

Polkadot Treasury Proposal ​
KAGOME – C++ implementation of Polkadot Host
Milestone 3

Proponent: ​
1544YD9AzZNXq3Bickbk4rGRQ5piRP5AP9b38Nw6boCx58q3 (Quadrivium)
Period: 01.01.24 — 01.11.24 (10 months)
Date of submission : 28.06.24
Requested allocation: 840,800 USD | 141 395 DOT

Second milestone scope:
●​ Grid and cluster topologies
●​ Security features
●​ Elastic scaling
●​ Validation protocol upgrade
●​ Systematic chunks
●​ Disabled validators
●​ Security audit

1.​ Context of the proposal:​

KAGOME is a C++ implementation of the Polkadot Host that is protocol compatible
with the original implementation in Rust and is already participating in Kusama relay
chain validation. With KAGOME and other client implementations we bring client
diversity to Polkadot, mitigating risks of fatal bugs, bringing innovations and
broadening the development community. During previous work as part of Polkadot
treasury proposal 2, the following results were achieved:

●​ Asynchronous backing
●​ BEEFY integration
●​ New Wasm engine (WasmEdge)
●​ Initial security audit by SRLabs (link)
●​ General maintenance

In addition to features that were planned during the previous proposal our team
achieved the following:

●​ Implemented Grid and Cluster network topologies for statements distribution
●​ Partially Integrated disabled validators feature
●​ Partially implemented elastic scaling
●​ Implemented multiple security features

This proposal asks for funding for the next 4 months, in addition to the previous 6
months of work on features that have been retroactively implemented (marked with
Done status in Section 4).

2.​ Problem statement

Client diversity is essential for the security and resilience of Polkadot as it helps to
mitigate the risk of bugs and exploits. If there is only one implementation (which is
currently the case Polkadot), then any bug or exploit that is found in that
implementation could potentially bring down the entire network. However, with
multiple implementations, the risk of a bug or exploit affecting all of the nodes in the
network is greatly reduced.

https://github.com/qdrvm/kagome
https://wiki.polkadot.network/docs/learn-polkadot-host
https://kusama.subscan.io/validator/GZ777psWniwVo6gJV5T1ywnEy9UsQZEehWW5zu76A3Cco3z
https://kusama.subscan.io/validator/GZ777psWniwVo6gJV5T1ywnEy9UsQZEehWW5zu76A3Cco3z
https://polkadot.subsquare.io/referenda/201
https://polkadot.subsquare.io/referenda/201
https://polkadot.polkassembly.io/referenda/201#YClm2meeCYN0RxRjQcbR

Another advantage of having multiple clients is that it is opening the way for having
another team that already sees the end state of the protocol and therefore has the
advantage to implement protocol in the most optimal way.

Importance of having multiple client implementations was highlighted multiple
times by Polkadot twitter (source), and Web3 foundation RFP (source). Moreover,
W3F recognizes clients diversity importance and allocates 10 million DOT prise for
the future multiple implementations of JAM protocol.

Gavin Wood mentioned KAGOME during 2023 yearly roundup article (link) and
highlighted our achievement of executing KAGOME node in Kusama during his
recent interview (link).

To learn more about multi-client philosophy and KAGOME Polkadot Host
implementation watch:

●​ Building alternative clients in Polkadot | Polkadot Decoded 2023
●​ Polkadot Host architecture in 2024 | Sub0 Asia 2024

3.​ Alignment with JAM

Quadrivium is planning to develop a JAM client and is already working on some
features for this in parallel with KAGOME. We also started work on SASSAFRAS many
months ago, but stopped because the reference implementation in Rust had not yet
been merged into the Polkadot SDK. Given that SAFROLE is the simplified version of
SASSAFRAS, we are well positioned to implement a new leader election mechanism
in the JAM implementation.

However, we recognize the importance of multiple Polkadot Host implementations
today, especially since most features are already available and KAGOME is
compatible with the Polkadot SDK. Moreover, it's not anticipated that JAM will be
launched within the next one or two years. Luckily, we can repurpose much of the
KAGOME codebase for the future JAM client implementation. For instance:

1.​ Grandpa – fully implemented and audited.
2.​ SASSAFRAS – partially implemented.
3.​ SCALE – fully implemented.

https://twitter.com/Polkadot/status/1707031181219225653
https://github.com/w3f/Grants-Program/blob/1d60558a028f79635b37d8830ab650db0eb57dcc/docs/RFPs/alternative_polkadot_host_implementations.md?plain=1
https://link.medium.com/3t0YYCF7MKb
https://t.co/2VGDYts10N
https://youtu.be/TnENz6I9l8A
https://youtu.be/Lv2KQ2EDyM8?si=ZmWBINzMwEqbMb90

But since we didn't initially intend to reuse these components, some refactoring of
KAGOME is required. This will enable these components to be reusable and easily
integrated into the future JAM client implementation.

4.​ Proposed feature set

I.​ Security improvements (retroactive)

During the initial security audit of KAGOME, multiple security features were
requested to be implemented.

Secure validator mode

Secure-Validator Mode offers many measures to improve key security, such as strict
filesystem, networking, and process sandboxing, on top of the existing wasm
sandbox.

During the initial security audit by SRLabs, they observed that KAGOME lacks a
Secure-validator mode. Consequently, Kagome validators may be more vulnerable
to a variety of security threats. These include direct attacks on the validator nodes,
exploitation of vulnerabilities, and an elevated risk of participating in network
consensus under adversarial conditions. As a result, adding support for
Secure-Validator mode is considered crucial.

Status: ✅Done

Links:

●​ https://wiki.polkadot.network/docs/maintain-guides-secure-validator#secure
-validator-mode

●​ https://github.com/qdrvm/kagome/pull/2042

WASM Stack depth instrumentation

The Polkadot-sdk limits stack depth to ensure consistent PVF performance,
regardless of wasmtime version or architecture, unlike Kagome. This could cause

https://wiki.polkadot.network/docs/maintain-guides-secure-validator#secure-validator-mode
https://wiki.polkadot.network/docs/maintain-guides-secure-validator#secure-validator-mode
https://github.com/qdrvm/kagome/pull/2042

disputes between Kagome and polkadot-sdk validators. It was possible for a
legitimate parachain with an unbounded recursion vulnerability to be exploited. A
malicious collator could create a block exceeding polkadot-sdk's stack limit, but
valid in Kagome. If backed, this block would be disputed by all polkadot-sdk
validators.

Status: ✅Done

Links:

●​ https://github.com/paritytech/polkadot-sdk/blob/e38998801e433ecc569ff6d
58d1d0aa80eaff771/substrate/client/executor/common/src/runtime_blob/runt
ime_blob.rs#L83-L90

●​ https://github.com/qdrvm/kagome/pull/1946

Safe memory storage

The security assessment by SRLabs identified an issue where, after using the private
key for signing operations, the memory allocated for storing the key was not
adequately zeroed or cleared. This behavior was leaving residual data in memory,
which could potentially be accessed by unauthorized processes or users.

The primary risk associated with this issue was potential exposure of sensitive
private key information. Although classified as low risk due to the limited scenarios
in which this vulnerability can be exploited, the persistence of private key data in
memory after use can be a vector for targeted attacks aimed at extracting
cryptographic keys.

To solve the issue Quadrivium team implemented the storage for private keys and
seeds in secure OpenSSL heap which won’t be swapped on disk in a case of core
dumps and is protected from reads due to out-of-bound undefined behaviour.

Status: ✅Done

●​ https://github.com/qdrvm/kagome/pull/1997

II.​ Grid and cluster topologies (retroactive)

https://github.com/paritytech/polkadot-sdk/blob/e38998801e433ecc569ff6d58d1d0aa80eaff771/substrate/client/executor/common/src/runtime_blob/runtime_blob.rs#L83-L90
https://github.com/paritytech/polkadot-sdk/blob/e38998801e433ecc569ff6d58d1d0aa80eaff771/substrate/client/executor/common/src/runtime_blob/runtime_blob.rs#L83-L90
https://github.com/paritytech/polkadot-sdk/blob/e38998801e433ecc569ff6d58d1d0aa80eaff771/substrate/client/executor/common/src/runtime_blob/runtime_blob.rs#L83-L90
https://github.com/qdrvm/kagome/pull/1946
https://github.com/qdrvm/kagome/pull/1997

Grid topology is a communication protocol used in Polkadot Host to distribute
backing statements among validators. It is crucial for the block producing node to
receive information about the backed parachain candidate as quickly as possible.
The importance of this has increased, particularly after the asynchronous backing
update, which led to a rise in the number of messages.

In Grid topology, each validator uses a deterministic method to create the same view
of every other validator by forming a Grid. Validators can only send messages to
their column and row neighbors, excluding validators from their own backing group.
This method ensures that any message between two validators can be propagated
within a maximum of two hops, reducing the number of messages in the network and
improving efficiency.

For validators in the same group, a cluster topology is implemented, allowing
validators within groups to communicate directly.

Status: Done

Links:

●​ https://github.com/qdrvm/kagome/pull/2095
●​ https://github.com/qdrvm/kagome/pull/1891
●​ https://github.com/qdrvm/kagome/pull/2096
●​ https://github.com/qdrvm/kagome/pull/2102/
●​ https://youtu.be/Lv2KQ2EDyM8?si=8Br6ilVIdry8xyH2&t=1084

III.​ Elastic scaling

With the implementation of asynchronous backing, Parachains gained the ability to
produce new blocks without waiting for the inclusion of the previous ones. This
reduced the block time from 12 seconds to 6 seconds.

Elastic scaling further improves Parachains' performance by enabling them to
occupy multiple cores and execute multiple blocks in parallel.

The KAGOME team has already implemented a significant portion of elastic scaling,
such as replacing validator assignment from parachain IDs to core IDs. This allows
handling multiple candidates for the same parachain during the same slot

https://github.com/qdrvm/kagome/pull/2095
https://github.com/qdrvm/kagome/pull/1891
https://github.com/qdrvm/kagome/pull/2096
https://github.com/qdrvm/kagome/pull/2102/files
https://youtu.be/Lv2KQ2EDyM8?si=8Br6ilVIdry8xyH2&t=1084

(https://github.com/qdrvm/kagome/pull/1996). However, there are still a few features
remaining to fully align with the Polkadot-SDK implementation, such as allowing
out-of-order execution of parachain blocks and switching from Fragment trees to
Fragment chains for optimization.

Status: 🧑‍💻Partially implemented

Links:​

●​ https://github.com/paritytech/polkadot-sdk/issues/1829
●​ https://github.com/paritytech/polkadot-sdk/pull/4035
●​ https://github.com/qdrvm/kagome/pull/2102
●​ https://forum.polkadot.network/t/polkadot-summit-24-pov-reclaim-elastic-s

caling/7232
●​ https://polkadot.network/blog/elastic-scaling-streamling-growth-on-polkad

ot

IV.​ Validation protocol upgrade (validation v3 + assignments v2)

Assignments v2 protocol introduces a new type of assignment certificate for
tranche0 assignments. Now, instead of issuing or importing one tranche0
assignment per candidate, there will be a single certificate per relay chain block for
each validator. However, these new assignment certificates won't be distributed
immediately, so operations should continue as before. To enable the new protocol,
the majority of validators need to run this version. Hence, it's essential for KAGOME
to support the new protocol version.

Validation v3 protocol is the optimization allowing more validators participating in
parachains consensus. While this implementation is backwards compatible with
validation v2 already supported by KAGOME, it is required for KAGOME to implement
the most recent version of protocol to allow other nodes take advantage of the
optimization.

New version of protocol batches multiple approval messages into a single message
allowing batch verification by validator

Status: Not started

https://github.com/qdrvm/kagome/pull/1996
https://github.com/paritytech/polkadot-sdk/issues/1829
https://github.com/paritytech/polkadot-sdk/pull/4035
https://github.com/qdrvm/kagome/pull/2102
https://forum.polkadot.network/t/polkadot-summit-24-pov-reclaim-elastic-scaling/7232
https://forum.polkadot.network/t/polkadot-summit-24-pov-reclaim-elastic-scaling/7232
https://polkadot.network/blog/elastic-scaling-streamling-growth-on-polkadot
https://polkadot.network/blog/elastic-scaling-streamling-growth-on-polkadot

Links:

●​ https://github.com/qdrvm/kagome/issues/1923
●​ https://github.com/paritytech/polkadot-sdk/pull/1178

V.​ Systematic chunks (RFC-47)

Polkadot employs erasure coding to encode and distribute data availability chunks
among validators. Despite this, the systematic nature of the erasure coding
algorithm used by Polkadot allows room for optimizing the decoding process, which
is crucial for approval checking and dispute resolution.

An erasure coding algorithm is deemed systematic if it includes the original
unencoded data within the resulting code. The erasure coding algorithm used for
Polkadot's data availability is systematic. Essentially, the first N_VALIDATORS/3
chunks of data can be effortlessly concatenated to retrieve the original data,
bypassing the need for a resource-intensive and time-consuming reconstruction
algorithm.

The new req_chunk/2 protocol enhances data retrieval by using systematic chunks
for data recovery. For compatibility with Polkadot-SDK, it's essential for KAGOME to
integrate this protocol.

Status: Not started

Links:

●​ https://polkadot-fellows.github.io/RFCs/approved/0047-assignment-of-availa
bility-chunks.html

VI.​ Disabled validators mechanism

Disabling validators means temporarily ignoring votes from misbehaving validators.

https://github.com/qdrvm/kagome/issues/1923
https://github.com/paritytech/polkadot-sdk/pull/1178
https://github.com/paritytech/reed-solomon-novelpoly
https://github.com/paritytech/reed-solomon-novelpoly
https://polkadot-fellows.github.io/RFCs/approved/0047-assignment-of-availability-chunks.html
https://polkadot-fellows.github.io/RFCs/approved/0047-assignment-of-availability-chunks.html

Disabled validators mechanism is integrated into different parts of Polkadot Host
such as Grandpa, BABE, Backing, Disputes resolution. Integration is done via new
runtime entries that return disabled validators.

Also the validator should initiate extrinsics if they notice any misbehavior that
should be escalated to other validators.

Status: 🧑‍💻Partially implemented

Links:

●​ https://github.com/paritytech/polkadot-sdk/issues/784
●​ https://github.com/qdrvm/kagome/issues/2068
●​ https://github.com/qdrvm/kagome/issues/2060
●​ https://github.com/qdrvm/kagome/issues/2005

VII.​ Minor features and improvements

RFC-0043: Introduce storage_proof_size Host Function for Improved Parachain
Block Utilization

This RFC suggests the introduction of a new host function for parachains,
storage_proof_size. This function will indicate the size of the current storage proof
to the runtime. This will allow runtime authors to enhance block utilization by
retroactively recovering unused storage weight.

Status: Not started

Links:

●​ https://polkadot-fellows.github.io/RFCs/approved/0043-storage-proof-size-h
ostfunction.html

RFC-0091: DHT Authority discovery record creation time

Extend the DHT authority discovery records with a signed creation time, so that
nodes can determine which record is newer and always decide to prefer the newer
records to the old ones.

https://github.com/paritytech/polkadot-sdk/issues/784
https://github.com/qdrvm/kagome/issues/2068
https://github.com/qdrvm/kagome/issues/2060
https://github.com/qdrvm/kagome/issues/2005
https://polkadot-fellows.github.io/RFCs/approved/0043-storage-proof-size-hostfunction.html#rfc-0043-introduce-storage_proof_size-host-function-for-improved-parachain-block-utilization
https://polkadot-fellows.github.io/RFCs/approved/0043-storage-proof-size-hostfunction.html#rfc-0043-introduce-storage_proof_size-host-function-for-improved-parachain-block-utilization
https://polkadot-fellows.github.io/RFCs/approved/0043-storage-proof-size-hostfunction.html
https://polkadot-fellows.github.io/RFCs/approved/0043-storage-proof-size-hostfunction.html
https://polkadot-fellows.github.io/RFCs/proposed/0091-dht-record-creation-time.html#rfc-0091-dht-authority-discovery-record-creation-time

Status: Not started

Links:

●​ https://polkadot-fellows.github.io/RFCs/proposed/0091-dht-record-creation-
time.html#rfc-0091-dht-authority-discovery-record-creation-time

RFC-0013: Prepare Core runtime API for MBMs

Introduces breaking changes to the Core runtime API by letting
Core::initialize_block return an enum. The versions of Core is bumped from 4 to
5.

Status: Not started

Links:

●​ https://polkadot-fellows.github.io/RFCs/approved/0013-prepare-blockbuilder
-and-core-runtime-apis-for-mbms.html

Qtils

To resolve technical debt, the KAGOME team decided to consolidate common tools
used in both libp2p and KAGOME into a separate library called Qtils. This makes it
easier to maintain all the necessary tooling for both projects in one location.

Status: Done

Links:

●​ https://github.com/qdrvm/qtils

Optimize SCALE (retroactive)

KAGOME improved C++ SCALE implementation in KAGOME project by getting rid of
redundant memory allocations that led to slower encoding and decoding

Status: Done

Links:

●​ https://github.com/qdrvm/kagome/pull/1782

https://polkadot-fellows.github.io/RFCs/proposed/0091-dht-record-creation-time.html#rfc-0091-dht-authority-discovery-record-creation-time
https://polkadot-fellows.github.io/RFCs/proposed/0091-dht-record-creation-time.html#rfc-0091-dht-authority-discovery-record-creation-time
https://polkadot-fellows.github.io/RFCs/approved/0013-prepare-blockbuilder-and-core-runtime-apis-for-mbms.html#rfc-0013-prepare-core-runtime-api-for-mbms
https://polkadot-fellows.github.io/RFCs/approved/0013-prepare-blockbuilder-and-core-runtime-apis-for-mbms.html
https://polkadot-fellows.github.io/RFCs/approved/0013-prepare-blockbuilder-and-core-runtime-apis-for-mbms.html
https://github.com/qdrvm/qtils
https://github.com/qdrvm/kagome/pull/1782
https://github.com/qdrvm/kagome/pull/1782

VIII.​ DevOps and QA maintenance

In order to constantly ensure the quality of KAGOME as well as keep it compatible
with Substrate (and potentially other Host implementations such as Gossamer)
Quadrivium maintains, monitors and improves multiple environments for KAGOME.

It is important to notice any incompatibilities if any as soon as possible. Therefore
we maintain multiple syncing and validating nodes:

●​ Kusama syncing node
●​ Westend validating node
●​ Westend Polkadot-SDK node (for debugging Polkadot-SDK behaviour against

KAGOME nodes)
●​ Paseo syncing node

Moreover, we are maintaining the list of zombienet tests and constantly improving
our CI to conveniently execute them. During the past 6 months we introduced:

●​ Migrated our entire infrastructure to Google Cloud Platform (GCP), leveraging
its robust and scalable environment.

●​ Actively utilized Kubernetes for managing infrastructural services,
deployments, instance maintenance, and for syncing and validating nodes.

●​ Adapted Helm charts for internal use to fully exploit the capabilities of GCP
and meet our specific requirements.

●​ Implemented automation tools to swiftly diagnose the causes of system
crashes and analyze core dumps.

●​ Centralized our log collection and analysis system, significantly improving our
ability to monitor and troubleshoot issues.

●​ Integrated with GitHub Actions, allowing us to optimize builds by utilizing the
diverse range of GCP instances available.

●​ Enhanced our monitoring systems and improved the visualization of metrics,
providing clearer insights into system performance and health.

●​ Enabled CI Zombienet tests execution for any branch within the project,
streamlining our development and testing processes.

In addition, our QA team is constantly ensuring quality of the most recent KAGOME
features by running them against different versions of Polkadot-SDK to quickly

http://gossamer/

notice incompatibilities and create bug reports. In addition we conduct regression
test scenarios before every release.

IX.​ Security assurance by SRLabs
KAGOME’s mission to provide a robust and secure alternative client
implementation for node operators in the Polkadot ecosystem remains a top
priority. Following the initial security audit conducted by SRLabs on KAGOME
v0.9.3, it is imperative to establish a structured and ongoing assurance process to
continually safeguard the integrity and resilience of KAGOME’s implementation.
This section outlines the scope and activities for the second phase of the security
assurance, emphasizing proactive measures and collaborative efforts to enhance
security over time.

Objectives of the Security Assurance Scope:

●​ Assure changes to KAGOME before they go live:

Ensure that all modifications to KAGOME are thoroughly reviewed and secured
prior to deployment, minimizing the risk of vulnerabilities being introduced in
the production environment

●​ Ensure code quality and security assurance
Implement code review and security assurance processes to maintain high
code quality standards, detect potential vulnerabilities early, and ensure
robustness of KAGOME’s implementation

Support scope for this milestone:

The scope of this security assurance milestone resolves around the following key
activities, but is not limited to:
1.​ Conduct scheduled security audits and follow milestone PRs of KAGOME:

a) Perform security audits on the new features developed since the initial audit
by SRLabs, including:

○​ Security improvements (retroactive)
○​ Asynchronous backing
○​ Elastic scaling
○​ Validation v3
○​ Disabling validators
○​ Grid and cluster topologies

○​ WasmEdge integration
○​ Systematic chunks
○​ Reviewing minor enhancements

The full diff for review is available by the link:
https://github.com/qdrvm/kagome/compare/v0.9.3...master

b) In collaboration with the KAGOME development team, monitor pull requests
(PRs) submitted to the KAGOME repository. The KAGOME development team
will guide which PRs require detailed security audits, ensuring comprehensive
review and validation before integration into the main codebase

2.​ Additional security assurance measures upon request:

​Provide expert consultation and brainstorming sessions to explore and
recommend additional security measures. These sessions will be conducted
upon request and will focus on approaches to enhance the overall security
framework of KAGOME

●​ Conduct brainstorming sessions to identify potential security
vulnerabilities in upcoming features or changes

●​ Engage in discussions on best practices and security measures that can
be integrated into KAGOME

●​ Provide recommendations for
○​ Security testing methodologies, such as fuzzing
○​ Protocol and architecture enhancements
○​ Risk mitigation strategies

Joint alignment sessions will be conducted between Quadrivium and SRLabs to
prioritize the support scope during this milestone. This session will ensure that
the most critical security needs are addressed promptly and effectively.

The security assurance for KAGOME by SRLabs is designed to be adaptive and
responsive, addressing the evolving needs of the project. By ensuring thorough
audits of code changes, conducting in-depth reviews and exploring additional
security measures, we aim to maintain and enhance the security of KAGOME. This
approach will help KAGOME its goal of providing a secure and reliable client
implementation for the Polkadot ecosystem.

5.​ Projected task allocation and payment details

Quadrivium development team

1.​ Engineering manager
2.​ Senior C++ developer x 4.5
3.​ DevOps engineer x 0.5
4.​ QA engineer x 0.5

Epic Feature Description ETA
(hours)

Security
improvements

Secure validator
mode

Enhances key security with
measures like strict filesystem,
networking, and process
sandboxing.

150

WASM Stack
depth
instrumentation

Limits stack depth to ensure
consistent PVF performance.
Prevents disputes between different
validators.

150

Safe memory for
keystore

Secure storage for private keys in
the OpenSSL heap, protecting
against data exposure during core
dumps and out-of-bound read
operations.

50

Grid and cluster
topology

 A mechanism for efficient
communication between validators
using a grid formation and cluster
topology

300

Elastic scaling Fragment trees
updates

Allows for Parachains performance
improvement through parallel
execution of multiple blocks.

300

Allow backing of
multiple
candidates

Use core index instead of parachain
index with corresponding updates
in statement messages

300

Unit tests Ensure conformance with
Polkadot-SDK by implementing the
same unit tests

100

Zombienet test Implement and integrate into CI
zombienet test executing elastic
scaling in network with
Polkadot-SDK and KAGOME
validators

50

Validation
protocol
upgrade

Validation V3 An upgrade to the validation
protocol that introduces a batch
verification process for approval
messages, enhancing the overall
performance of the protocol.

100

Assignments V2 A new version of assignment
certificates for tranche0
assignments, reducing the number
of assignments needed per
candidate and improving efficiency.

100

Disabled
validators

Disabling
validators in
GRANDPA

Temporarily ignores votes from
misbehaving validators in the
GRANDPA consensus protocol.

100

Disabling
validators in
BABE

Temporarily ignores votes from
misbehaving validators in the BABE
consensus protocol.

100

Disabling
validators in
approval
mechanism

Temporarily ignores votes from
misbehaving validators during the
approval voting process.

100

Disabling
validators in
dispute

Temporarily ignores votes from
misbehaving validators during the
dispute resolution process.

100

mechanism
(done)

Disabling
validators in
backing

Temporarily ignores votes from
misbehaving validators during the
candidates backing process

100

Zombienet test Development of zombienet
scenarios ensuring correct work of
disabled validators feature. Fixing
and debugging discovered issues

100

Systematic
chunks

 Enhancement for data retrieval
using systematic chunks for data
recovery

200

Zombienet test Fixing and debugging of discovered
issues after zombienet
development.

100

Minor features
and
improvements

Storage proof
size host api

Allows runtime authors to enhance
block utilization by retroactively
recovering unused storage weight.

50

DHT Authority
discovery record
creation time

Extends the DHT authority discovery
records for nodes to determine
which record is newer.

150

Update initialize
block runtime api

Introduces breaking changes to the
Core runtime API by letting
Core::initialize_block return an
enum.

50

 Optimize SCALE Scale codec improvement 50

 Qtils Library for common utils among
KAGOME and cpp-libp2p projects

150

DevOps and QA
maintenance
(10 months)

 1500

Project
management
(10 months)

 1000

Total 5450

Hourly rate: 100$/h
Cost (in USD): $545000
Cost (in DOT): 86507

SRLabs security assurance team

1.​ Code assurance lead
2.​ Senior code assurance auditors x 3
3.​ Expert code assurance auditor x 1

Task Description Hours Costs

IX.1 Conduct
scheduled
security audits
and follow
milestone PRs
of KAGOME

a) Perform security audits on the new
features developed since the initial
audit, including:
●​ Asynchronous backing
●​ Elastic scaling
●​ Validation v3
●​ Disabling validators
●​ Grid and cluster topologies
●​ WasmEdge integration
●​ Systematic chunks
●​ Reviewing minor enhancements
●​ Security improvements

(retroactive)

b) Security review of pull requests
(PRs) submitted to the KAGOME
repository, guided and prioritized by
KAGOME development team

1600 $291200

IX.2 Additional
security
assurance
measures upon
request

Expert consultation on additional
security measures (e.g. dynamic
testing improvements, security best
practice workshops)

300 $54600

Hourly rate: 182$/h

Cost (in USD): $345800

Cost (in DOT): 54888

Total cost (Quadrivium + SRLabs)

Cost (in USD): $890800

DOT/USD 30 day EMA (as of 28.06.24): $6.3

Cost (in DOT): 141 395

Mentoring and technical support

The Web3 Foundation will partner on this proposal as technical advisor and deliverables
auditor to ensure the completed milestones are technically sound. It is expected for the
Quadrivium team to publish deliverable reports after the Web3 Foundation technical
evaluation and before continuing with subsequent milestones or proposals.
In turn KAGOME team will help W3F improve Polkadot Host specification by reviewing
spec changes. Kamil (KAGOME project lead) has already joined the Spec committee to
decentralize the process of spec development.

Please note funds will come from the community treasury and Web3 Foundation technical
team has no control over these funds and will not be rewarded as a reviewer of the
milestones. The team will serve the sole purpose of evaluating deliverables in alignment
with the community approval of this proposal and this role is based on their past
participation in this project.

https://github.com/Noc2/polkadot-spec/commit/4a52bc0f75923add230ecffe998c8fd22bb8d785

Appendix & additional
information:

KAGOME presentations:

✅ KAGOME: C++ implementation of PRE presentation at DOTCon, August
18th, 2019
✅ Web3 Builders: Soramitsu | C++ Implementation of Polkadot Host, April
21th, 2020
✅ Building alternative clients | Polkadot Decoded 2023
✅ Polkadot Host architecture in 2024 | Sub0 Asia 2024

About Quadrivium

Quadrivium (https://www.qdrvm.io) is a blockchain infrastructure development
company founded in 2023. The company specializes in the development of
blockchain clients, peer-to-peer networking tools, and zk-cryptography.
Quadrivium develops KAGOME Polkadot Host implementation, in partnership with
the Web3 Foundation. The company also maintains the C++ libp2p library.

Quadrivium's mission is to build the infrastructure for a decentralized future. The
company believes that blockchain technology has the potential to revolutionize
many industries, and it is committed to developing the open-source tools and
services that will make this possible.

Team experience

●​ https://github.com/libp2p/cpp-libp2p/ – official implementation of
libp2p – a modular, upgradable network stack providing convenient
interface for networking layer in p2p networks
●​ https://github.com/filecoin-project/cpp-filecoin – C++
implementation of Filecoin network protocol
●​ https://github.com/hyperledger/iroha – permissioned blockchain
from Hyperledger umbrella, that is currently being used in Cambodian
CBDC system

https://www.youtube.com/watch?v=181mk2xvBZ4
https://www.youtube.com/watch?v=zRnfKfJjUSA
https://www.youtube.com/watch?v=zRnfKfJjUSA
https://www.youtube.com/watch?v=We3kiGzg60w
https://www.youtube.com/watch?v=zRnfKfJjUSA&t
https://www.youtube.com/watch?v=zRnfKfJjUSA&t
https://www.youtube.com/watch?v=TnENz6I9l8A&t
https://www.youtube.com/watch?v=Lv2KQ2EDyM8&t=1085s&pp=ygUKc3ViMCBrYW1pbA%3D%3D
https://www.qdrvm.io
https://github.com/libp2p/cpp-libp2p/
https://github.com/filecoin-project/cpp-filecoin
https://github.com/hyperledger/iroha

About SRLabs

SRLabs (https://www.srlabs.de/) is home to knowledge leaders securing
critical infrastructures in finance, blockchain, energy, and
telecommunications.
We focus on hands-on hacking resilience – not compliance –, which we shape
by combining our hacking research with impactful consulting work for
innovation leaders that have a natural thrive for cutting-edge technologies.
SRLabs is one of the leading blockchain audit companies with experience in
many Substrate-based blockchains, including the Polkadot layer-0 relay
chain and parachains built on top.

https://www.srlabs.de/

	Polkadot Treasury Proposal ​KAGOME – C++ implementation of Polkadot Host
	Milestone 3
	1.​Context of the proposal:​
	2.​Problem statement
	3.​Alignment with JAM
	4.​Proposed feature set
	I.​Security improvements (retroactive)
	
	II.​Grid and cluster topologies (retroactive)
	III.​Elastic scaling
	IV.​Validation protocol upgrade (validation v3 + assignments v2)
	V.​Systematic chunks (RFC-47)
	VI.​Disabled validators mechanism
	
	VII.​Minor features and improvements
	
	VIII.​DevOps and QA maintenance
	IX.​Security assurance by SRLabs
	Objectives of the Security Assurance Scope:
	Support scope for this milestone:
	Joint alignment sessions will be conducted between Quadrivium and SRLabs to prioritize the support scope during this milestone. This session will ensure that the most critical security needs are addressed promptly and effectively.
	
	The security assurance for KAGOME by SRLabs is designed to be adaptive and responsive, addressing the evolving needs of the project. By ensuring thorough audits of code changes, conducting in-depth reviews and exploring additional security measures, we aim to maintain and enhance the security of KAGOME. This approach will help KAGOME its goal of providing a secure and reliable client implementation for the Polkadot ecosystem.

	
	
	5.​Projected task allocation and payment details
	Quadrivium development team

	
	Hourly rate: 100$/h
	Cost (in USD): $545000
	Cost (in DOT): 86507
	SRLabs security assurance team
	
	Total cost (Quadrivium + SRLabs)

	Mentoring and technical support
	Appendix & additional information:
	
	KAGOME presentations:
	✅ KAGOME: C++ implementation of PRE presentation at DOTCon, August 18th, 2019
	✅ Web3 Builders: Soramitsu | C++ Implementation of Polkadot Host, April 21th, 2020
	✅ Building alternative clients | Polkadot Decoded 2023
	✅ Polkadot Host architecture in 2024 | Sub0 Asia 2024

	
	About Quadrivium
	Team experience

	About SRLabs

