
System Description
The system is designed for processing market data, specifically focusing on stock prices
and trades. It emphasizes real-time data flow and processing, utilizing technologies like
Apache Kafka and Apache Spark. The system ingests data from various sources,
processes it in real-time, stores the processed data, and pushes updates to a
web/mobile application.

System Components
1.​ Data Sources: These are the sources from where market data, stock prices, and

trades are ingested. The specific technology used for this is not mentioned in the
diagram.

2.​ Kafka Streaming Cluster: This component handles data ingestion in real-time. It
uses Apache Kafka, a distributed streaming platform.

3.​ Spark Streaming: This component processes data for transformations,
aggregations, and joins. It uses Apache Spark, a unified analytics engine for
large-scale data processing.

4.​ Data Lake (Cassandra): This component stores the processed data. It uses
Apache Cassandra, a highly scalable and distributed database.

5.​ Direct Data Push: This component sends real-time updates to a web/mobile
application. It uses Web Socket or HTTP streaming, which are communication
protocols for real-time data transfer.

6.​ Web/Mobile App: These are the user interfaces, utilizing libraries like
Bootstrap.js, Chart.js, and jQuery.js.

Assets and Data Flow
●​ Data Sources -> Kafka Streaming Cluster: The data sources send market data,

stock prices, and trades to the Kafka Streaming Cluster. The communication
protocol is not explicitly mentioned, but it’s likely to be a data ingestion protocol
compatible with Apache Kafka.

●​ Kafka Streaming Cluster -> Spark Streaming: The Kafka Streaming Cluster
sends the ingested data to Spark Streaming for processing. The communication
protocol is likely to be a data streaming protocol compatible with Apache Kafka
and Apache Spark.

●​ Spark Streaming -> Data Lake (Cassandra): Spark Streaming sends the
processed data to the Data Lake for storage. The communication protocol is
likely to be a data storage protocol compatible with Apache Spark and Apache
Cassandra.

●​ Data Lake (Cassandra) -> Direct Data Push: The Data Lake sends the stored
data to Direct Data Push for real-time updates. The communication protocol is
not explicitly mentioned, but it’s likely to be a data retrieval protocol compatible
with Apache Cassandra.

●​ Direct Data Push -> Web/Mobile App: Direct Data Push sends real-time updates
to the Web/Mobile App. The communication protocol is either Web Socket or
HTTP streaming, which are protocols for real-time data transfer.

Trust Boundaries:
●​ Data Sources: 1

●​ Kafka Streaming Cluster: 1

●​ Spark Streaming: 4

●​ Data Lake (Cassandra): 8

●​ Direct Data Push: 1

●​ Web/Mobile App: 1

Threat Scenarios
●​ An External Attacker can perform Network Sniffing on the Kafka Streaming

Cluster to intercept sensitive data. (CVSS: High)

●​ A Malicious Insider can execute a SQL Injection attack on the Data Lake
(Cassandra) to manipulate or delete critical data. (CVSS: High)

●​ A Phishing Attacker can send deceptive emails to users of the Web/Mobile App
to steal their login credentials. (CVSS: Medium)

●​ A Denial of Service (DoS) Attacker can flood the Spark Streaming nodes with
excessive requests, causing system downtime. (CVSS: High)

●​ A Man-in-the-Middle Attacker can intercept Direct Data Push communication to
inject malicious code or alter data in transit. (CVSS: High) #

Controls
●​ Network Sniffing on Kafka Streaming Cluster:

o​ Implement encryption for data in transit within the Kafka cluster to prevent
interception.

o​ Utilize network segmentation to restrict access to the Kafka cluster only to
authorized users.

o​ Enable strong authentication mechanisms such as mutual TLS for
communication within the cluster.

●​ SQL Injection on Data Lake (Cassandra):

o​ Input validation and parameterized queries should be implemented to
prevent SQL injection attacks.

o​ Regularly patch and update the Cassandra database to address any
known vulnerabilities.

o​ Implement least privilege access controls to limit the impact of a
successful SQL injection attack.

●​ Phishing Attacks on Web/Mobile App Users:

o​ Conduct regular security awareness training for users to recognize and
report phishing attempts.

o​ Implement multi-factor authentication to add an extra layer of security for
user login credentials.

o​ Use email filtering solutions to detect and block phishing emails before
they reach users.

●​ Denial of Service (DoS) on Spark Streaming Nodes:

o​ Implement rate limiting and request validation to mitigate the impact of
excessive requests.

o​ Utilize load balancers to distribute incoming traffic and prevent
overwhelming specific nodes.

o​ Monitor network traffic and system performance to detect and respond to
potential DoS attacks.

●​ Man-in-the-Middle Attacks on Direct Data Push Communication:

o​ Implement end-to-end encryption for data transmission to protect against
interception and tampering.

o​ Use digital signatures to verify the integrity and authenticity of data
exchanged between systems.

o​ Implement certificate pinning to ensure secure communication channels
and prevent MITM attacks.

	System Description
	System Components
	Assets and Data Flow
	Trust Boundaries:
	Threat Scenarios

