Kafka, a distributed streaming platform.

3. Spark Streaming: This component processes data for transformations,
aggregations, and joins. It uses Apache Spark, a unified analytics engine for
large-scale data processing.

4. Data Lake (Cassandra): This component stores the processed data. It uses
Apache Cassandra, a highly scalable and distributed database.

5. Direct Data Push: This component sends real-time updates to a web/mobile
application. It uses Web Socket or HTTP streaming, which are communication
protocols for real-time data transfer.

6. Web/Mobile App: These are the user interfaces, utilizing libraries like
Bootstrap.js, Chart.js, and jQuery.js.

Assets and Data Flow

e Data Sources -> Kafka Streaming Cluster: The data sources send market data,
stock prices, and trades to the Kafka Streaming Cluster. The communication
protocol is not explicitly mentioned, but it’s likely to be a data ingestion protocol
compatible with Apache Kafka.

e Kafka Streaming Cluster -> Spark Streaming: The Kafka Streaming Cluster
sends the ingested data to Spark Streaming for processing. The communication
protocol is likely to be a data streaming protocol compatible with Apache Kafka
and Apache Spark.

e Spark Streaming -> Data Lake (Cassandra): Spark Streaming sends the
processed data to the Data Lake for storage. The communication protocol is
likely to be a data storage protocol compatible with Apache Spark and Apache
Cassandra.



Data Lake (Cassandra) -> Direct Data Push: The Data Lake sends the stored
data to Direct Data Push for real-time updates. The communication protocol is
not explicitly mentioned, but it’s likely to be a data retrieval protocol compatible
with Apache Cassandra.

Direct Data Push -> Web/Mobile App: Direct Data Push sends real-time updates
to the Web/Mobile App. The communication protocol is either Web Socket or
HTTP streaming, which are protocols for real-time data transfer.

Trust Boundaries:

Data Sources: 1

Kafka Streaming Cluster: 1
Spark Streaming: 4

Data Lake (Cassandra): 8
Direct Data Push: 1
Web/Mobile App: 1

Threat Scenarios

An External Attacker can perform Network Sniffing on the Kafka Streaming
Cluster to intercept sensitive data. (CVSS: High)

A Malicious Insider can execute a SQL Injection attack on the Data Lake
(Cassandra) to manipulate or delete critical data. (CVSS: High)

A Phishing Attacker can send deceptive emails to users of the Web/Mobile App
to steal their login credentials. (CVSS: Medium)

A Denial of Service (DoS) Attacker can flood the Spark Streaming nodes with
excessive requests, causing system downtime. (CVSS: High)

A Man-in-the-Middle Attacker can intercept Direct Data Push communication to
inject malicious code or alter data in transit. (CVSS: High) #

Controls

Network Sniffing on Kafka Streaming Cluster:

o Implement encryption for data in transit within the Kafka cluster to prevent
interception.



Utilize network segmentation to restrict access to the Kafka cluster only to
authorized users.

Enable strong authentication mechanisms such as mutual TLS for
communication within the cluster.

SQL Injection on Data Lake (Cassandra):

O

Input validation and parameterized queries should be implemented to
prevent SQL injection attacks.

Regularly patch and update the Cassandra database to address any
known vulnerabilities.

Implement least privilege access controls to limit the impact of a
successful SQL injection attack.

Phishing Attacks on Web/Mobile App Users:

O

Conduct regular security awareness training for users to recognize and
report phishing attempts.

Implement multi-factor authentication to add an extra layer of security for
user login credentials.

Use email filtering solutions to detect and block phishing emails before
they reach users.

Denial of Service (DoS) on Spark Streaming Nodes:

O

Implement rate limiting and request validation to mitigate the impact of
excessive requests.

Utilize load balancers to distribute incoming traffic and prevent
overwhelming specific nodes.

Monitor network traffic and system performance to detect and respond to
potential DoS attacks.

Man-in-the-Middle Attacks on Direct Data Push Communication:

O

Implement end-to-end encryption for data transmission to protect against
interception and tampering.

Use digital signatures to verify the integrity and authenticity of data
exchanged between systems.

Implement certificate pinning to ensure secure communication channels
and prevent MITM attacks.



	System Description 
	System Components 
	Assets and Data Flow 
	Trust Boundaries: 
	Threat Scenarios 

