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Introduction 
 
Dynamical systems are seen in several fields ranging from climate modeling to biological 
systems.Dynamical systems are systems whose state evolves with time according to a given 
differential relation.  

                     
 
Nonlinear dynamical systems are widely seen in various systems, ranging from climate to 
biological systems .In several applications, we only have access to the observed time series, 
and we lack knowledge of the exact governing equations. For practical applications, we are 
often interested in forecasting the dynamics of these systems. We aim to leverage deep 
learning models to solve the above mentioned problem. 
 

 
 

Methodology 

One interesting work in this line is the Hamiltonian Neural Network [1], which is applicable 
to systems where energy is conserved. We apply Hamiltonian Neural Networks to the 
following dynamical system: i) Ideal spring mass system, ii) the three-body problem in 
mechanics  and iii) Lorenz system (chaotic nonlinear dynamical system applicable to 
weather data)  
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In our project, we compare the performance of HNN, LSTM, multistep neural networks on all 
these three problems. 
 
The training data comprises the trajectories of the dynamical system for various random 
initial conditions. During testing, we feed in the initial condition of the dynamical system into 
the neural network model (coupled with a numerical solver), and it predicts the evolution of 
the trajectory. 
 

Hamiltonian Neural Networks

 
In Hamiltonian Neural Networks, the neural network learns the Hamiltonian of the 
dynamical system directly from the data. The derivative of the Hamiltonian with respect to 
the input variables are related to the time derivative of the input variables according to the 
following equation: 
 

 
 
During testing, the Hamiltonian Neural Network is coupled with a numericals solver. We 
feed in a new initial condition, and our model predicts the solution for this unseen initial 
condition. 

Multistep Neural networks 
In Multistep Neural Networks, we aim to learn the unknown function f directly from the data. 
Here, the function f is approximated using a feed forward neural network. The loss function 
is designed by using the multistep scheme from numerical analysis. In our implementation, 
we used the trapezoidal rule to define the loss function. 
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In multistep neural networks as well, we couple the neural network model with a numerical 
solver. We feed in new unseen initial conditions to this model, and it predicts the time 
evolution of state variables. 

Results  
 
In all the plots below, dotted lines represent prediction from the neural network and solid 
lines represent ground truth. 

Spring mass system 
We simulate the spring mass system using the solve_ivp function in the scipy library. The 
Hamiltonian for the spring mass system is as follows: 

 ​ ​ ​ ​ ​  
The training data comprises 25 different trajectories of the position q and the momentum p 
of the simple harmonic oscillator for randomly chosen initial conditions. Each of the 
trajectory is 25s long and is sampled with a . ∆𝑡 =  0. 01𝑠
 

LSTM (plots on the testing data) 
The LSTM model we used had a LSTM cell with 200 units followed by a dense layer with 2 
units which predicts q and p. We used a tanh activation function and the model was trained 
for 100 epochs.  
 
The plots below show the results for the 5 unseen initial conditions, which comprises the test 
data. The first two columns show the  trajectories of q and p vs t. The rightmost column 
shows the phase portrait. 
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We can see that the LSTM predicts the exact trajectory accurately for a short duration, but it 
starts to drift apart after some time. However the predicted solution only drifts apart in 
terms of the phase. The overall trend of the actual solution is still learned by the LSTM 
model. From the rightmost column, we can see that the LSTM almost matches the true data 
in terms of the phase portrait, but still there are some regions where it deviates. 
 
 

HNN (plots on the testing data) 
In Hamiltonian Neural Networks, we use a 2 dense layer with 200 units each, and the output 
layer consists of one neuron. Here as well, we used the tanh activation function. 
 
The plots below show the results for the 5 unseen initial conditions, which comprises the test 
data. The first two columns show the  trajectories of q and p vs t. The rightmost column 
shows the phase portrait. 
 
We can see that in the case of Hamiltonian neural networks, the solution drifts apart only by 
a very small amount with respect to the phase. In terms of the phase portrait, the solution 
from the Hamiltonian Neural Network matches the truth almost exactly. The prediction for 
the HNN is much better than that for the LSTM model. 
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Multistep neural networks (plots on the testing data) 
In multistep neural networks, we use a dense layer with 200 units followed by a dense layer 
with 2 units which predicts q_dot and p_dot. Here as well, we have used the tanh activation 
function.  
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The plots below show the results for the 5 unseen initial conditions, which comprises the test 
data. The first two columns show the  trajectories of q and p vs t. The rightmost column 
shows the phase portrait. 
 
In the case of multistep neural networks, we can see that the solution matches the truth 
almost exactly. The phase portrait also matches the true phase portrait very accurately. 
 

Three Body Problem 
This problem consists of three masses which are positioned in space and given an initial 
momentum. The masses are then allowed to evolve under the influence of gravitational 
force. Here, the numerical simulations are performed for a duration of 3s with a timestep of 
0.01s. The Hamiltonian for the three body problem is as follows: 
 

 
 
The training data consists of 25 different trajectories for randomly chosen initial conditions. 
The testing data consists of 5 new randomly chosen initial conditions. 

LSTM (plots on the testing data) 
 
 

​  
 
In the three body example, we used the same architecture as in the previous case except for 
changing the number of units in the output layer according to the dimensionality of the 
problem. In this benchmark problem, the LSTM fails to match the true trajectories. Both the 
Hamiltonian neural network and multistep neural networks do a decent job at predicting the 
trajectory for new unseen initial conditions. 
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Hamiltonian Neural Network(plots on the testing data) 
 

 
 

Multistep neural network(plots on the testing data) 
 

 
 

The plots shown are for the trajectories of the three bodies evolving under the influence of 
gravity. The plots are for the five test initial conditions which are distinct from the train initial 
conditions. 
 

Lorenz system  
The Lorenz system is a nonlinear dynamical system which exhibits chaos. It has applications 
in several fields ranging from climate modeling to fluid dynamics. It is described by the 
following set of differential equations: 
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Multistep Neural Networks (Plots on the testing data) 
As, only the Multistep neural network was able to predict the dynamics of the system with 
descent accuracy on the testing dataset. We are not uploading the results from the LSTM 
and HNN. The columns indicate the x, y and z variables. 
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Key takeaways and learnings 
In our study we compared the Hamiltonian Neural Network, LSTM and Multistep Neural 
Network and learned the following ideas: The data to train HNN need not be uniformly 
spaced in time, contrary to LSTMs and multistep neural nets. The LSTM completely ignores 
physics and has less inductive bias. The Hamiltonian is not defined for all dynamical 
systems, hence for Lorenz, the performance was subpar.Multistep and HNN converge faster 
than the LSTM. Overall, the Multistep method outperformed HNN and LSTM in terms of 
prediction capability on all the 3 benchmark dataset. 
 
Table of relative L2 error for the 3 models for the three benchmark datasets 
 

 LSTM HNN Multistep 

Simple Harmonic 
Oscillator 

1.025 0.539 0.253 

Three body problem 1.0744 0.0745 0.0854 

Lorenz system 0.7818 160.277 0.7151 

 

Challenges 
 
First challenge we faced was how we implemented LSTM on this problem setup. From 

intuition, we were motivated as since it's a sequence of data, LSTM should be able to at 

least work. However, actually implementing after preprocessing the data was a bit 

challenging for us. Second challenge we faced was how to improve the prediction of LSTM. 

At the end, we concluded that it starts performing decently when we train it for a very high 

number of iterations. See the results below for the 3 body data set, we got after running the 

model with two stacked LSTM layers with 200 units each followed by the dense layer. Still 

we didn't reach the accuracy level of HNN and Multistep neural networks which converged 

way faster. 
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Reflection 
 

●​ How do you feel your project ultimately turned out? How did you do relative to 

your base/target/stretch goals? 

We compared our model with the 3 benchmark dataset on all 3 of our models which was 

our goal. Hence, in regards to the target goal we feel we achieved it successfully in terms of 

implementing the networks and testing them out. We feel we stretched ourselves when 

considering the effort required from our side just to test it on the 3 dataset and testing them 

to find if they can even perform decently? We tried LSTM with a large training data set, with 

more trainable parameters but ultimately, we realize it's really a  tough task for LSTM to 

model the complex systems when it comes to predicting the dynamics of three body 

problems and the Lorenz system. LSTM was something new we wanted to try as this was 

not previously implemented by the researchers for the data sets we considered. 

●​ Did your model work out the way you expected it to?  

Yes, for the case of LSTM, we expected it would face issues as it has less inductive bias 

while the other two take advantage of physics. Hence, While having the same number of 

trainable parameters for all the three models, we did conclude that multistep outperforms 

HNN and LSTM. However, we didn't expect the amount by which LSTM lagged behind. 

●​ How did your approach change over time? What kind of pivots did you make, if 

any?  

We thought of doing the physics informed neural networks as well in the course proposal 

but given the time constraints, mentor TA suggested we drop it. We feel this was a good 
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decision. We considered the spring mass system as the toy problem for a dynamical system 

instead of a simple pendulum just for the sake of simplicity. Other than this, no major pivots. 

●​ Would you have done differently if you could do your project over again? 

We could have implemented our code in .py files rather than working with the jupyter 

notebooks. For each code of our network, we could have implemented them in a more 

modular framework and proper structure. This would have helped us in more automation 

when retraining and retesting the models over multiple scenarios. 

●​ What do you think you can further improve on if you had more time? 

We could have done hyper parameter sensitivity studies for each network model with the 

dataset and do some further ablation studies. 

●​ What are your biggest takeaways from this project/what did you learn?  

○​ The data to train HNN need not be uniformly spaced in time, contrary to 

LSTMs and multiple neural networks. 

○​  LSTM completely ignores physics and has less inductive bias. 

○​ The Hamiltonian is not defined for all dynamical systems. Hence, for the 

Lorenz system dataset, the performance was subpar. 

○​ Last, multistep neural networks are cool!!! 
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