
 

DOM Profiling in Blink/V8 
Overview 
We propose the implementation of a sampling profiler exposed to JavaScript that meets the 
security and performance concerns of the web, while providing new insight into JS execution 
characteristics in the wild. 
 
Explainer 
Spec 

Design principles 
●​ Ensure compliance with the web's security model: do not expose any new cross-origin 

data or implementation details 
●​ Attempt to leverage existing v8::CpuProfiler infrastructure and extend it in a generic way 

suitable for a variety of consumers (such as node's profiling) 
●​ Avoid significant CPU and memory overhead from well-intentioned API usage 

Overview 

 

https://github.com/vdjeric/js-self-profiling
https://vdjeric.github.io/js-self-profiling/


 

The blink::Profiler interface 
A blink::Profiler is 1:1 with the concept of a profiling session, as defined in the JS Self-Profiling 
API spec. Each blink::Profiler contains: 
 

●​ A v8::Context from the invoker 
●​ A security origin from the invoker 
●​ A sample interval 
●​ A sample buffer capacity 
●​ A "sample-buffer filled" callback 
●​ A handle from v8::CpuProfiler::StartProfiling 

 
Through the DOM bindings, users provide a requested sample interval, buffer capacity, and 
callback. This sample rate is transformed by the profiler group to satisfy sampling constraints 
(as described below). 

The blink::ProfilerGroup interface 
A blink::ProfilerGroup is a per-isolate construct that manages a set of blink::Profilers that share 
a common sampling thread / v8::CpuProfiler. It is responsible for choosing an appropriate 
sample interval that can accomodate all of its dependent blink::Profiler instances, as well as 
spinning up and stopping blink::Profilers. 
 
For the initial implementation, we propose requiring that profiler groups enforce a base sample 
interval of ~20ms for their profilers. To ensure that all profilers in a group use only a single 
sampling thread, we plan on rounding up all requested sample intervals for profilers to 
multiples of the base value. This will allow us to remove extraneous frames with ease (see 
"dynamic subsampling" for v8::CpuProfiler below), and upsample appropriately to accommodate 
multiple concurrent blink::Profiler instances. 

On Windows, the base sample interval may be chosen to accommodate the periodicity 
standard-resolution timer. 

Trace processing 
When blink::Profiler::stop is called or the sample buffer is filled, the resulting trace (as a 
v8::CpuProfileNode) is dispatched for processing. This logic is performed by 
blink::ProfilerTraceProcessor, which produces the ProfilerTrace object described in the spec. 
blink::ProfilerTraceProcessor is also responsible for performing the necessary origin-based 
filtering on all frames, a part of Appendix A. 
 
This result object is either returned directly if the default trace format is specified, or serialized 
and returned as a GZIP blob in an ArrayBuffer if the "json-gzip" format is specified. 

Extensions to v8::CpuProfiler 

https://vdjeric.github.io/js-self-profiling/#the-profilertrace-interface


 

In order to efficiently satisfy the privacy, security, and potential memory concerns of the profiler, 
certain changes to v8::CpuProfiler and its accompanying implementation classes will be 
required. 

Stack filtering 

There are two types of stack frame filtering that our implementation needs (see Appendix A): 
 

1.​ Filtering stack frames from contexts other than the blink::Profiler's instantiated context 
(e.g. other blink frames or content scripts from other worlds) 

2.​ Filtering stack frames from scripts that are from a different origin than the blink::Profiler's 
instantiated origin, and do not have the crossorigin bit set (a la Error.stack) 

 
For case 1, we suggest recording the v8::NativeContext (which maps to the incumbent context) 
of each stack frame object obtained during stack unwinding, and having each CpuProfile accept 
an optional context parameter to filter by. During dispatch of a sample to a CpuProfile, stack 
frames whose context is not equal to the profiler-provided value will be discarded. This check 
should be relatively inexpensive, and save on the amount of post-processing work required. 
Details here. 
 
For case 2, we require public API exposure of the crossorigin bit associated with the script's 
v8::ScriptOriginOptions, as well as the script's location from which to derive the security origin of 
(which is already present). We think that origin-based filtering makes sense in 
blink::ProfilerTraceProcessor as a post-processing step, as V8 should not concern itself with 
Blink's notion of security origins. 

Dynamic subsampling 

In order to leverage multiple profiler instances utilizing the same sampling thread, we propose 
adding support for subsampling to profilers created by v8::CpuProfiler::StartRecording. That is, 
given a v8::CpuProfiler that samples at 50ms, we would like to only accumulate samples for 
some consumers every 100ms - easily accomplished by skipping every second sample. 
 

 
 
Let the target sample interval be equal to the client's requested sample interval, rounded up to 
the nearest multiple of the base sample interval. 
 
Let the common sample interval be equal to the sample interval currently being used by the 
sampling thread. 
 
Observe that the GCD (greatest common divisor) of both the common and target sample 
intervals is a multiple of the base sample interval by the invariant that all blink::Profilers have 
their sample intervals locked to multiples of the base sample interval. By changing the common 
sample interval to the aforementioned GCD and configuring all profilers attached to the 
sampling thread to subsample every (target sample interval)/(common sample interval)th 
sample, we can effectively multiplex a dynamic range of supported sample intervals. 
 

https://docs.google.com/document/d/1QGOKbZFi_k8LBP2tLIfVXQNbI47u7RgcEV2k_KTYaOo/edit


 

 
 
There are two parts that we propose to implement: 
 

1.​ Add support for subsampling to individual v8::CpuProfile instances. 
○​ Each profile handle can be configured to select every n-th sample it obtains from 

the sampling thread. 
2.​ Add support for pausing and changing the interval of a v8::CpuProfiler's underlying 

sampling thread. 
 
When the GCD of all profilers in a profiler group changes due to addition or removal of a profiler, 
the following steps are executed: 
 

●​ The profiling thread is spun down. 
●​ The sampling interval of the v8::CpuProfiler is adjusted to the new GCD interval. 
●​ All attached profilers are adjusted to subsample accordingly based on the new GCD. 
●​ The profiling thread is spun back up with the new sample interval. 

Sample limiting 

To prevent OOMs when a profiler is not stopped, each blink::Profiler possesses a "sample buffer 
capacity" parameter, in addition to a callback when the capacity limit is reached. 
We suggest that v8::CpuProfiler be augmented to stop an active profiler and dispatch an 
callback asynchronously when an associated sample limit is reached. This functionality is likely 
to prove useful for other implementations, such as node profiling consumers. 

Frame formatting 

As the specification aims to leverage the ECMA-262 concept of a "function instance name" for 
each stack frame recorded, minimal changes should be necessary in order to record a 
normative label for each stack frame. We intend on implementing a variant of ProfilerListener to 
record the normative name rather than the debug name for the web-exposed profiler, and triage 
any cases where this does not align with the ECMA-262 spec. 

Additionally, we’d like to surface whether or not a CpuProfileNode is considered to contain V8 
metadata (e.g. “(idle)” or “(gc)”), in which case the blink logic should filter these out. This can be 
accomplished by attaching an enumerated value to each CpuProfileNode indicating the type of 
frame captured (e.g. js/wasm/gc/idle/program/native). 

Reduce CPU usage of sampling on Windows < 100ms 

Currently, sampling with an interval less than 100ms on Windows is done by busy-waiting on the 
profiler thread. We aim to avoid these wasted cycles by adding support for sampling aligned to 
the tick frequency of Windows’ clock interrupt. This will be controlled by a parameter, as this 
precision should be retained for the DevTools profiler, etc. 
 
Source 

https://cs.chromium.org/chromium/src/v8/src/profiler/cpu-profiler.cc?type=cs&sq=package:chromium&g=0&l=199


 

Appendix A: Security model 
The scope of a blink::Profiler is fixed to the browsing context origin and v8::Context in which it 
originated in. Sampled stack frames must pass the following algorithm in order to be included in 
a trace. Stack frames that fail this check will be omitted from the trace. 
 

1.​ If the stack frame's associated v8::internal::NativeContext is not equal to the profiler's 
associated v8::internal::NativeContext, return filter. 

2.​ Let stack frame origin be the origin of the resource that contained the function associated 
with the frame. 

3.​ If the stack frame origin is not equal to the profiler's origin: 
1.​ If the script containing the source for the stack frame is a classic script, the 

crossorigin attribute is set, and the source script passes a CORS check, return 
pass. 

2.​ If the script containing the source for the stack frame is a module script, and the 
script passes a CORS check, return pass. 

3.​ Otherwise, return filter. 
4.​ Return pass. 


	DOM Profiling in Blink/V8 
	Overview 
	Design principles 
	Overview 
	The blink::Profiler interface 
	The blink::ProfilerGroup interface 
	Trace processing 
	Extensions to v8::CpuProfiler 
	Stack filtering 
	Dynamic subsampling 
	Sample limiting 
	Frame formatting 
	Reduce CPU usage of sampling on Windows < 100ms 

	Appendix A: Security model 


