

Cellular Biology Unit Test Review

Review the following topics

Cell theory, types of cells, microscopes
Plant and Animal Cells, parts and their functions
Using a Microscope, microscope parts and functions
Parts of the Cell Membrane, fluid Mosaic Model
Movement of Particles Through the Cell Membrane
Diffusion, osmosis, 3 types of solutions, factors affecting passive transport
Carbohydrates
Lipids
Proteins
Enzymes, Factors Affecting Enzyme Activity

Modified True/False

Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement true.

____ 1. Animals store carbohydrates as starch. _____

____ 2. Enzymes speed up chemical reactions. _____

____ 3. The attachment of the substrate to the enzyme's active site creates the enzyme-substrate complex. _____

____ 4. The active site is the location where a substrate binds to an enzyme. _____

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

1. What statement about saturated fatty acids is correct?
a. they contain only single bonds c. they are liquids at room temperature
b. they contain triple bonds d. they contain several double bonds
2. The building block (monomer) of proteins is
a. Glucose c. Glycerol + 3 fatty acid chains
b. Amino acids d. nucleotides

3. Of the 20 amino acids found in the human body, how many are considered essential?

- a 2
-
- b 9
-
- c 12
-
- d 0
-

4. In brewing, baking, and winemaking, the enzymes found in yeast cells convert glucose to

- a Carbon dioxide and water
-
- b Lactic acid
-
- c alcohol and carbon dioxide
-
- d pyruvate
-

5. The movement of solutes across a cell membrane from an area of **low** concentration to **high** concentration is called

- (b) Passive Transport
- (c) Active transport
- (d) Brownian motion
- (e) Diffusion
- (f) Osmosis

6. If a cell is placed in a **hypertonic** environment,

- (a) There is a higher concentration of water outside the cell than inside the cell
- (b) There will be a net movement of water into the cell causing it to swell
- (c) There is a higher concentration of water inside the cell than outside the cell
- (d) The concentrations of water inside and outside the cell are equal
- (e) (a) and (b)

7. If skittles are placed in a beaker of water, the food colouring will disperse until all of the water becomes coloured. This is the result of

- (a) Active transport
- (b) Diffusion
- (c) Osmosis
- (d) Facilitated diffusion
- (e) None of the above

8. The site of protein synthesis in the cell

- a. Ribosomes
- b. Mitochondrion
- c. Vacuoles
- d. Lysosomes
- e. Microtubules

9. Carbohydrates are polymers of . . .

- (a) glucose
- (d) nucleotides
- (b) amino acids
- (e) starch
- (c) lipids

10. What is osmosis?

- (a) a type of reverse diffusion
- (b) the movement of particles through a semi-permeable membrane
- (c) the movement of water through a semi-permeable membrane
- (d) the movement of any substance through a selectively permeable membrane
- (e) the movement of water particles without need for a membrane

11. Most body cells are continually being replaced as they wear out. The organelle responsible for breaking down worn-out cells is the

- (a) cell membrane
- (b) vacuole
- (c) vesicle
- (d) endoplasmic reticulum
- (e) lysosome

12. A plant vacuole serves as a storage space for

- (a) water
- (b) sugars
- (c) minerals
- (d) waste
- (e) all of the above

13. Which of the following statements about the cell membrane is correct?

- (a) Both ends of the phospholipid are hydrophilic.
- (b) Both ends of the phospholipid are hydrophobic.
- (c) There is one type of protein embedded in the bilayer.
- (d) A variety of proteins are embedded in the bilayer.
- (e) None of these statements is correct.

Matching

Match each item related to **carbohydrates** to the correct statement listed below.

a	Monosaccharide	d	Glycogen
.	.	.	.
b	Disaccharide	e	Starch
.	.	.	.
c	polysaccharide	f	cellulose
.	.	.	.

- ___ 1. simplest carbohydrate, consisting of a single sugar
- ___ 2. A molecule that stores energy in plants.
- ___ 3. two monosaccharides linked together
- ___ 4. A molecule that stores energy in animals
- ___ 5. A long chain consisting of many monosaccharides
- ___ 6. A molecule that gives plant cell walls their rigidity.

Match each item related to **lipids** to the correct statement listed below.

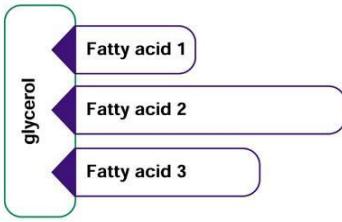
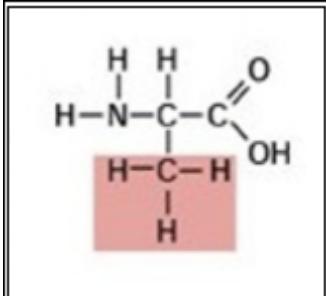
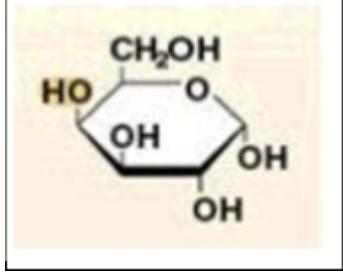
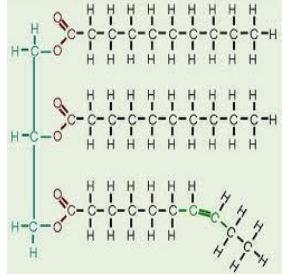
a. Unsaturated fats	d. Glycerol + 3 fatty acid chains
b. Saturated fats	e. Monounsaturated
c. Trans fats	f. polyunsaturated

- ___ 1. lipid molecules containing only **one** carbon–carbon double bond in their fatty acid chains
- ___ 2. Solids at room temperature, found in animals
- ___ 3. Lipid molecules that contain many carbon–carbon double in their fatty acid chains
- ___ 4. The building blocks of lipids
- ___ 5. Liquids at room temperature, found in plants
- ___ 6. Unsaturated fats that have been chemically modified to become saturated (i.e. margarine)

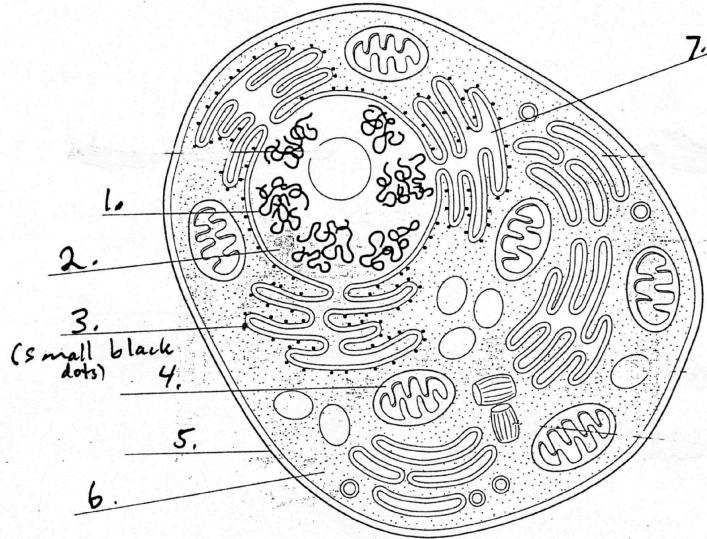
Match each item related to **enzymes** to the correct statement below.

a substrate	d Catalyst
.	.
b active site	e reactants
.	.
c enzyme-substrate complex	f products
.	.

_____	1. starting materials of a chemical reaction
_____	2. enzyme with its substrate attached to the active site
_____	3. the molecule an enzyme acts on in a chemical reaction
_____	4. the results of a chemical reaction
_____	5. location where the substrate binds to the enzyme
_____	6. speeds up a chemical reaction

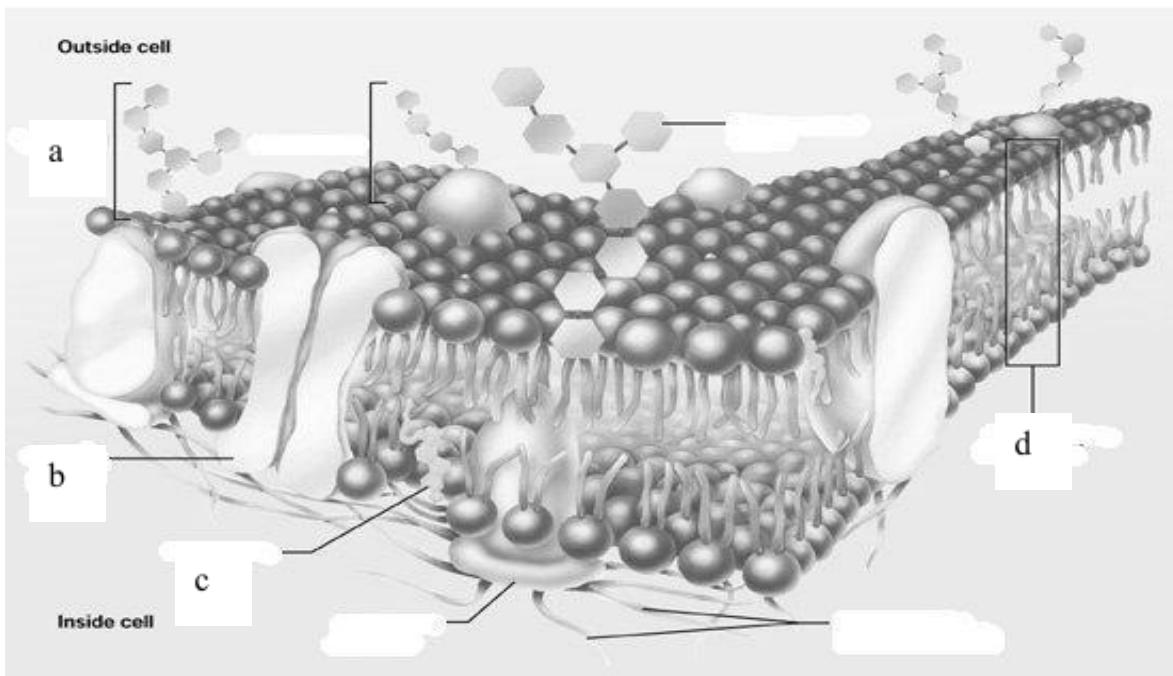




Tables

Complete the following table describing the indicators used to test for food molecules.

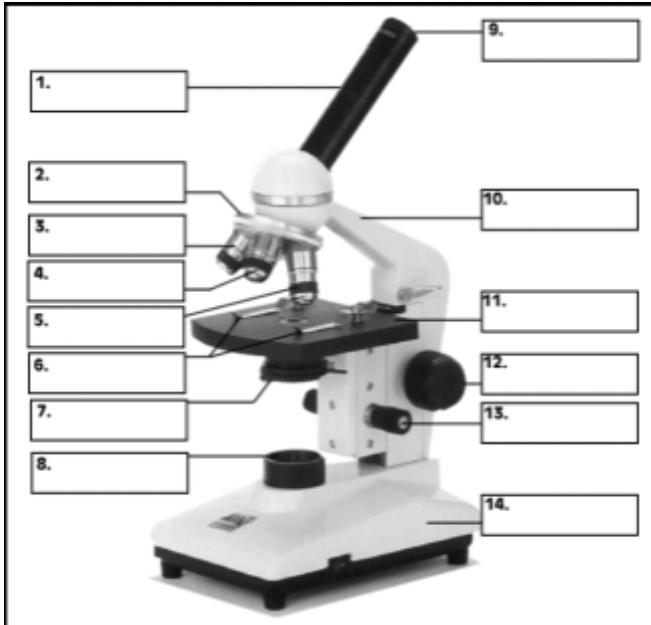

Name of Indicator	Molecule Tested For	Colour Change Observed
Biuret's Reagent		
	Starch	
Benedict's Reagent		
	Oil or Lipids	

Diagrams

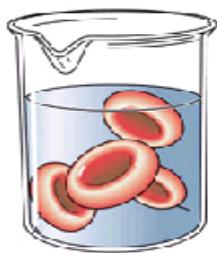
1. Complete the following table.


Type of Molecule	Sketch or Diagram	Function in the body
	<p>Fatty acid 1</p> <p>Fatty acid 2</p> <p>Fatty acid 3</p> <p>glycerol</p> <p>Figure 1.13. On this simple model of a triglyceride (fat) macromolecule, the triangles represent glycerol's three reaction sites.</p>	

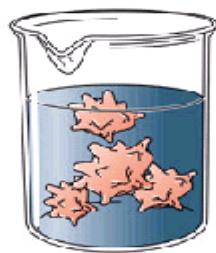
2. Label the parts and indicate the functions of each part in the diagram below.


Number	Name of Part	Function
1		
2		
3		
4		
5		
6		
7		

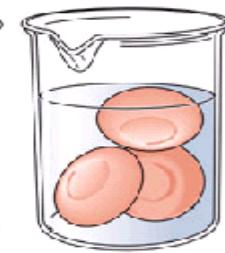
3. Use the following cell membrane diagram to complete the table below.


	Name of Structure	Function
a		
b		
c		
d		

4. Label the indicated parts of the microscope. [5]



5. The cells below are in three different solutions. Review the images and answer the questions below.


Beaker A

Beaker B

Beaker C

A: _____ B: _____ C: _____

(a) In the space below each beaker, identify each solution as hypotonic, hypertonic or isotonic.

(b) Explain what has happened to the cells in beaker B?

Short Answer

1. Describe three differences between saturated and unsaturated fats.
2. What are essential amino acids? How many amino acids are considered essential?
3. How does the presence of an enzyme affect the rate (speed) of a chemical reaction? Explain why.
4. What are two similarities and two differences between facilitated diffusion and osmosis?
5. How is the rate of diffusion affected by a decrease in the concentration gradient?
6. Describe one similarity and two differences between facilitated diffusion and active transport.

7. State three differences between plant and animal cells.

8. Complete the following three statements that make up cell theory.

- a) All living things are _____.
- b) Cells are the basic _____ and _____ units of life.
- c) All cells come from _____ .