Tutorial: Learn how to figure out the
reproduction steps for a server error

Introduction

This tutorial will guide you through debugging a server error that is challenging to reproduce
locally. Specifically, we will investigate and fix a TypeError related to certificate generation for
contributors.

Skills Covered:

e Codebase Navigation

e Identifying and Analyzing Error Logs

e Debugging Techniques

e Reproducing Server Errors Locally
Scenario:

One of the server admins has reported the following error logs. Your task is to investigate the
issue and determine how and why it is occurring.

Note: The primary goal of this tutorial is not to find a solution, but to guide you through the
process of investigating and understanding the workflow of debugging server errors. In this
tutorial, you will follow the steps a developer might take to investigate this server error.

TypeError: expected string bytes-like object
Exception raised: expected string bytes-like object
Traceback (most recent call last):

File

line dispatch

method(*args, **kwargs)

File
test can_fetch all contributor dashboard stats
handler(self, username, **kwargs)
File , line
get
response = suggestion_services.generate contributor_certificate_data(
File , line B

generate_contributor_certificate_data
data = _generate_translation_contributor_certificate_data(
File , line
_generate_translation contributor certificate data
plain_text = get plain_text from_html_ content_string(
File , line

_get plain_text from_html content string
html content string with rte tags replaced = re.sub(
File
, sub
_compile(pattern, flags).sub(repl, string, count)
TypeError: expected string bytes-1like object

Procedure:

The following steps illustrate how a developer might tackle this issue. Try following this tutorial
step-by-step on your local machine! This will give you a better sense of how to tackle other
similar issues in the codebase. If you get stuck with a step in this tutorial, raise an issue in
GitHub Discussions to get help.

Important: When you see a “practice question box”, stop and try to figure out the answer on
your own before reading ahead. You will learn more if you try to figure out your own answer to
the question first!

Setup:

1. Install Oppia on Your Local Machine: To begin, you'll need to have Oppia installed on
your local machine. If you haven't done so already, please follow the installation steps
provided in this wiki page.

2. Check Out the Specific Commit: To ensure that you are working with the same version
of the code as this tutorial, navigate to your local Oppia directory and check out the
specific commit:

git checkout 192f@a%9a4866debac160015bc949130aaaeba7fe

This ensures consistency between your environment and the code referenced in this
tutorial.

3. Verify the Commit: You can verify that you are on the correct commit by running:

git log -1

https://github.com/oppia/oppia/discussions/categories/tutorial-feedback
https://github.com/oppia/oppia/wiki/Installing-Oppia

The output should display the commit ID
192f0a9%9a4866debac160015bc949130aaaeba7fe.

Debugging Process:
When faced with a server error, developers at Oppia typically follow these steps:

1. Analyze the Error Logs to Locate the Affected Code: Start by reviewing the error logs
to find a stack trace that indicates where the error occurred. Pinpoint the relevant file,
function, or line number where the problem originated.

2. Examine the Affected Code: Open the identified file(s) and examine the specific code
blocks related to the error. Understand the intended functionality of the code and check
for any immediate errors or inconsistencies.

3. Investigate Potential Causes by Exploring the Code in Depth: Consider possible
reasons for the error, such as incorrect data types, missing conditions, edge cases, or
unexpected inputs. Dive deeper into the code, focusing on sections that are most likely
causing the issue. Look for logic errors, unhandled cases, or data processing problems
that align with your initial suspicions.

4. Reproduce the Error: Set up an environment to recreate the conditions that led to the
error. Use test data or modify unit tests to replicate the issue and confirm your
hypotheses about its cause.

5. Document Your Findings: Once you've identified and confirmed the cause of the error,
document your findings in detail on the original GitHub issue. Provide a summary of the
error, clear steps to reproduce it, and any relevant observations or logs to support your
conclusions.

Stage 1: Analyze the Error Logs to Locate the Affected Code

Objective: Identify where the error occurred in the code.

Note: This tutorial focuses on server errors, which are typically reported by server admins and
come with error logs. For other issues, such as user-reported bugs, error logs might not always
be available. In these cases, it is essential to ask users for "steps to reproduce the bug." If this
information is not provided, we can contact the user to request additional details that will help us
understand the issue better.

Here is the error log we need to investigate:

TypeError: expected string bytes-like object

Exception raised: expected string bytes-1like object
Traceback (most recent call last):
File

line dispatch

method(*args, **kwargs)

File
test_can_fetch_all_contributor_dashboard_stats
handler(self, username, **kwargs)
File , line
get
response = suggestion_services.generate_contributor_certificate_data(
File , line
generate_contributor_certificate_data
data = _generate_translation_contributor_certificate_data(
File 5, line
_generate_translation_contributor_certificate_data
plain_text = _get_plain_text_from_html_content_string(
File , line
_get_plain_text_from_html_content_string
html_content_string_with_rte_tags_replaced = re.sub(
File
5 sub
_compile(pattern, flags).sub(repl, string, count)
TypeError: expected string bytes-1like object

J

Understanding the Stack Trace:

e A stack trace is a report of the active stack frames at a certain point in time during the
execution of a program. It shows the call sequence leading to the point where the error
occurred. Each line provides the file name, line number, and function where the error
occurred.

e The stack trace is read from the bottom up to understand the sequence of function calls
leading to the error.

e The bottom-most lines generally point to standard library or third-party code (in this case,
re.py from Python's standard library). Moving upward, you start seeing calls within the
project codebase, which is where we should focus. The key is to find the first instance
where Oppia's code interacts with the point of failure.

Practice 1: Locate the specific line in the stack trace where Oppia's code is directly
involved in causing the failure. This is the point where the error is most likely to originate
within the Oppia codebase.

Hint: Look for the first occurrence (from the bottom of the stack trace upward) where the
stack trace shows a line of code from the Oppia codebase. This line represents the entry
point in the Oppia code that led to the failure. Identifying this line will help you trace the
error back to its origin in the code.

In this stack trace, the relevant line is:

File

_get _plain_text_from _html_content_string
html_content _string with rte tags replaced = re.sub(

This line indicates that the error originated in the
_get_plain_text_from_html_content_string function within the
suggestion_services.py file.

You have identified the error location in the codebase and gathered initial clues about what
might have gone wrong.

Next Step is to pinpoint the Specific Part of the Code Causing the Error.

Practice 2: Locate the _get_plain_text_from_html_content_string function in
the suggestion_services.py file.

Take a moment to locate it before moving forward.

Once you've located the function, review the surrounding code to understand what the
function does and how the error might have been triggered.

Hint: To locate the function, you can make use of search functionalities of your code editor.
(https://github.com/oppia/oppia/wiki/Tips-for-common-IDES)

File , line
_get plain_text from html content string
html content string with rte tags replaced = re.sub(

File
sub
_compile(pattern, flags).sub(repl, string, count)
TypeError: expected string bytes-like object

Based on the error logs, the issue arises because the argument passed to the re.sub()
functioninthe _get_plain_text_from_html_content_string method is not of the
expected data type (a string or bytes-like object).

You have now pinpointed the exact file, function, and line where the issue originated and are
ready to dive deeper into the problem area.

https://github.com/oppia/oppia/wiki/Tips-for-common-IDEs

Stage 2: Examine the Affected Code

Examine the _get_plain_text_from_html_content_string function to understand its
purpose and the specific operation where the error occurs. Here's the function:

Retrieve the matched string from the MatchObject.

rte_tag string = rte_tag.group(9)

Get the name of the rte tag. The hyphen is there as an optional
matching character to cover the case where the name of the rte
component is more than one word.

rte_tag name = re.search(
, rte_tag string)
Here, rte_tag name is always going to exists because the string
that was passed in this function is always going to contain
~<oppia-noninteractive>” substring. So, to just rule out the
possibility of None for mypy type checking. we used assertion

rte_tag name
Retrieve the matched string from the MatchObject.
rte _tag name_string = rte_tag name.group(0)
Get the name of the rte component.
rte_component name_string list = rte_tag name_string.split()[2:]
If the component name is more than word, connect the words with
spaces
to create a single string.
rte_component_name_string =
.join(rte_component name_string list)
Captialize each word in the string.
capitalized rte_component_name string = (
rte_component_name_string.title())
formatted rte component name_string =
capitalized rte_ component_name_ string)
formatted_rte_component_name_string

Replace all the <oppia-noninteractive-**> tags with their rte
component

names capitalized in square brackets.

html content string with rte tags replaced = re.sub(

_replace _rte_tag, html_content_string)
Get rid of all of the other html tags.
plain_text = html_cleaner.strip html tags(
html content string with rte tags replaced)
Remove trailing and leading whitespace and ensure that all words are
separated by a single space.
plain_text without contiguous whitespace = .join(plain_text.split())
plain_text_without_contiguous_whitespace

Practice 3: Locate the lines which are causing the error in the above mentioned function.

Hint: Review the error logs. In a real debugging scenario, the stack trace would help you
pinpoint this specific line as the source of the error.

In this stack trace, the relevant line is:

File
_get plain_text_from html_ content string
html _content_string with _rte_tags _replaced = re.sub(

This line indicates that the error originated in the
_get_plain_text_from_html_content_string function within the
suggestion_services.py file at line number 1408. Let’s take a look at that line:

html_content_string with_rte_tags_replaced = re.sub(

_replace_rte_tag, html_content_string)

Note that the third parameter, html_content_string, is being passed to the re.sub
function and that this parameter is the argument of the function
_get_plain_text_from_html_content_string.

The re . sub function is used to replace certain HTML tags. According to the Python
documentation for re.sub, it expects the first argument to be a pattern, the second argument to
be a replacement string, and the third argument to be the string to be searched and replaced.

Even though the re . sub documentation doesn't explicitly mention the TypeError, we can
infer the following:

1. TypeError Convention: In Python, TypeError is conventionally raised to indicate that
an operation or function received an argument of an inappropriate type. This means that
if re . sub expects a string or bytes-like object but receives a different type, it raises a
TypeError.

https://docs.python.org/3/library/re.html#re.sub

2. Error Message: The error message "expected string or bytes-like object” indicates that
re.sub was given an argument that wasn't a string or bytes-like object, which is why it
raised a TypeError.

Practice 4: Determine where the html_content_string is coming from.

Hint: Review the error logs carefully. Pay close attention to the lines mentioned in the stack
trace, especially the one that is calling the _get_plain_text_from_html_content_string
function. This will give you a clue about where the html_content_string originates.

According to the error log, this function is called in suggestion_services.py within the
_generate_translation_contributor_certificate_data function.

As we can see, we are passing the output of the function,
get_html_representing_suggestion(suggestion) as the input to the function
_get_plain_text_from_html_content_string.

Let’s take a closer look at the method
get_html_representing_suggestion(suggestion). This method handles different

types of suggestions and retrieves the corresponding HTML content based on the type of
suggestion.

In the context of this method, two lambda functions are defined to extract HTML content based
on the suggestion_type:

For translation suggestions:

SUGGESTION TRANSLATE_ CONTENT _HTML: Callable[
[suggestion_registry.SuggestionTranslateContent], str

suggestion: suggestion.change_cmd.translation_html

This lambda function is used when the suggestion type is related to translating content. It
retrieves the translation_html property from the change_cmd attribute of the suggestion
object.

For question suggestions:

SUGGESTION ADD QUESTION HTML: Callable[
[suggestion_registry.SuggestionAddQuestion], str

suggestion: suggestion.change_cmd.question_dict[

11 I]

This lambda function is used when the suggestion type involves adding a question. It retrieves
the html property from the question_state_data dictionary inside the question_dict of
the suggestion object.

Practice 5: Based on the code provided and the context of the lambda functions, what
could potentially go wrong with the data being accessed? Specifically, think about the
structure of the

suggestion.change_cmd.question_dict['question_state_data']['conten
t']["html'] and suggestion.change_cmd.translation_html fields. What
potential data type or structure issues could arise here?

One possible issue is that the html property of the question_dict or the
translation_html field might not always be a string as expected. It could be None or
another data type entirely, which would cause issues when the
_get_plain_text_from_html_content_string function tries to process it. If the function
is expecting a string but receives a different type (such as None or a more complex object), it
could resultin a TypeError. This could explain why the error indicates that a string or
bytes-like object was expected but something else was provided.

In this case, the issue is likely that either suggestion.change_cmd.translation_html or
suggestion.change_cmd.question_dict['question_state_data']['content']]|

"html'] is not always a string, leading to the observed error when passed to the re.sub()
function.

You now understand the purpose and expected behavior of the affected code and have
identified areas where discrepancies may have occurred.

Stage 3: Investigate Potential Causes by Exploring the Code in Depth

Objective: Formulate hypotheses about why the error is occurring based on initial findings, and
verify them by examining the code more closely.

At this point, brainstorm the possible data types that could be causing this issue. Consider the
following questions:
e What Data Types Are Expected?
What data types should
suggestion.change_cmd.question_dict['question_state_data']['
content']['"html'] and suggestion.change_cmd.translation_html
be? Are they always strings, or can they also be other types?

e Can Non-String Values Cause Issues?
Could these fields sometimes store non-string values, such as lists or None? If
S0, this could lead to issues when the
_get_plain_text_from_html_content_string function attempts to
process them.

You now have potential causes of the error. To confirm these, you need to dig deeper into the
codebase.

Investigating the Source of the Problem

Our initial suspicion is that the problem might be due to the data types involved. To investigate
further, we need to:

e Check the Creation of Suggestions
Examine the code responsible for creating suggestions and questions to ensure that the
expected data types are being used. This includes verifying that fields are populated
correctly and checking for any anomalies that might lead to errors.

Practice 6: Locate the Code Responsible for Creating Suggestions

Hint: Analyze the network requests triggered when creating a suggestion, and then
examine the handler attached to the endpoint. Use the resources such as Find the Right

Code to Change and Analyzing the Codebase to guide your investigation.

Open the Developer Tools in your browser and go to the "Network" tab while creating a
translation suggestion. You'll notice that the endpoint /suggestionhandler is triggered.

Next, check the main. py file in the Oppia codebase to find which handler is associated with
this endpoint. You'll see that the endpoint is connected to:

get redirect route(
% feconf.SUGGESTION URL_PREFIX,

suggestion.SuggestionHandler),

https://github.com/oppia/oppia/wiki/Find-the-Right-Code-to-Change
https://github.com/oppia/oppia/wiki/Find-the-Right-Code-to-Change
https://github.com/oppia/oppia/wiki/Analyzing-the-Codebase

Practice 7: Analyze the SuggestionHandler in
oppia/core/controllers/suggestion.py.
Can you find the code that is responsible for creating suggestions?

Within oppia/core/controllers/suggestion.py, you'll see that suggestion creation is
managed by this method:

suggestion = suggestion_services.create suggestion(

suggestion_type,

self.normalized payload['target type'],
self.normalized payload['target id'],
self.normalized payload['target version at submission'],
self.user_id,

self.normalized payload['change cmd'],
self.normalized payload['description']

This shows that the actual creation of the suggestion is handled by the create_suggestion
method in the suggestion_services.py file.

To further investigate, we need to and review the Suggestion Creation Services method to
understand how fields like content_html are populated.

Practice 8: Analyze the create_suggestion method of the
suggestion_services.py file. Can you find the code where content_html field is being
populated/used ?

On reviewing the method, we can see at this line that for suggestions of type 'Translations,' we
are getting content_html using this get_content_html and are performing a equality check
against change _cmd dict’s content_html property. This might be what we are looking for. Let’s
take a look at this method

-> Union[str, List[str]]:

https://github.com/oppia/oppia/blob/6c2003519db2981309b6d057af3edc7372da005e/core/domain/suggestion_services.py#L150
https://github.com/oppia/oppia/blob/6c2003519db2981309b6d057af3edc7372da005e/core/domain/suggestion_services.py#L215

state_name self.states:
ValueError(% state _name)

self.states[state name].get content html(content_id)

Here, we notice a discrepancy between the type annotation (-> Union[str, List[str]])
and the docstring. The docstring states that the method returns a str, but the type annotation
indicates that it could return either a str ora List[str]. This is a good example of why you
shouldn't rely solely on docstrings to understand a function's behavior. Docstrings can become

outdated or inaccurate over time, especially in large codebases like Oppia, where many
contributors make changes.

Verify the Return Type by Analyzing the Code

To accurately determine the return type, you need to look at the actual implementation of the
get_content_html method. Here, the method calls get_content_html(content_id) on
self.states[state_name]. To understand what is being returned, you need to trace this
call further into the self.states[state_name] object and its get_content_html method.

If we look further into this code:

self.states[state_name].get content_html(content_id)

This function eventually returns the value:

content_id to_translatable content[content_id].content_value

Here, the content_value property is populated via:

self.content_value = content_value

The type of content_value is defined as:

content_value: feconf.ContentValueType

Upon examining ContentValueType, we find:

ContentValueType = Union[str, List[str]]

By investigating the return types of each function and following the flow of data through the
helper methods, we confirm that the get_content_html method can indeed return either a
stroralist[str]. However, from examining the backend functions alone, it's not entirely
clear whether the content_html variable actually ends up beinga List[str] orjusta str.

The evidence we have gathered so far is suggestive, but not definitive. To gather more solid
proof, we need to trace where the content_html property in the change_cmd dictionary is
actually populated.

Looking at the SuggestionHandler:

suggestion = suggestion_services.create suggestion(

suggestion_type,

self.normalized payload|

self.normalized payload|

self.normalized payload|

self.user_ id,

self.normalized payload|

self.normalized payload|

This snippet indicates that the content_html is part of the change_cmd dictionary, which is
passed from the frontend to the backend. This means the backend isn't strictly defining what the
type of content_html should be; rather, it's receiving it from the frontend.

To gain more clarity, we need to examine the network calls in the frontend that send data to the
SuggestionHandler. This can help us trace the source of the content_html value.

In the frontend, we find the function suggestTranslatedTextAsync, which is responsible for
making a call to the handler:

suggestTranslatedTextAsync(

expld: 5

expVersion:
contentId:
stateName:
languageCode:
contentHtml:
translationHtml: |
imagesData: ImagesDatal],
dataFormat:
< > {
postData: Data =
suggestion_type:
target_type:
description:
target id: expld,
target version_at submission: expVersion,
change cmd: {
cmd:
content_id: contentId,
state name: stateName,
language code: languageCode,
content_html: contentHtml,
translation_html: translationHtml,
data format: dataFormat,

¥

files:

.imagelocalStorageService.getFilenameToBase64MappingAsync(imagesData),

};

body = FormData();
body . append(5 .stringify(postData));
.http.post< >(, body).toPromise();

Here, we can see that content_html can be eithera stringoralList[string] (array of
strings). This confirms that the frontend can indeed send a List[string] as the value for
content_html. Thus, the content_html property for translation suggestions could indeed
be either a single string or a list of strings.

We have identified the root cause of the error. The
_get_plain_text_from_html_content_string function expects a str.When it receives
a list of strings, it results in a TypeError.

Note on Why mypy Did Not Catch This Error:

mypy is a static type checker for Python, designed to enforce type safety by verifying that types
declared in type annotations are respected throughout the code. However, mypy has limitations

when dynamic typing is involved, especially with the use of functions like setattr that
dynamically set attributes at runtime.

In the create_suggestion method, the change_cmd parameter is annotated with
Mapping[str, change_domain.AcceptableChangeDictTypes]. The
AcceptableChangeDictTypes union type includes a variety of types such as str, bool,
float, int, None, List[str], and several domain-specific dictionary types. This annotation
indicates that change_cmd can contain any of these types.

Within the BaseChange class, the setattr function is used to dynamically set attributes based
on the contents of the change_dict

attribute_name cmd_attribute _names:

setattr(self, attribute_name, change dict.get(attribute name))

Normally, if a variable were declared with the type AcceptableChangeDictTypes and later
passed to a function expecting a str, mypy would flag this as a potential error because
AcceptableChangeDictTypes can also include types like List[str], which are not
compatible with a str type.

However, in this case, setattr is used to assign a value from change_dict which could be
of any type included in AcceptableChangeDictTypes to an attribute that is declared to be of
type str. Since setattr is a built-in function that dynamically assigns values to object
attributes, mypy cannot enforce type safety at this point. It assumes that the attribute, which is
declared as str, will always be of type str, even though it might actually hold a List[str] or
another type from AcceptableChangeDictTypes.

This is why mypy does not catch the type mismatch when a function like
_get_plain_text_from_html_content_string, which expects a str, encounters an
attribute that is, in fact, a List[str]. The use of setattr bypasses mypy's static type
checking, leading to potential runtime type errors that mypy does not detect.

You have pinpointed the exact cause of the error in the code, understanding why the issue
occurs under certain conditions.

Stage 4: Reproduce the Error

Objective: Confirm the suspected cause of the error by replicating it in a controlled
environment.

Once you have a hypothesis about the root cause of the issue, it's time to verify it. There are
several ways you can do this:

Option 1: Reproduce on a Local Server

Try to replicate the error on a local server by following the user journey that leads to the issue.
This involves setting up a local environment, creating or modifying an exploration with rule
inputs, and attempting to generate a certificate to see if the error occurs again. This method is
practical and quick if you can accurately simulate user actions, but it may not always capture the
exact conditions of the live environment.

Pros: Practical and quick if you can closely simulate user actions.

Cons: May not always replicate the exact conditions of the live environment.

Option 2: Use Unit Tests

Modify or create unit tests to check if they trigger the same error when using the rule inputs in
question. This approach involves locating existing unit tests, such as those for the
generate_contributor_certificate_data function, and adjusting them to use the
problematic inputs. This method can be efficient if you already have a good understanding of the
issue, but it relies on having relevant unit tests available or being able to adapt existing ones
easily.

Pros: Efficient if you have a clear idea of the issue.
Cons: Requires existing or easily adaptable unit tests.

Option 3: Write a Validation Job

Develop a Beam job to fetch all translations and check their data types, reporting any that are
not strings. This approach involves creating and testing the job and then running it on a live
server with the help of server admins. It's a thorough and systematic method, but it can be
time-consuming and requires server-side execution.

Pros: Comprehensive and systematic.
Cons: Time-consuming and involves server-side execution.

Option 4: Add Logging for Detailed Insight

Insert logging.error () statements into the codebase to capture more detailed information
when the error happens. By placing these logs around suspected areas of the code, you can
gather data that helps you understand the problem better. However, this method requires
reviewing server logs and might depend on waiting for the error to reoccur in production.

Pros: Provides detailed context; useful for understanding complex issues when other methods
fail.

Cons: Requires additional review of server logs and depends on the error happening again in
production.

Practice 7: Which option do you think is better and why? Consider:

e Option 1 is ideal if the issue does not require specific production data. It's often the
quickest way to validate your hypothesis.

e Option 2 is preferable if the issue can be simulated with unit tests, especially when
you have a clear understanding of the root cause.

e Option 3 is useful when you need to perform a broad investigation of production
data that you don't have locally, and you lack a clear lead on the issue.

e Option 4 is helpful when other methods do not provide enough detail or you need
to generate logs to diagnose the problem more precisely.

In our case, Option 1 or Option 2 is ideal since we have a clear root cause: the HTML content
can be either a string or a list of strings. We want to verify that this discrepancy causes the error.
Option 3 can serve as a fallback if our direct testing methods do not fully replicate the error.

General Rule for Choosing an Verifying Option

As a general rule, start with the first item on the list above that makes sense for the issue you're
tackling:

Do Option 1 if the issue doesn't require specific production data.

Do Option 2 if the issue requires specific production data, but you can simulate it with
unit tests.

Do Option 3 if you need to know what's in the production data in the first place.

Do Option 4 if you have no idea what to do and need more detailed information.

Let’'s go with Option 2 for this tutorial. Per the error log, the error is being generated due to this
line:

plain_text =
_get_plain_text_from_html_content_string(get_html_representing_suggestion(suggest
ion))

If we look carefully at the function:

def _get_plain_text_from_html_content_string(html_content_string: str) -> str:

Rest of the code.
html_content_string_with_rte_tags_replaced = re.sub(
r'<oppia-noninteractive-[*>]+>(.*?)</oppia-noninteractive-[*>]+>,
_replace_rte_tag,
html_content_string

)
Rest of the code.

Within the function, the value html_content_stringis passedto re.sub. The re.sub
function, as defined in Python's standard library, expects its third argument to be a string (or a
bytes-like object).

The error message "expected string or bytes-like object" suggests that
html_content_string was not of the expected type when re. sub attempted to use it. This
implies that the input passed to _get_plain_text_from_html_content_string was

something other than a string or bytes-like object. And from the above investigation, we now
suspect it to be a list of strings.

Note: Now that we understand why mypy did not catch this error, we can clarify that the type
hint html_content_string: str in the function signature is actually accurate and not part of
the issue. The type hint correctly indicates that the function expects a string argument. The
problem arose because of how the attribute was dynamically assigned using setattr without a
type check, leading to a case where a list of strings was mistakenly passed to this function.

Let’s take a look at the unit tests

Practice 8: Can you find the unit tests which could be used for our case? Check which
unit tests are covering the behavior of generating certificates.

In the unit test class ContributorCertificateTests, we have the method
test_create_translation_contributor_certificate, which creates a dummy
translation that serves as the input for the certificate generation method. As you can see here:

change_cmd = {

Translation_html holds the suggested value for an exploration card and here we are passing an
HTML string. Let’s try changing it from a string to a list of strings, as that’'s what we are
suspecting:

change cmd = {

Now let’s run the backend unit tests by running “python -m scripts.run_backend_tests
--test_target=core.domain.suggestion_services_test’ (You can check out the wiki on how to run
backend unit tests: https://github.com/oppia/oppia/wiki/Backend-tests)

Notice that the tests are failing with a similar error message to what we saw from the production
logs.

| SUMMARY OF TESTS |

ERROR: test create_ translation_contributor_certificate
(core.domain.suggestion_services_test.ContributorCertificateTests)

Traceback (most recent call last):
File

, line , test create translation contributor certificate
suggestion_services.generate_contributor certificate data(
File

line generate contributor certificate data
data = _generate_translation_contributor_certificate data(

https://github.com/oppia/oppia/wiki/Backend-tests

File

line) _generate _translation contributor certificate data
plain_text = get plain_text from html content string(
File

line) _get plain_text from html content string
html content string with rte tags replaced = re.sub(
File
sub

_compile(pattern, flags).sub(repl, string, count)
TypeError: expected string bytes-1like object

FAILED core.domain.suggestion_services test: errors, failures

Thus, our suspicion appears to be correct. However, it's important to note that multiple bugs
could produce the same error message, so while this provides strong supporting evidence, it
doesn't conclusively confirm that this is the cause of the initial error.

You have successfully reproduced the error locally, validating your hypothesis and preparing to
implement a solution.

Stage 5: Document Your Findings

Note: When tackling server errors at Oppia, it is essential to document your findings thoroughly
on the issue thread. This practice not only ensures transparency in the debugging process but
also enables other contributors to understand the progress, validate the issue, and collaborate
effectively on finding a solution.

How to Document Your Findings:

1. Start with a Summary of the Error:
o Provide a brief description of the server error you encountered.
o Include key details from the error logs and any initial observations.

Example:

| encountered a TypeError: expected string or bytes-like object inthe
generate_contributor_certificate_data method while accessing the
Contributor Dashboard. The error occurs at line 1408 in the
suggestion_services.py file, specifically within the
_get_plain_text_from_html_content_string function, which calls re.sub.

2. Detail the Steps Taken to Reproduce the Error:
o Outline the steps you followed to reproduce the error locally.
o Mention the environment setup, data used, and any modifications made to the
code.

Example:
To reproduce the error:

o | set up alocal environment with the latest version of Oppia.

o | modified an existing backend test in
ContributorCertificateTests to create a dummy translation
suggestion. Specifically, | adjusted the translation_html field to
be a list of strings instead of a single string, which matches the
suspected cause of the error.

o | ran the backend tests using python -m
scripts.run_backend_tests
--test_target=core.domain.suggestion_services_test.

o The tests failed with a similar TypeError as observed in the
production logs, confirming that the issue is reproducible locally.

3. Identify the Commit or PR Likely to Have Introduced the Error:
o Find the commit or PR that might have caused the issue using the Oppia wiki

quide.
o Mention the PR in your comment as a starting point for further investigation.

Example:
After examining recent changes, it appears that the issue might have been introduced in

a PR that modified the get_content_html method to return Union[str,
List[str]] instead of just a str.Link to the PR - Here, we are changing the return
type of the get_content_html method from string to either strings/list. (It's not auto
navigating, if you want to look, please check exp_domain file's line number 2096).

4. Explain the Possible Root Causes:
o Describe your analysis of the potential causes.
o Explain why the changes in the identified PR might have led to the error.
o Provide any supporting information, such as error logs or specific observations.

Example:
The get_content_html method, which now returns Union[str, List[str]],is

being used in the _get_plain_text_from_html_content_string function. This
function expects a str, but it sometimes receives a List[str], causinga TypeError.
The discrepancy between the expected input type (str) and the actual input type
(List[str]) seems to be the root cause of the error.

https://github.com/oppia/oppia/wiki/How-to-find-the-commit-which-introduced-a-bug
https://github.com/oppia/oppia/wiki/How-to-find-the-commit-which-introduced-a-bug
https://github.com/oppia/oppia/pull/17200/files#diff-6bff01224db1fe3047ddf87614d720deffd8efc7e3fca819408547f66926a541L2096

5. Suggest Next Steps:
o Recommend further testing, confirming the bug with other contributors, or starting
work on a fix.
o Clearly outline what should happen next.

Example:
Next steps:

o Review the get_content_html method and decide whether it
should always return a str or update the
_get_plain_text_from_html_content_string function to
handle both str and List[str].

o Check with other team members to gather insights on whether this
bug might affect other parts of the codebase.

o If necessary, begin work on a fix by modifying the relevant functions
to handle different data types appropriately.

By providing a clear and detailed comment on the issue thread, you have effectively
communicated the problem and your findings to other contributors. This will help others
understand the progress, reproduce the issue, and collaborate on finding a solution.

Conclusion

Congratulations! You've learned how to debug server errors that are typically challenging to
reproduce due to limited information. You've also developed skills in reading stack traces and
determining the steps needed to reproduce a bug.

For more insight, you can explore some debugging stories we've listed on our wiki. To further
deepen your understanding of debugging at Oppia, refer to our Debugging Guide.

If you feel confident and want to apply the skills you've acquired from this tutorial, consider
tackling one of the following issues: Good First Issues for Server Errors.

Tidy Up

Now that you've completed the tutorial, it's important to tidy up your local repository to avoid any
confusion in future development work. Follow these steps:

1. Switch Back to the Main Branch: Return to the main branch of the repository:
git checkout main

2. Remove Detached State (if needed): If you checked out a specific commit and ended
up in a detached HEAD state, you can safely delete any temporary changes by running:
git checkout -D 192f0a%9a4866debac160015bc949130aaaeba7fe

https://github.com/oppia/oppia/wiki/Debugging-Stories
https://github.com/oppia/oppia/wiki/Debugging
https://github.com/oppia/oppia/issues?q=is%3Aopen+is%3Aissue+label%3A%22server+errors%22+label%3A%22good+first+issue%22

3. Clean Up Untracked Files: If there are any untracked files or changes, you can remove
them using:
git clean -fd

By following these steps, you'll have a clean working environment ready for future contributions
or tutorials.

We Value Your Feedback

Did you find this tutorial useful? Or, did you encounter any issues or find things hard to grasp?
Let us know by opening a discussion on GitHub Discussions. We would be happy to help you
and make improvements as needed!

https://github.com/oppia/oppia/discussions/new?category=tutorial-feedback

	Tutorial: Learn how to figure out the reproduction steps for a server error
	Introduction
	Skills Covered:
	Scenario:
	Procedure:
	Stage 1: Analyze the Error Logs to Locate the Affected Code
	Stage 2: Examine the Affected Code
	Stage 3: Investigate Potential Causes by Exploring the Code in Depth
	Stage 4: Reproduce the Error
	General Rule for Choosing an Verifying Option

	Stage 5: Document Your Findings
	How to Document Your Findings:

	Conclusion
	Tidy Up
	We Value Your Feedback

