
Lux Water 1.2.3 

Lux Water 
 
 

Lux Water is a simple yet robust solution to render water surfaces, which 
is focused on giving you reliable results as far as refraction, reflection and 
lighting are concerned. 

Lux Water Volumes allow you to get pixel accurate and seamless 
transitions between above and underwater rendering.  

Lux Water Projectors allow you to project local foam or normals. 

Using sliding Water Volumes you may create huge water surfaces or even 
infinite oceans. 

Compatibility 
Lux water has been successfully tested on DX11 and OpenGLCore. Since version 1.05 Metal 
(Desktop) is fully supported. 

Although the water shader itself uses forward rendering Lux Water works best in deferred. Lux 
Water only supports the built in render pipeline. 

SInce version 1.2. Lux Water comes with basic support for VR (Unity 2019.4 and DX11 only). 

Table of Content 
 

Lux Water 
Compatibility 

Table of Content 
Getting Started 

Forward Rendering 
Deferred Rendering 
Orthographic Projection 
Metal and Deferred Rendering 
Fog 

Azure, Enviro and Aura 2 
The Demos 
Shader Properties 

Basic Properties 
Reflections 
Underwater Fog and Light Absorption 

Underwater Fog Inputs 
Light Absorption Inputs 

 



Lux Water 1.2.3 

Subsurface Scattering 
Underwater Scattering 
Normal Maps 

Far Normal 
Detail Normals 

Foam 
Regular Foam 
Gerstner Foam 

Caustics 
Inputs 

Advanced Options 
Gerstner Waves 
Secondary Gerstner Waves 
Tessellation 

Orthographic Projection 
Unsupported features 
Feature which need some Love 

Planar Reflections 
Using multiple water tiles 
Troubleshooting 

Particles do not show up in planar reflections or are partially hidden 
Water Volumes 

Adding a water volume 
The script components 

LuxWater_UnderWaterRendering.cs 
Inputs 

LuxWater_UnderWaterRenderingSlave.cs 
LuxWater_UnderWaterBlur.cs 

Inputs 
LuxWater_WaterVolumeTrigger.cs 

Inputs 
LuxWater_WaterVolume.cs 

Inputs 
Listen to Collision Events 

Water Volume Mesh 
Submeshes and materials 
Vertex Colors 
Tessellation 
Water surface mesh 
Normals 
UVs 
Pivot 
Height of the volume 

Lux Water WaterSurface Shader 

 



Lux Water 1.2.3 

Transparents and particle systems 
Transparents above water surface 
Transparents below water surface 
Lux Water/Particles/UnderwaterParticles Alpha Blended shader 
Lux Water/Particles/Like Alpha Blended Premultiply shader 

Fog 
Limitations 
Water Volumes and split screen rendering 
Deep water rendering 

What does it do 
Setting it up 
Deep water lighting and transparent materials 

Underwater transparent materials 
The shaders 
Shader Inputs 

Underwater light beams 
Shader Inputs 

Water Projectors 
Adding water projectors 

Under the hood 
Foam Projectors 

Foam Projector Shader 
Inputs 

Foam Projector Textures 
Normal Projectors 

Normal Projector Shader 
Inputs 

Normal Projector Textures 
Texture Import settings 

Particle Systems 
Position 
Renderer 

Water Projectors and Gerstner Waves 
Water Projectors, moving objects and Gerstner Waves 

Take aways 
The script components 

LuxWater_ProjectorRenderer.cs 
Inputs 

LuxWater_Projector.cs 
Inputs 

Lux Water Utils 
LuxWater_Utils.cs 

struct GersterWavesDescription 

 



Lux Water 1.2.3 

GetGersterWavesDescription (ref GersterWavesDescription Description, Material 
WaterMaterial ) 
Vector3 GetGestnerDisplacement (Vector3 WorldPosition, 
GersterWavesDescription Description, float TimeOffset) 
LuxWater_SetToGerstnerHeight.cs 

Inputs 
Under the hood 

LuxWater_SetMeshBounds.cs 
Inputs 

Creating large water surfaces and Oceans 
Sliding water volumes 

The problem 
The solution 
Example 
Sliding Water Volume Mesh 

Geometry 
Vertex Colors 

Infinite Ocean 
LuxWater_InfiniteOcean.cs 

Inputs 
Reflection Probes 

Metal and Deferred Rendering 
Optimizations 

 
 
 

Getting Started 
Simply create a new material and assign the Lux Water shader (Lux Water/WaterSurface).​
Create a plane and assign your material.​
Tweak the shader properties to your liking. 

Please have a look at the provided demos. 

Please note: The package ships with a custom “WavingGrass” shader as used by the grass on 
the terrain. This is a deferred shader to play nicely with underwater post fx. 

Forward Rendering 
When using forward rendering you have to make sure that your camera renders a depth 
texture. Do so by adding the LuxWater_CameraDepthMode script to your camera. In case you 
do not use Metal and deferred rendering leave “Grab Depth Texture” unchecked. 

Deferred Rendering 
If you use deferred rendering and would like to use “Deep water rendering” you have to assign 
the LuxWater_DeferredShading shader: 

 



Lux Water 1.2.3 

●​ Go to Edit → Project Settings → Graphics. 
●​ Under the Built-in shader settings change Deferred to custom, then assign the 

LuxWater_DeferredShading shader. 
This of course might interfere with other deferred lighting shaders you may already use 
provided by e.g. ATG, AFS, Lux Plus or Uber. The tweaks however are rather minor, well 
documented and should be easy to add to the custom deferred lighting shader you are 
currently using. It is just three lines of code you will have to change. Look for: 

(add) #pragma multi_compile __ LUXWATER_DEEPWATERLIGHTING 

(add) #include "LuxWater_DeferredLibrary.cginc" 

(replace) // UnityDeferredCalculateLightParams (i, wpos, uv, light.dir, atten, 
fadeDist);​
LuxWater_DeferredCalculateLightParams (i, wpos, uv, light.dir, atten, 
fadeDist, dirLightAtten); 

in the included “LuxWater_DeferredShading” shader. 

Orthographic Projection 
Since version 1.062 Lux Water offers support for cameras using orthographic projection. Find 
out more > 

Metal and Deferred Rendering 
If you use Metal and deferred rendering things unfortunately get a bit more complicated. 
Find out more > 

Fog 
Since version 1.02 Lux Water uses custom fog in order to be able to mask it out on underwater 
surfaces. By default it uses “Exponential Squared” fog. To enable different or custom fog 
functions you have to edit the “LuxWater_Setup.cginc” file (located in: LuxWater → Shaders → 
Includes) and comment/uncomment the corresponding defines. Then reimport the “LuxWater 
CG” and “LuxWater CG Tessellation” shaders. 

Enabling exponential squared fog looks like this: 

​ // #define FOG_LINEAR 

​ // #define FOG_EXP 

​ #define FOG_EXP2 

Enabling linear fog instead would looks like this: 

​ #define FOG_LINEAR 

​ // #define FOG_EXP 

​ // #define FOG_EXP2 

Please note: In case you use deferred rendering and apply fog as an image effect you may 
benefit from water volumes. Find out more > 

Azure, Enviro and Aura 2 
Lux Water also supports fog rendered by Azure, Enviro or Aura 2. To enable this feature you 
have to edit the “LuxWater_Setup.cginc” file as well. Please make sure that you uncomment 
the corresponding #define and #include and comment all other #defines. 

 



Lux Water 1.2.3 

Please note: Azure, Enviro or Aura 2 should be installed at their default location. If you have 
moved them you will have to adjust the path of the  #include. 

Support for “Advanced Deferred Fog” is handled by Azure or Enviro. Accordingly tweaked 
shaders should ship with these packages or come very soon. 

Regarding Aura 2 the tweaked Aura fog shader is still not included in the official Aura 2 release 
nor in the default Lux Water package. So you have to contact the author of Auro 2 and me to 
get it. Contact me: larsbertram69(at)gmail(dot)com. 

When using Enviro please make sure that it does not render the skybox in “black ground mode” 
as this will break the reflections. Disable it by editing Enviro Sky → Edit Profile →  Category: Sky 
→ uncheck: Black Ground Mode. 

Also when using Enviro you have to take care about its reflection probe whose size is too 
small in case you create huge water surfaces using several water tiles (size gets set 
automatically by enviro). 

As shown in the image below the skirt geometry does not receive the same reflections as the 
water tiles in the foreground. Fix this by overwriting the anchor position of the skirt's water 
tiles in their renderer component. 

Gray water surfaces at the horizon are far away water tiles not affected by Enviro’s reflection probe which is too 
small. Screenshot by PyroStudio taken from the Unity forum.  

  

Also make sure that e.g. enviro renders before lux water when it comes to image effects. 

The Demos 
As version 1.07 introduced deep water rendering which may set some global overwrites each 
demo has a UnderWaterRendering script assigned to the camera which resets these 
overwrites in case you switch between the scenes and use deferred rendering. 

 



Lux Water 1.2.3 

This script usually is only needed in case you actually use water volumes and deep water 
rendering. 

In case you get strange lighting on the water simply activate, then deactivate “Deep Water 
Lighting”. 

Shader Properties 
ZWrite Lets you choose whether the shader writes to the depth map or not. Usually it should 
write to the depth buffer, but when using Metal and deferred shading this will break water. Find 
out more > 

ZTest Lets you choose how the shader should do depth testing. Usually it should be set to 
“LessEqual”. You may choose “Disabled” as well in case you use forward rendering, MSAA do 
get artifacts around your objects on top of the water surface, do not displace the water and 
look from above. 

Culling Lets you specify which faces will be drawn: 

●​ Back Don’t render polygons facing away from the viewer. Use this in case your camera 
will never go below the water surface. 

●​ Front Don’t render polygons facing towards the viewer. I do not know any use case for 
this, it simply belongs to the culling settings. 

●​ Off Disables culling – all faces are drawn. Use this in case your camera can go 
underwater 

Enable Orthographic Support In case your camera uses an orthographic perspective you have 
to enable this to make water being rendered properly. 

UV Space Texture Mapping If checked texture lookups will be done in uv space – otherwise in 
world space. Enable UV Space Texture Mapping in order to make water bumps and foam 
follow the shape and uvs of e.g. a river. 

UV Direction Lets you choose between U or V as main axis regarding the texture 
animation. 

Uses Water Volume If checked the shader changes into mode suitable for water surfaces 
which also get rendered as water volume. Usually it is all handled by script so you do not have 
to check or uncheck it – but in case your material gets corrupted you may check and uncheck 
this several times until the shader is back to normal mode. 

Water Surface Position (Y) This is needed when using water volumes and set up by 
script. 

Directional Lighting Fade Range The distance over which the directional lighting (sun) fades 
out below the water surface. This affects caustics and lets you fade them out. 

Fog Lighting Fade Range The distance over which underwater fog lighting will fade out below 
the water surface. 

Please note: Both values above will be overwritten by script in case you enable “Deep Water 
Lighting” in the UnderWaterRendering script. Find out more > 

 



Lux Water 1.2.3 

Basic Properties 
Smoothness Smoothness of the water surface which defines the size and shape of the 
specular highlights. 

Specular Specular color which defines the reflectivity and thus drives the relation between 
refraction and reflection. Actually water has a pretty dark specular color. 

Edge Blend Factor Lets you fade out the shore line. 

Detail Distance Distance where Details will be fully faded out. Currently this only affects 
Gerstner waves and foam caps and lets you fade towards simple water planes. Furthermore it 
helps to reduce flickering and hides tiling.  

Detail Fade Range Range over which details will fade. 

Reflections 
Reflections are the key to good looking water. So you need a proper skybox, reflection probe or 
planar reflection texture. Unity’s default skybox won’t give you nice reflections so consider 
using a custom skybox. 

Enable Planar Reflections Check this in case you want to use planar reflections. 

Fresnel Power Together with the Specular Color this specifies the relation between refraction 
and reflection. Using any other value than 5.0 will break physical correctness, but may help to 
improve the final look. 

Strength Lets you adjust the strength or brightness of the reflections. Not physically correct, 
but nice to have. 

Smoothness Lets you blur or sharpen cubemap based reflections independently from the 
direct specular highlights. It does not affect planar realtime reflections though. 

Bump Scale Specifies the influence of the normal maps as far as the distortion on reflections 
is concerned: Choose values around 0.3 to get nice and smooth reflections. 

Underwater IOR Lets you tweak the index of refraction when rendering the underwater surface. 
The standard value of 1.3333 (which would fit water at room temperature) may not always be 
the best choice as it leads to very strong internal reflections. 

 

  
IOR 1.333 Internal reflections more or less cover the 
entire surface. 

IOR 1.15 Lowering the IOR will give you less internal 
reflections. 

 

Underwater Reflection Tint As – when looking from below – the reflection will show up the 
bottom of the reflection cubemap, which most likely will not look like a reflection from below 
the water surface, you may specify a tint color here.  

 



Lux Water 1.2.3 

Underwater Fog and Light Absorption 
These two features go hand in hand and will turn water from something like a simple plane of 
glass into a water like volume. 
 

 
The image above shows water without any underwater fog or absorption applied but only foam and caustics. 
 

 
Adding absorption will give you some kind of caribbean sea, as while light travels through the water, it will get 
absorbed: “While relatively small quantities of water appear to be colorless, pure water has a slight blue color that 
becomes a deeper blue as the thickness of the observed sample increases. The blue hue of water is an intrinsic 
property and is caused by selective absorption and scattering of white light.” Wikipedia [>] 
 

 

https://en.wikipedia.org/wiki/Water
https://en.wikipedia.org/wiki/Transparency_and_translucency
https://en.wikipedia.org/wiki/Blue
https://en.wikipedia.org/wiki/Color
https://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water
https://en.wikipedia.org/wiki/Scattering
https://en.wikipedia.org/wiki/Color_of_water


Lux Water 1.2.3 

 
Adding underwater fog lets you tint the water: “Dissolved and particulate material in water can cause discoloration. 
Slight discoloration is measured in Hazen units (HU).[8] Impurities can be deeply colored as well, for instance dissolved 
organic compounds called tannins can result in dark brown colors, or algae floating in the water (particles) can impart 
a green color.” Wikipedia [>] 

Underwater fog may cancel absorption as light now will not have to travel all the way down to 
the ground but gets reflected way earlier. 

  
No Cancellation The silhouette of the submarine is 
“quite” visible against the ground. It’s fine but may not ​
be what you want. 

 

Full cancellation According to the fog’s density light 
absorption will be reduced so the submarine fades 
smoothly with the water. 

Both absorption and underwater fog are calculated taking view depth as well as the depth 
below the water surface into account. 

 

 

https://en.wikipedia.org/wiki/Color_of_water#cite_note-8
https://en.wikipedia.org/wiki/Organic_compound
https://en.wikipedia.org/wiki/Tannin-stained_waters
https://en.wikipedia.org/wiki/Algae
https://en.wikipedia.org/wiki/Color_of_water


Lux Water 1.2.3 

While view depth is heavily view dependent depth will give you quite stable but unrealistic 
results. So the shader mixes both to get the best out of it. 

Underwater Fog Inputs 

Fog Color Color of fog added. 

-​ Depth Specifies the amount of underwater fog absorption according to the depth 
below the water surface: 

Fade Start (X) Depth at which fog starts to fade in​
Fade Range (Y) Range over which fog will raise full density.​
Density (Z) Density multiplier 

-​ View Depth Specifies the amount of underwater fog absorption according to the depth 
along the view ray. 

Absorption Cancellation Lets you adjust the amount of Color Absorption relative to the amount 
of underwater fog. 

Light Absorption Inputs 
Strength Overall strength multiplier. 

-​ Depth Specifies the amount of light absorption according to the depth below the water 
surface. 

-​ Max Depth Specifies the depth at which light shall be fully absorbed.  
-​ View Depth Specifies the amount of light absorption according to the depth along the 

view ray. 

Color Absorption Specifies the amount of color absorption. If set to 0.0 water will only be 
darkened but not tinted. 

Subsurface Scattering 
As Subsurface Scattering is derived from the final normal, view and light direction it heavily 
depends on your normals. 

Color Tint color of the scattered light which gets multiplied by the light color. 

Power Specifies the view dependency of the scattering. 

Occlusion Lets you occlude scattered light based on the scene depth so objets close to the 
camera will receive less scattering. A value of 1.0 will make occlusion more or less vanish 
while a value of e.g. 0.03 will occlude scattered light on objects which are in a distance 
between 0 – 33m from the camera. 

 



Lux Water 1.2.3 

Occlusion =1.0.​
The submarine vanishes into the scattered light. 

Occlusion  = 0.03.​
The submarine occludes the scattered light. 

 
Intensity (Water) Specifies the final factor for scattered light on water. 

Intensity (Foam) Specifies the final factor for scattered light on foam. 

Underwater Scattering 
Underwater Scattering lets you control the forward scattering of the sunlight when the camera 
is underwater and looking towards the sun. Sun in this case means the (first) directional light. 
Other lights are not supported. 

Color, Power and Occlusion are derived from the overall subsurface scattering settings. 

Intensity Specifies the final brightness of the underwater scattering. You most likely will have 
to raise the underwater intensity to make it match the scattering as viewed from above the 
surface. 

Underwater Scattering – Intensity = 0.5.​
Underwater more or less is lit homogeneously. 

Underwater Scattering – Intensity = 2.0.​
Light gets a direction. 

 

Normal Maps 
Normals have the strongest influence on the final look of the water and drive – together with 
the actual geometry – all phenomena like reflection, refraction and subsurface scattering. 

So you may consider using a low res (in order to save texture memory) but uncompressed 
normal map and make sure that “Filter Mode” is set to “Trilinear”. Using a RGBA32 bit bump 
map will not introduce any compression artifacts which otherwise will quantize direct and – 
even more important – indirect ambient specular reflections. 

 



Lux Water 1.2.3 

Lux Water mixes four normal samples to create the final bumpiness. The first sample kicks in 
at far distances to reduce tiling artifacts, while the detail samples are present all the time. 

Far Normal 

Tiling (X) Tiling of the far normal relative to the tiling of the first detail normal (as specified in 
Detail Normals -> Tiling -> X) The smaller the value (0.1 or even 0.01) the larger the far normals 
will get. 

Distance (Y) Drives the fade between far normal and first detail normal. The far normal will be 
fully revealed at the given distance (meters). 

Scale (Z, 0-1) Lets you downscale the far normal. Keep this value in the 0-1 range which 
means that you can’t scale the far normals up (due to the optimized normal blending used), 
but usually you just want to scale them down anyway. 

Speed (W) Multiplier on the Speed and Rotation derived from the first detail normal sample. 

Detail Normals 

Scale Lets you scale the bumpiness. X scales the first, Y the second and Z the third sample.​
Tip: Using negative values one one or two of the samples will increase diversity. 

Tiling Specifies the tiling for each sample.​
​ Global Factor Specifies the base UV scale. 

Speed Speed of the scroll animation for each sample. ​
​ Global Factor Overall speed multiplier. 

Rotation Rotation of the scroll animation in degrees.​
​ Global Factor Overall rotation in degrees.​
Tip: Use the global factor to easily adjust the orientation of the scroll animation according to the 
given wind direction for example.  

Please note: Speed and Rotation will be combined into a Vector2 property by the 
material editor and get written to the hidden “_FinalBumpSpeed01” and 
“_FinalBumpSpeed23” Vector4 properties which actually are used by the shader. Please 
keep this in mind in case you want to change speed and rotation by script. 

Refraction Specifies the strength of the refraction effect. 

Foam 
Like most water shaders Lux Water automatically calculates foam based on the distance 
between the water surface and background along the view ray — which makes foam highly 
view angle dependent and may lead to strange artifacts. 

So i did not put that much effort into foam and it finally gets away with a single additional 
texture lookup and some math. 

Regular Foam 

Enable Foam If checked foam will be rendered. 

Normal (RGB) Mask (A) The foam texture – where RGB stores the normal map and the foam 
mask. Please make sure that you have unchecked “sRGB Texture” in the import settings. 

 



Lux Water 1.2.3 

Tiling Tiling factor for the foam texture in world space. 

Color (RGB) Opacity (A) RGB will tint the foam mask. Alpha drives the opacity. 

Smoothness The smoothness of the foam. 

Scale Foam is masked by various inputs such as the water’s normals and the edge blending 
factor so it might get more or less invisible. Use Scale to bring it back to screen. 

Speed Speed and direction of the foam animation are derived from the animation of the first 
detail normal sample. The foam’s speed parameter acts as a multiplier on this. Using negative 
values will make foam slower than the first detail normal. 

Parallax Parallax offset for sampling the foam texture derived from the water’s normals. 

Normal Scale Let’s you scale the foam’s normal. 

Edge Blend Factor Determines the size of the dynamically calculated foam border. 

Mask by Normal Lets you mask the foam by the detail normals. 

Slope aware foam Determines the foam amount added automatically according to the given 
surface slope of the water. Super simple but quite effective when it comes to rivers and rapids 
or small waterfalls. 

Suppress Mask by Normal Lets you fade out the foam mask generated from the detail 
normals on steep slopes. 

Final Foam Erosion Lets tweak the final “sharpness” of the foam. Higher values will result in 
smoother foam shapes. The default value was 0.375. 

Gerstner Foam 

Gerstner foam or foam caps are only rendered if Gerstner waves are enabled. 

Foam Caps Specifies the strength of the foam caps as calculated from the final displacement 
of the vertices. Basic properties like tiling, color and scale are taken from the regular foam 
settings. 

Mask by Elevation If set to 1 mainly positive displacement along y will form the final 
foam caps. If set to 0 Gerstner displacement along the xz axies are also taken into 
account.  

Deep Foam Caps Factor on top of Foam Caps in order to scale deep foam caps. So if you 
decrease Foam Scale Deep Foam caps will shrink as well. 

Deep Foam Color (RGB) Alpha (A) Color and Opacity of the deep foam caps. 

Deep Foam Parallax Parallax offset for sampling the deep foam (which only gets rendered 
when gerstner waves are enabled). Lets you actually increase the depth illusion. 

Deep Foam Tiling Tiling relative to the regular foam texture tiling. 

Deep Foam Blur Lets you “blur” the deep foam sample by simply using tex2Dbias. 

 

 



Lux Water 1.2.3 

 

Caustics 
Lux Water does not use any projectors to render caustics but renders them together with the 
water surface directly to screen taking the depth texture and – in case you use deferred 
rendering – the deferred normals into account. So unlike other water solutions Lux Water does 
not have to draw your scene multiple times to get in caustics. 

In case you use forward rendering there is no GBuffer and thus no deferred normals. So the 
shader will reconstruct normals from the depth buffer only which unfortunately does not 
produce as smooth gradients as deferred normals do. Furthermore forward normals produce 
gaps/ghosts as they are based on the unrefracted depth buffer. 

  

Deferred normals. Smooth fading of the caustics 
according to the given normals. 

Normals reconstructed from the depth texture. The 
gradient gets quantized. 

 

In case you use high frequent or even jagged normal maps especially on unity terrains caustics 
will reveal these and create rather harsh contrasts in shading. Solve this by creating proper 
normal maps or reduce the caustics scale. 

 



Lux Water 1.2.3 

 

 

Caustics will add three more texture lookups for the caustic animation + one in case you use 
deferred normals. They are real time lit and react to directional, point and spot lights 
automatically. 

Caustics are top down projected in world space. So in order to avoid any stretching artifacts 
they are cancelled by the reconstructed normal which means that there will not be any 
caustics on steeply angled geometry. 

Caustics previously only got attenuated by depth based Color Absorption or Fog. You now can 
specify a "Max directional Light Depth" in the water material or in case you use deferred and 
the new deep water lighting by setting it globally using "Directional Lighting Fade Range". 

Same goes with Fog which now fades out its lighting according to the position of the camera 
below the water surface. The fade range can be specified in the material or by script 
(LuxWater_UnderWaterRendering.cs). 

Please note: Script set values will overwrite values in the material. 

Inputs 

Enable Caustics If checked, caustic will be rendered. 

Normals from GBuffer Check this in case you use deferred rendering in order to get high 
quality caustics. In case you use forward rendering you have to uncheck this. 

Caustics (R) Noise (GB) The caustics texture which should contain the caustics mask in R and 
some noise in GB. Noise is used to distort the caustics mask of the next sample. 

Tiling Tiling of the caustics texture in world space. 

Scale Specifies the strength of the projected caustics. 

Speed Speed and direction of the caustics animation are derived from the animation of the 
first detail normal sample. The caustics’ speed parameter acts as a multiplier on this. 

Distortion Specifies the amount of distortion applied to the UVs as retrieved from the noise 
sample (GB). Please note: The first caustic texture lookup does not get distorted. 

 



Lux Water 1.2.3 

Advanced Options 
Pixel Snapping If set to “Point” the shader will snap the distorted GrabUVs to pixels, as 
otherwise the depth texture lookup will return a false depth, which may lead to a 1 pixel error 
(caused by fog and absorption) at high depth and color discontinuities. 

This artifact is barely visible on platforms using a reversed zBuffer like dx11,  but it still exists. 

Imagine you have a dark submarine and a rather bright terrain as bottom of your water volume, 
then the grabtexture returns a lerped value from submarine (black) and the terrain (sand), but 
fog and absorption may be too weak as the depth texture lookup returns a value somewhere 
between the submarine and the terrain. 

Enabling snapping will add some more math to the shader, but most significantly, it will some 
kind of point sample the refractions resulting in harsher refractions. 

 

No snapping. Please notice the bright pixels at the ​
edge of the geometry.  

Snapping enabled. 

 

If “Pixel Snapping” is set to “MSAA_4x” (experimental) the shader tries to find the best 
matching depth in case you use forward rendering and MSAA. “MSAA_4x” is quite expensive 
so only activate it in case it really helps. 

Using “MSAA_4x” can only solve issues introduced by refraction. Aliasing artifacts around the 
silhouette of objects above the water surface can’t be solved. 

  

MSAA_4x limits While there are no “bright pixels” around the propellers and anything below 
the water surface in the screenshot above you will get some around the towers and antennas 
of the submarines: Here the pixels on screen are already taken by the terrain in the background 
(which draws first) and the submarine (which comes next). When water is drawn (after the 
submarine as it is transparent) the depth buffer is already occupied by terrain and submarine 

 



Lux Water 1.2.3 

and water simply will not be drawn at the bright edges you see. These show up the anti aliased 
combination of terrain and submarine, but no water. 

You may solve this by setting “ZTest” to “Disabled” and fully rely on “Edge Blending”. This 
however may cause strange artifacts with perspective projection and any vertex displacement 
like Gerstner Waves. 

The screenshot below shows orthographic projection and water using “ZTest” set to 
“Disabled”: No more bright pixels but the antennas are almost gone. 

 

Gerstner Waves 
Gerstner waves are based upon Unity’s Water4 shader. They will actually displace the water 
geometry in the vertex shader and therefore need a nicely subdivided water geometry. 

Enable Gerstner Waves If enabled the shader will Gerstner based vertex displacement to the 
water mesh. Please make sure that your mesh has a nice factor of subdivisions. 

Amplitude Height of the waves, which gets multiplied with the Final Displacement Y value.  

Frequency Distance between or size of the waves.​
​ The Global Factor below lets you scale all four values at once. 

Steepness Steepness of the waves which controls extraction and contraction along the xz axis 
in worldspace. 

Speed Speed of the waves.​
​ The Global Factor below lets you scale all four values at once. 

Rotation Rotation of the waves’ direction in degrees.​
​ The Global Factor below lets you rotate all four values at once. 

Final Displacement Acts as a multiplier on Amplitude and Steepness and lets you finetune the 
waves. 

Normal Scale Scale which will be applied to the geometry’s normals. As Gerstner normals are 
quite off, they will most likely give you some very strange reflections. So use a rather low Scale 
to reduce shading artifacts. 

 



Lux Water 1.2.3 

Please note: All values, which have a “global factor” assigned, will be calculated by the 
material editor and finally written to hidden properties. Please keep this in mind in case you 
want to change these by script. 

Secondary Gerstner Waves 
By default the shader only calculates 4 Gerstner Waves. You may use 8 tho. To enable the 2nd 
set of Gerstner Waves just make sure that the x-component of the Factors (Amplitude) is 
greater than 0.0. In order to keep things simple the secondary set will be derived from the first 
set. All you specify are factors for the most relevant inputs. 

In case Amplitude is set to 0 the vertex shaders will efficiently skip the second wave 
calculation. 

Factors Lets you tune the secondary set by specifying factors for: 

●​ Amplitude (X) 
●​ Frequency (Y) 
●​ Steepness (Z) 
●​ Speed (W) 

Rotation (Directions) will be swizzled between waves: While the first set uses XYZW the 
second uses YXWZ. 

Tessellation 
Please note: Tessellation params are only available if you have assigned the Lux 
Water/WaterSurface Tessellation” shader. 

Edge Length Defines the tessellation level based on triangle edge length on the screen. The 
smaller the edge length value the more tessellation you will get. 

Extrusion In case you use Normal Projectors these may not only influence the final water 
normal but also extrude the water surface. The final extrusion is driven by the height map in 
the projector’s texture and this factor. 

Orthographic Projection 
When using orthographic projection your camera will automatically be set to forward – which 
means that you will have to add the LuxWater_CameraDepthMode script to your camera. 

In case your camera uses orthographic projection not all features are supported or work as in 
perspective projection and you most likely will have to tweak your materials to make them look 
properly. 

Unsupported features 
●​ Water volumes – as they do not make much sense. 

Feature which need some Love 
●​ Refraction – which needs smaller values 

 



Lux Water 1.2.3 

Planar Reflections 
Planar reflections are based upon Unity’s Water4 shader. In order to enable real time planar 
reflections you have to attach the “LuxWater_PlanarReflection” script to your water object. 
Additionally you have to check enable planar reflections in the material. 

In case you have multiple water surfaces or water tiles, please have a look at Using multiple 
water tiles 

 
Update Scene View If checked the real time reflection texture will be updated in the scene 
view. In case you use multiple water tiles this may cause a huge amount of draw calls and 
slow down the editor. So consider unchecking this unless you really need it. 

Is Master is only relevant in case you have multiple water surfaces. Please have a look at 
Using multiple water tiles 

Water Materials is only relevant in case you have multiple water surfaces. Please have a 
look at Using multiple water tiles 

Reflection Mask Includes or omits layers to be rendered by the reflection camera. Less 
included layers will improve performance. 

Resolution The resolution of the reflection texture relative to the screen resolution. 

Clear Color The color applied to the remaining screen after all elements in view have been 
drawn and there is no skybox. 

Reflect Skybox If enabled the reflection camera will clear using the skybox. 

Disable Pixel Lights Lets you disable all pixel lights when rendering the reflection. 

Render Shadows If unchecked shadow will be dropped while the reflection camera renders. 

Shadow Distance Lets you overwrite the current shadow distance. If it is set to 0.0f the 
current shadow distance will be used. 

Shadow Cascades Lets you overwrite the number of shadow cascades. 

Water Surface Offset Usually the reflection camera is positioned taking the water object’s 
pivot into account. In case this does not match the water surface (as you are using a volume 
rather than a plane) you may adjust the position of the reflection camera using this offset. 

Clip Plane Offset Lets you offset the reflection. 

Using multiple water tiles 
In case you use several independent game objects and meshes to compose your final water 
surface as you may be used from Unity’s water, you should have the 
“LuxWater_PlanarReflection” script only once in your scene as otherwise you will create a vast 
amount of draw calls. 

In order to do so: 

●​ Create an empty gameobject, attach the “LuxWater_PlanarReflection” script to this 
object and check IsMaster. 

●​ Add your water tiles as child objects and make sure that they have the 
“LuxWater_PlanarWaterTile” script attached. 

 



Lux Water 1.2.3 

●​ Make sure that the parent game object has the same y position as the water tiles using 
“GameObject” → “Center on Children”. 

●​ Go back to the “LuxWater_PlanarReflection” script on parent object and assign the 
related water materials: 

○​ Set “Size” to 1. 
○​ Then drag the water material used by the water tiles to the slot “Element 0”. 
○​ In case you want to use more than one water material, increase the size of the 

array and assign the other water materials too. 
●​ Check “Enable Planar Reflections” on all affected water materials. 

Please have a look at the “LuxWater Fjord Demo” to find out more. 

Troubleshooting 

Particles do not show up in planar reflections or are partially hidden 
Particles using the new standard lit and unlit particle shaders do not show up at all as they use 
back face culling which – in conjunction with the oblique projection matrix of the reflection 
camera – make them being culled by the gpu. 

Legacy particle shaders most likely will show particles. But most of them incorporate "soft 
particles" which are based on the depth buffer and the clip space position. This does not work 
in case you have an oblique projection matrix like in case of the reflection camera. 

In order to be safe you should use a legacy particle shader which does not support soft 
particles like the particles/vertexlit blended shader. 

You can also write your own particle shader but you have to make sure that the shader 1) uses 
“Cull Off” and 2) does not use the soft particle feature – at least not when the reflection 
camera renders. 

 

 



Lux Water 1.2.3 

Water Volumes 
By introducing water volumes Lux Water lets you create seamless transitions from above to 
underwater rendering. 

Lux Water does so by rendering a water mask and using it to combine above and below water 
rendering which is done as an image effect. 

 

 

Adding a water volume 
1.​ Add the “LuxWater_WaterVolume.cs” script to your water plane. 

2.​ Assign a proper “Water Volume Mesh” to the corresponding slot in the script inspector. 

3.​ Add a box collider to your water plane, make sure it has a proper size and check “Is 
Trigger”.  

4.​ Make sure that your camera has a collider and a Rigidbody assigned. Check “Is 
Kinematic” in the Rigidbody inspector. Then add the “LuxWater_WaterVolume- 
Trigger.cs” to the camera.​
The collision between the assigned collider and the box collider of the water volume 
will trigger the underwater rendering. In order to prevent other colliders to trigger the 
water volume rendering the water volume script will check if the object that triggers the 
collision has a “LuxWater_WaterVolumeTrigger.cs” component.​
So if you already have a collider and rigidbody (like on your player) you may use this 
these as triggers by adding the “LuxWater_WaterVolumeTrigger.cs” component. 

5.​ Add the “LuxWater_UnderwaterRendering.cs” script to your camera. 

6.​ You may add the “LuxWater_UnderWaterBlur.cs” to your camera in case you want 
underwater to be blurred. 

Please have a look at the “LuxWater Water Volume Demo” to find out more. 

 



Lux Water 1.2.3 

The script components 

LuxWater_UnderWaterRendering.cs 
This script must be attached to the camera that will render the water. It will make sure that a 
proper water mask texture will be rendered and kicks off the image effect which will add 
underwater fog and caustics to the underwater part of the screen. 

Inputs 

Sun You have to assign the dominant directional light here which is used to lit underwater fog 
in the image effect. In case you can’t do so look at: 

Find Sun On Enable In case you spawn your player or camera from a prefab you won’t be able 
to assign a sun. So check this to make the script look for a sun OnEnable. 

Sun Go Name Add the sun’s gameobject name here if you want to search for it by name 
(slow). 

Sun Tag Name Add the sun’s tag name here if you want to search for it by tag (fast). Do 
not add anything to the Sun Go Name if you want to look for it by tag. 

Deep Water Lighting lets you attenuate light from the sun according to the depth below the 
water surface while it keeps local pixel lights intact. Find out more > 

Enable Deepwater Lighting If checked Deep Water Lighting will be enabled.  

Default Water Surface Position Default Water Surface Position which gets sent to all 
shaders if no water volume is active. 

Directional Lighting Fade Range The distance over which the directional lighting (sun) 
fades out below the water surface. This affects caustics and lets you fade them out. 

Fog Lighting Fade Range The distance over which underwater fog lighting will fade out 
below the water surface. 

Please note: Both values above will overwrite the corresponding values in all registered 
water materials. 

Advanced Deferred Fog In case you are using deferred rendering and a properly tweaked fog 
shader Advanced Deferred Fog will improve the final rendering result. Find out more > 

Enable Advanced Deferred Fog Check this to enable Advanced Deferred Fog. 

Fog Depth Shift Lets you shift the depth below the water surface at which fog starts to 
fade out. 

Fog Edge Blending Lets you sharpen and smoothen the fading. 

Managed transparent Materials In order to get somewhat proper results regarding the 
rendering of water and transparent objects and particle systems, the script may handle 
transparent materials and change their render queue when the camera moves from above to 
under water. See: Transparents and particle systems for further details. 

Above Watersurface List of managed materials to which you can add materials that are 
used by objects/particle systems above the water surface. 

Below Watersurface List of managed materials to which you can add materials that are 
used by objects/particle systems below the water surface. 

 



Lux Water 1.2.3 

Optimize 

Prewarmed Shaders You may assign a Shader Variant Collection here of all shaders 
needed by underwater rendering. This will reduce hiccups when underwater rendering 
becomes active. 

List Capacity Capacity of the internally used lists as set OnEnable. Make this match the 
number of max active water volumes to prevent garbage which otherwise would be 
created in case the lists had to be resized. Keeping the initial value of 10 should be ok 
and won’t take much memory.   

Enable Debug If checked the name of the current active water volume will be displayed in the 
game view (in play mode only) along with a preview of the generated water mask. In order to 
make the water mask show up you have to check “Gizmos” in the upper right corner of the 
game view window. Red colors in the water mask represent the water surface from above 
whereas green colors represent the water surface from below and the volume. 

LuxWater_UnderWaterRenderingSlave.cs 
In case you use split screens add this script to the 2nd, 3rd, … camera. Please make sure that 
the camera that has the LuxWater_UnderWaterRendering.cs attached to is rendered first by 
setting up the Depth properties of the cameras properly. 

LuxWater_UnderWaterBlur.cs 

This script adds a blur image effect to the parts of the screen which are below the water 
surface. It must be attached to the camera that will render the water. 

Inputs 

Blur Spread Defines the sampling radius. Larger values will make the result blurrier. 

Blur Down Sample Factor by which the grabbed screen will be downsampled before it gets 
blurred. Larger factors will speed up the effect but might lead to quite blocky results. 

Blur Iterations Number of blur iterations. The higher the values, the nicer the result – but the 
more expensive the effect as well. 

LuxWater_WaterVolumeTrigger.cs 

This script must be attached to the game object which holds the collider and rigidbody that 
shall trigger underwater rendering – most likely your camera. 

Inputs 

Cam In case you did not add the script to the camera itself but add it to your player’s prefab 
instead, you have to assign your player’s camera here. If no camera is defined the script 
assumes that it is assigned to a camera and will grab the camera component automatically. 

Active If unchecked underwater rendering will not be triggered even on collision. 

 

 

https://docs.unity3d.com/ScriptReference/ShaderVariantCollection.html


Lux Water 1.2.3 

LuxWater_WaterVolume.cs 

This script has to be attached to the water plane that shall be rendered as water volume. It will 
register the associated water plane with the UnderWaterRendering script, so that the latter can 
handle the rendering. 

Inputs 

Water Volume Mesh The mesh which is used to render the water mask. 

Sliding Volume Check this if you use a huge water surface formed out of several water 
meshes. Find out more > 

Grid Size The distance between the vertices of the water surface mesh at a size of 1.0. If the 
water surface mesh is scaled in your scene (either itself or inherits a different scale from its 
parent object) the scripts will adjust it automatically. 

Listen to Collision Events 

The script lets you subscribe to the OnTriggerEnter and OnTriggerExit functions using: 

LuxWater.LuxWater_WaterVolume.OnEnterWaterVolume += YourEnterFunction; 

LuxWater.LuxWater_WaterVolume.OnExitWaterVolume += YourExitFunction; 

See LuxWater_WaterVolumeListener.cs for details. 

OnEnterWaterVolume and OnExitWaterVolume are only fired if the collider which triggered the 
event has the LuxWater_WaterVolumeTrigger.cs attached to it. 

When using Gerstner waves and a slightly oversized collider OnTriggerEnter does not 
guarantee that your camera (or the trigger) actually is underwater. You will have to check the 
Gerstner height at the given position to make sure the camera is underwater or not. 

Water Volume Mesh 
When using water volumes, Unity has to know when to render water volumes and where to 
render them. When is determined by the collider and triggers. Where is derived from the 
position, rotation and scale of the original water surface plane. So the assigned “Water Volume 
Mesh” has to 100% match your water surface mesh – except for the fact that it describes a 
volume of course. 

Submeshes and materials 

The water volume mesh needs 2 submeshes 
or materials: 1st one must describe the 
volume (cyan), 2nd one the actual water 
surface (blue). 

 

 



Lux Water 1.2.3 

Vertex Colors 

In case you want to use Gerstner Waves you 
should add vertex colors to the meshes (both 
the water volume mesh and the mesh used 
as water plane) in order to prevent the outer 
edges from getting disconnected. Simply add 
vertex color red = 0.0 to the outer vertices 
and you are fine. 

 

Tessellation 

In case you want to use Gerstner Waves the 
water surface should have a decent amount 
of tessellation. 

 

Water surface mesh 

The mesh used for the water surface is just 
exactly the same – except from the missing 
volume faces. 

 

Normals 

The normals of the water volume mesh should be regular ones – so all of them should point 
outwards in case of the example cube. In order to avoid micro cracks when using tessellation I 
recommend setting the normal angle to 180° so they all get smoothed out. 

UVs 
The water volume mesh does not need any UVs. 

Pivot 
The pivot should be placed at the water surface as it is taken to compute the “depth below 
water surface” in the shaders. It must match the pivot of the plane used for the water surface. 

 



Lux Water 1.2.3 

Height of the volume 
Make sure that the height or extent along the y axis is big enough to cover the entire space 
between water surface and ground. Actually you can simply make it “super” high as it does 
only produce a very little amount of extra costs. 

Lux Water WaterSurface Shader 
When using water volumes we can’t compute the depth below the water surface per pixel – as 
this would not work in the UnderWaterPost shader. For this reason the Water shader will fall 
back and pick up a float input instead (_WaterSurfaceYPos or "Water Surface Position (Y)"). 

Transparents and particle systems 
As water is transparent and most likely pretty large Unity’s sorting for transparents will fail in 
most cases, so water might hide or overdraw a lot of your transparent materials and particles. 
For this reason Lux Water renders on RenderQueue = 2999 by default. This ensures that water 
will be rendered before all regular transparent materials including particles which usually 
render at RenderQueue = 3000. 

Transparents above water surface 

This is fine for all transparent materials which are placed above the water surface – as long as 
the camera is outside the water volume. However when the camera is inside the water volume 
these materials would be drawn on top of the underwater surface. A standard particle system 
not handled by script will be invisible from below the water surface. 

So Lux Water introduces managed transparent materials whose render queues get adjusted 
whenever the camera crosses the water surface. This change of course is not pixel accurate 
but good enough in most cases. 

Particles drawn after the underwater surface.​
Particles may simply get drawn on top of the ​
underwater surface. They are neither occluded by ​
the total reflections nor refracted – suitable for ​
particles under the water surface. 

Particles drawn before the underwater surface. ​
The particles are properly occluded by the total 
reflections from the underwater surface and are refracted 
properly – suitable for particles above the water surface. 

 

 



Lux Water 1.2.3 

Transparents below water surface 

Transparent materials below the water surface are a completely different case. They should 
not receive Unity’s built in fog but the underwater fog and color absorption as defined in the 
water volume’s material. At the same time they should render after the water in order to not be 
occluded using  RenderQueue = 3001– at least when the camera is below the water surface. 

However this would make them stand out when looking from above the water surface as they 
would not be refracted. So these transparents should be handled as well by script and their 
Renderqueue should be set to 2998 to make sure that they get rendered before the water. 

Doing so however will most likely make them disappear when looking from above the water 
surface. Just a little tradeoff we have to take here – which in most cases is barely noticeable. 
Especially if you use rather subtle underwater particle effects.  

I swear I hate solving rendering problems using scripts, but in this case it was just the most 
performant solution. Doing it all by shaders alone would need two grab passes and the water 
being rendered twice. 

Lux Water/Particles/UnderwaterParticles Alpha Blended shader 

This shader is derived from the built in Particles Alpha Blended – but instead of adding Unity 
fog this shader adds underwater fog as specified by the active water volume. 

This being said it should be clear that using this shader needs you to use water volumes. It 
needs the “LuxWater_UnderWaterRendering” script as this provides the shader with all needed 
variables. 

Lux Water/Particles/Like Alpha Blended Premultiply shader 

As Unity’s built in Alpha Blended Premultiply particle shader does not support fog i added a 
shader which more or less acts similarly but supports fog. Texture input expects a regular 
alpha texture (RGB + A): You do not have to multiply alpha on top of RGB. 

Fog 
You do not want any built in fog on pixels which are underwater – but underwater fog instead. 
So we have to mask out the corresponding pixels. 

This is rather easy when it comes to deferred rendering as fog is applied as an image effect. 

Please note: Properly tweaked fog shaders for the PostProcessingStack v1 and v2 are added. 
You will find them in the folder “_FogShaders”. Move them to the appropriate folder of your 
PostProcessingStack, backup the default fog shaders, then remove the “__” from their file 
name. 

Fog rendered by Azure or Enviro is also supported. In order to make these work you will have 
to edit the “LuxWater_Setup.cginc” file (located in: LuxWater → Shaders → Includes) and 
comment/uncomment the corresponding defines. 

However when using forward rendering this gets pretty tricky as usually fog is applied directly 
when the geometry gets drawn to screen. So when using forward we have to live with the fact 
that everything receives fog and have to pray that underwater fog and absorption will actually 
hide it :( 

 



Lux Water 1.2.3 

If Advanced Deferred Fog is enabled the (tweaked!) fog shader will sample the water mask 
and mask all pixels inside the water volume from being fogged. 

Furthermore it compares the depth from the depth buffer against depth from the water surface 
and lets you fade out fog below the water surface even if the camera is not inside a water 
volume. This helps to prevent objects in water getting too bright  (caused by the fact that they 
receive double the amount of fog: 1st from the object itself + 2nd from the water surface) and 
stops them standing out. 

The result of this is illustrated in the following screenshots:  

 

 

Fog Depth Shift: 1, Fog Edge Blending: 0.001 Here fog reveals the silhouette of the submarine 
as fog sums up: Both submarine and water surface get fogged. 

 

 

Fog Depth Shift: 1, Fog Edge Blending: 0.4 If we sharpen the “Fog Edge Blending” by raising its 
value we can make fog fade out earlier on the opaque objects according to their depth below 
the water surface and get a nicer blending between objects and water. 
 

 



Lux Water 1.2.3 

 

Fog Depth Shift: 0, Fog Edge Blending: 8.0 However sharp fog edge blending may produce 
areas where there is no fog at all (the dark parts in the screenshot). Use “Fog Depth Shift” to 
lower the height where fog fading starts. 
 
Actually we have to set Fog Depth Shift and Fog Edge Blending so that we get a little overlap 
between fog being faded out and the overall Edge Blend Factor of the water material. 

Please make sure that you check your settings by entering playmode. Then find some 
intersections between water and objects and look if there are any unfogged areas like shown 
below. If so tweak Fog Depth Shift and Fog Edge Blending. 

 

 

Tip: Even if you do not want to use real water volumes you can use its components to get 
advanced deferred fog: Simply do not attach a trigger volume (collider) to your water mesh, then 
underwater rendering will never be triggered. Assign the water mesh itself as “Water Volume 
Mesh”.  

Limitations 
Currently water volumes can’t be bigger than the camera’s far clip plane. So if the latter is set 
to 1000 the max size of your water volume would be 577 along each axis. 

In order to have larger water surfaces you will have to split them into several chunks and use 
sliding water volumes – which from a performance point of view might be a good idea anyway. 

Find out more > 

 



Lux Water 1.2.3 

Water Volumes and split screen rendering 
In case you want to use water volumes and split screen rendering you have to: 

●​ Specify a master camera. This camera should render first. In order to ensure this, set 
its “Depth” to “-1”.  This camera must have the “LuxWater_UnderWaterRendering” script 
attached to. 

●​ All other cameras should use higher “Depth” values and must have the 
“LuxWater_UnderwaterRenderingSlave” script attached to them. 

Please note: Split screen rendering currently is in preview and only supports one single active 
water volume. Please have a look at the “LuxWater Water Volume Splitscreen Demo” to find 
out more. 

Deep water rendering 

What does it do 

Previous versions of Lux Water let you calculate light and color absorption according to the 
reconstructed depth below the water surface which gave you way more stable results when 
rendering the water surface from above compared to only view depth based absorption. 
However when the camera was inside the water volume the same calculation took place 
simply attenuating ALL light according to the depth – no matter if these lights were above or 
below the water surface. 

The problem here is to distinguish between sunlight from outside the water and lights within 
the water. The underwater post effect can’t handle this and simply darkens all pixels according 
to their eye depth and depth below the water surface.  

Deep water rendering addresses this issue as it makes the (non water) scene materials take 
depth based attenuation of sunlight into account (see screenshot below). This is done in a 
custom Deferred Lighting shader thus Lux Water supports deep water rendering only when 
using deferred lighting, as deferred lighting lets us globally hack into the lighting pipeline. 

Other issues are caused by underwater fog and caustics. Both are lit by the sun and react to 
absorption in case fog does not fully cancel it. Now you can specify a “Directional Lighting 
Fade Range” and “Fog Lighting Fade Range” over which caustic and fog lighting will be faded 
out. Caustic lighting will take the distance between water surface and the scene’s y position 
into account while fog lighting uses the distance between the water surface and the position 
of the camera. 

Setting it up 

In order to make deep water rendering work you have use a water volume of course,  set your 
camera to deferred and assign the LuxWater_DeferredShading in Edit → Project Settings → 
Graphics: 

●​ Under the Built-in shader settings change Deferred to custom, then assign the 
LuxWater_DeferredShading shader. 

●​ Add the Under Water Rendering script to your camera and check Enable Deep Water 
Lighting. 

●​ Set Default Water Surface Position to the y position of your water plane then adjust the 
Directional Lighting Fade Range. 

 



Lux Water 1.2.3 

●​ In case you want to render deep waters and use local pixel lights under the water 
surface at the same time you must NOT use any depth based Light Absorption at all – 
as this would cancel lighting from the directional light (sun) as well as from any other 
pixel light. So set Light Absorption → - Depth: 0.0 in the water material. 

The result should somehow look as shown in the screenshot below: The directional lighting 
fades out starting at the Default Water Surface Position (absolute in world space) over the 
range defined by Directional Lighting Fade Range (relative value). 
This happens automatically on all deferred rendered materials. 
 

 

Attenuating sun light below the water surface.​
When using deferred rendering we can easily attenuate the light from the sun (the directional light) below the water 
surface. 

Please note: All opaque/deferred materials automatically get shaded according to their position relative to the 
water surface. Ambient lighting currently is not handled so you still have some light even at the very bottom. ​
Local spot lights (these tiny little spots next to the big submarine…) just lit the surfaces as they would normally do. 
 

In order to set up the underwater fog lighting and the Fog Lighting Fade Range you will have to 
enter play mode and dive into your water volume as it does not render in edit mode. 

Fog lighting will be darkened according to the camera’s position relative to the Water Surface 
Position. 

Ambient lighting currently is not handled. Theoretically it could be done like the fog lighting – 
but as there are a lot of assets out there changing ambient lighting like any Time of Day 
solution i skipped this. 

Deep water lighting and transparent materials 

As mentioned earlier the attenuation of the directional lighting below the water surface is 
handled automatically on all deferred materials. Forward materials like materials using a 
custom lighting function (skin, hair, car paint) and transparent materials will not pick up the 
lighting. You have to assign special shaders or tweak the existing ones to make it work. 

 



Lux Water 1.2.3 

Lux Water ships with a small collection of tweaked shaders like two general purpose 
transparent shaders, alpha blend and additive particle shaders and – as it looks nice – a 
volumetric light beam shader. Their lighting will be driven by global shader variables set by the 
Under Water Rendering script. 

Underwater transparent materials 

Underwater transparent materials do not show up if the camera is above the water surface as 
they do render at queue = 3000 and therefore are occluded by the water surface which uses 
2999 and most likely writes to depth. 

If they were set to queue = 2998 they would be drawn before the water plane but be more or 
less invisible as they do not write to depth and therefore underwater fog and absorption would 
make them vanish. 

Furthermore the shaders themselves already add fog and absorption. So these would double 
up… 

For this reason you have the possibility to smoothly fade in transparent underwater materials 
according to the camera’s position below the water surface height. 

The shaders 

Lux Water comes with two transparent shaders: the "Lux Water/Underwater/Transparent 
Premultiply" and "Lux Water/Underwater/Transparent Blend" shader. 

Premultiply shader Use this (mostly) on transparent geometry like glas. It offers full PBS 
lighting including reflections on the transparent parts.​
You may use this shader on particles as well but should enable particle shading and assign a 
final alpha texture. Examples are the “Underwater Bubbles” in the “LuxWater Water Volume Deep 
Water Demo”. 

Blend shader This shader is suitable for e.g. particles which need normal mapping and full 
lighting options.​
Examples are the “Black smokers” in the “LuxWater Water Volume Deep Water Demo”. 

Shader Inputs 

Color Color multiplier 

Albedo (RGB) Alpha (A) The albedo texture in RGB and transparency in alpha. 

Particle Options 

Enable Particle Shading If checked the shader will add soft particle blending (like built 
in particle shaders) 

Final Alpha (only available and needed in the premultiply shader) Premultiplied alpha 
blending usually would add specular reflections regardless of the given transparency 
as needed e.g. by glass. This however would reveal the particle quads. So adding a 
final alpha mask here will make sure that reflections are masked out properly too.​
 Examples are the “Underwater Bubbles” in the “LuxWater Water Volume Deep Water 
Demo”. 

Specular Gloss 

 



Lux Water 1.2.3 

Enable Spec Gloss Map If checked the shader will sample the assigned Specular Gloss 
map. 

Specular (RGB) Smoothness (A) The combined Specular Gloss map. 

Smoothness Lets you set smoothness just from the slider input. In case “Enable Spec Gloss 
Map” is checked it acts as a multiplier on the smoothness sampled from texture input. 

Specular The specular color in case “Enable Spec Gloss Map” is unchecked. 

Use proper dielectric Fresnel Unity’s built in fresnel calculation is based on a dielectric/air or 
conductor/air interface. However in our case (underwater rendering) we have to deal with a 
dielectric/water or conductor/water interface. So if checked the shader will calculate the 
proper but more expensive dielectric/water fresnel. 

Proper dielectric Fresnel is only needed on materials which use a pretty dark specular color (< 
RGB (44, 44, 44)) as otherwise it is barely noticable. 

Colored fresnel reflections like from copper are not supported as they are way too expensive. 
But they are not really needed anyway as the brighter the specular color gets (metals) the less 
difference the both fresnel functions will produce. 

Regular Fresnel​
Regular fresnel driven ambient reflections. ​
Specular color is 24,24,24. 

Proper dielectric Fresnel ​
Proper fresnel driven reflection for the same specular 
color. Please note the pretty harsh edge between “no 
reflections” and “total inner reflections”. 

Normal 

Enable Normal Map if checked the normal map will be sampled by the shader. 

Normal Map A regular normal map. 

Scale Scale factor for the sampled normal. 

Emission 

Enable Emission Map If checked the shader will sample the assigned emission map. 

Emission The emission map. 

Color Color modifier for the emission as sampled from the emission map. 

Caustics 

Enable Caustics If checked the shader adds caustics which fit the caustics as added 
by the underwater post shader. Only needed on materials you use close to the water 
surface. 

Fade 

 



Lux Water 1.2.3 

Watersurf Distance Fade Distance to the water surface over which the shader shall 
fade in. 

Underwater light beams 

The underwater light beams use a simple shader derived from Epic’s light beam shader. Follow 
the link to find out further details. 

As they are rendered using the transparent render queue and path they will more or less be 
fully hidden by water fog and absorption when the camera is outside the water volume. For 
this reason the beams will fade in when the camera is below the water surface. 

When the camera is below the water surface the shader will calculate under water fog and 
absorption based on the global values passed from the LuxWater_UnderWaterRendering script. 

The mesh geometry for the cone has to be double sided. 

Shader Inputs 

Fall Off (G) Light fall off mask along the beam in the green color channel.  Red and blue should 
be set to 0 (black) to improve the texture quality. 

Spot Mask (G) Light fall off masks perpendicular to the beam in the green color channel. Red 
and blue should be set to 0 (black) to improve the texture quality. 

Detail Noise 

Enable detail noise If checked the shader wil sample the assigned Detail Noise Texture 
two times. 

Detail Noise (G) Detail noise texture. Noise in the green color channel. Red and blue 
should be set to 0 (black) to improve the texture quality. 

Strength Lets you specify the strength of the detail noise. 

Scroll Speed 1:(XY) 2:(ZW) Determines the scroll speed of the two texture samples. XY 
controls the scroll speed for the first sample whereas ZW controls the scroll speed for 
the second sample. 

Fog Density Lets you lower the density of underwater fog. 

Cone Width and Spot Mask Intensity Use these params to shape your light beam and hide 
sharp and ugly edges. 

Watersurf Distance Fade Distance between Camera and water surface over which the beam 
shall fade in. 

Camera Distance Fade Distance to camera at which the beams shall start to fade out. 

Soft Edge Factor acts like Unity’s Soft Particle Factor. 

Water Projectors 
Water Projectors allow you to project additional foam and custom normals on top of the water 
surface in order to create e.g. foam trails or water ripple effects. 

You can use water projectors also to add some kind of interaction with the water surface (like 
splashes) or simply spice up the overall look. 

 

https://api.unrealengine.com/udk/Three/VolumetricLightbeamTutorial.html


Lux Water 1.2.3 

Projectors are rendered into two different render textures (foam and normal buffer) using the 
current camera’s position and perspective – which means they are rendered in screen space. 
When the water surface is rendered later in the frame these buffers get projected on top of the 
water surface. 

This screen space projection needs you to carefully align your projectors (particle systems, 
planes) with your water surface. Usually they should be laid out as horizontal billboards or flat 
planes and their y position should match the water’s y position pretty closely. The more 
accurate this is done the less artifacts you will get. 

Please note: Projectors aren’t rendered properly in scene view but only in game view. 

Adding water projectors 
To get you up and running you have to: 

1.​ Add the LuxWater_ProjectorRenderer.cs script to your camera.  

2.​ Simply drag one of the provided “Demos -> Prefabs -> Water Projectors” prefabs into 
your scene and position them properly. 

3.​ Enter playmode and explore the final result. 

4.​ Create your own water projectors according to the information provided below. 

Under the hood 
The LuxWater_ProjectorRenderer.cs script actually drives the rendering of all water projectors. 

Each water projector needs the LuxWater_Projector.cs assigned. This script will register the 
related projector to the LuxWater_ProjectorRenderer.cs script according to the chosen Type 
(Foam Projector or Normal Projector), which then will take care of proper rendering (including 
that the renderer won’t be rendered by the default camera in playmode). 

Foam Projectors 
Foam projectors let you add foam either to special places where the default screen spaced 
foam just is not enough or dynamically in order to add e.g. foam trails. 

Regardless of if you use a simple plane or a particle system, foam projectors need to have the 
LuxWater_Projector.cs script attached to them (Type has to be set to Foam Projector) and 
should always use the Lux Water/Projectors/Foam Projector shader. 

Please note: Foam projectors need you to check Enable Foam in the water surface material. 
Otherwise they will not show up. 

Foam Projector Shader 

All foam projectors should use the Lux Water/Projectors/Foam Projector shader. 

Foam projectors simply write a grayscale mask into the foam buffer. The projected foam will 
then pick up the color from the foam color as specified in the water surface shader. 

You may choose between two different Overlay modes: 

 



Lux Water 1.2.3 

Simple Will add the foam only to the foam’s alpha value in the water surface shader. This foam 
will not pick up the foam’s normals nor will it be influenced by the foam texture assigned to the 
water surface shader. 

If this mode is selected the foam projector will be tinted green in the editor and debug mode. 

Foam This mode will add the foam buffer to the procedurally generated foam so that it picks 
up all its properties like normals, animation speed etc.  

If this mode is selected the projector will be tinted red in the editor and debug mode. 

Overlay mode: Simple​
The projected foam looks more like a classical particle 
system. 

Overlay mode: Foam ​
Here the projected foam matches the procedurally 
generated foam as on the shoreline. 

Please note: When using Foam instead of Simple usually you will get way less visible foam as 
the shader combines the mask from the projector and the mask from the foam defined in the 
water surface shader. You may have to tweak the emission rate (in case you use a particle 
system) or opacity parameter in the material to get the desired result. 

Inputs 

ZTest Should be set to Disabled (default), which means that the shader will not perform any 
depth testing. You may set it to LessEqual in the editor while positioning your normal 
projectors to get a better sense for its depth tho. 

Culling Should be set to Off so that the projector will be visible from above and below the 
water surface. Change this only on purpose. 

Blending 

SrcFactor and DstFactor drive the blending in the foam buffer. By default they are set to 
match the standard particle add blending (SrcAlpha/One). But you may play around with 
other blend modes of course. 

Opacity Lets you tweak the opacity without having to tweak the texture. 

Mask (R) The foam mask is stored in the red color channel. Please have a look at the Foam 
Projector Textures section to find out more. 

Overlay Mode Lets you choose between Simple and Foam. See above to find out more. 

 



Lux Water 1.2.3 

Foam Projector Textures 

Foam projector textures are simple grayscale images. As we only need the red color channel 
the texture Format should be set to “R compressed BC4” (desktop) in the import settings. 

sRGB (Color Texture) may or may not be checked. 

Normal Projectors 
Normal projectors will output “some kind of” tangent space normal to the normal buffer, which 
then gets sampled, combined with the given water normals and finally transferred to world 
space in the water surface shader. 

The result is not 100% accurate but looks pretty convincing and is fast to compute, so I stuck 
with the current approach. 

Normal projectors must use the Lux Water/Projectors/Normal Projector shader, which currently 
only supports additively blended particles/normals. 

Please note: In order to create smooth edges between water and projected normal it is crucial 
that the normal texture applied to the normal projector fades out smoothly towards RGB = 128, 
128, 255. 

Please note: Normal Projectors rely on RenderTextureFormat.ARGBHalf which might not be 
supported on all platforms. In case you encounter any problems please come back to me. 

Normal projectors also need the LuxWater_Projector.cs script attached to them (Type must be 
set to Normal Projector). 

Normal Projector Shader 

All normal projectors must use the Lux Water/Projectors/Normal Projector shader, which 
currently only supports additively blended particles/normals. 

Inputs 

ZTest Should be set to Disabled (default), which means that the shader will not perform any 
depth testing. You may set it to LessEqual in the editor while positioning your normal 
projectors to get a better sense for its depth tho. 

Culling Should be set to Off so that the projector will be visible from above and below the 
water surface. Change this only on purpose. 

Normal (RG) Mask (B) Height (A) Holds the texture which contains:​
- the red and green color channel of a regular normal map in red and blue.​
- in blue you may add a mask texture in case you spot harsh edges concerning the final water 
normals. If you do not need a mask, simply set blue to pure white.​
- In alpha you may add a height map. This is used (and needed) by the tessellation shader in 
case you want any extrusion. 

Please have a look at the Normal Projector Textures section to find out more. 

Normal Strength Lets you scale the normal. 

 



Lux Water 1.2.3 

Normal Projector Textures 

As the normal texture which is used by the normal projector shader should fade out smoothly 
to the normals of the water it is mandatory that at least the outer edges have a color value of  
RG = 128, 128. 

Texture Import settings 

sRGB (Color Texture) Uncheck this option as we do not want any Gamma correction. 

Filter Mode might be set to Trilinear, as we deal with a normal here. 

Compression You should set it to Height Quality – if not even to None. 

Please have a look at the provided demo content to find out more. 

Particle Systems 
I assume that most Water Projectors just will be a particle system – although you can of 
course also use custom meshes. So this section will give some general tips on how to setup 
particle systems. 

Position 
Make sure that the particle system is placed slightly above the water’s y position. An offset of 
0.01 just should be fine. 

Renderer 
Render Mode Horizontal Billboard 

Normal Direction 1 (needed by normal projectors) 

Material Make sure that your material either uses the Lux Water/Projectors/Foam Projector or 
the Lux Water/Projectors/Normal Projector shader. 

Max Particle Size You may have to raise this value in order to avoid particles from being 
scaled down. 

Custom Vertex Streams As we might deal with normals here we need some custom vertex 
streams: 

●​ Position 
●​ Normal 
●​ Color 
●​ UV 
●​ Tangent (needed by normal projectors) 

Water Projectors and Gerstner Waves 
Using a screen space projection will give you almost perfectly fitting results in case the water 
is just a flat surface. When using Gerstner waves however things get a bit more complicated. 

Actually the current approach displaces the projection according to the displacement from the 
gerstner waves and makes foam actually swim on top of the surface, which is nice. 
Nevertheless gerstner waves introduces some more artifacts like: 

 



Lux Water 1.2.3 

●​ All projected foam and normals will be displaced by gerstner waves. This might lead to 
e.g. foam trails getting slightly disconnected  from the emitter = boat. 

●​ If the displaced screen space coordinates get out of the range of the area the render 
texture covers foam and normals would be stretched. In order to address this the water 
shader will simply fade out projected foam and normals instead of project stretched 
textures:​
​

​
​

The difference between the red shape in the buffer preview and the actually rendered foam on screen is 
caused by vignetting in order to hide stretched foam as described above.​
 

●​ If the camera is “inside” the displaced waves, the projection may just go crazy :( 

●​ Attaching projectors to objects which get displaced themselves by gerstner waves will 
produce artefacts. 

You can however avoid most artifacts by using gentle displacement values in the Gerstner Waves 
Settings. 

Water Projectors, moving objects and Gerstner Waves 
Please have a look at the “LuxWater Ocean Demo” scene which contains 4 different approaches 
to combine projectors, moving objects and strong Gerstner waves. 
 

1.​ Parented Particles Here the Normal Projector is parented under the game object which 
uses the simple “LuxWater_SetToGerstnerHeight.cs” demo script. As the object gets 
displaced by the script the particle system will be too. On top of this the particles will 
be displaced in screen space by the water shader. This leads to particles just floating 
around... 

2.​ Unparented Particles Here the Normal Projector is not parented under the sphere, but 
vice versa, so it has a stable position. The displacement of the particles solely is 
calculated within the water shader. As in this example displacement from script and 
displacement from shader do not sum up, particles look quite ok. Nevertheless there is 
a small delta between the position of the particles and the position of the sphere as the 
sphere uses damping which the particles do not use (not supported by the shader). 

 



Lux Water 1.2.3 

3.​ Following Particles - Simulation on Local Space You may of course move and animate 
your objects. In this case you make the particles follow your object which here is done 
using “LuxWater_SetToGerstnerHeight.cs” demo script: This moves the projector to the 
“original” position of the object which does not contain the displacement from the 
gerstner waves. 

4.​ Following Particles - Simulation in World Space Using World Space for the particle 
animation lets you easily create trails. 

Takeaways 

●​ Do not parent Foam and Normal Projectors under objects which are displaced 
according to the gerstner displacement of the water waves. 

●​ Parent the objects under the projectors. 

●​ Or use script to make the projectors follow the objects. 

The script components 

LuxWater_ProjectorRenderer.cs 
This script must be attached to your camera. It handles the drawing of both the foam and 
normal buffer which later will be projected on top of the water surface to create the desired 
effect. It will look through all registered projectors and check their visibility using an AABB 
frustum check. If a registered projector is visible the script will draw it to the corresponding 
buffer. 

Inputs 

Foam Buffer Resolution Lets you downsize the resolution of the normal buffer in order to save 
fill rate. 

Normal Buffer Resolution Lets you downsize the resolution of the normal buffer in order to 
save fill rate. 

Debug  

Debug Foam Buffer If checked a preview of the foam buffer will be outputted to the 
scene and the game view in playmode. In order to see it in game view you have to check 
“Gizmos” in the upper right corner of the game view window.​
Projectors using the simple overlay mode will show up in green, projectors using the foam 
overlay mode will show up in red. 

Debug Normal Buffer If checked a preview of the normal buffer will be outputted to the 
scene and the game view in playmode. In order to see it in game view you have to check 
“Gizmos” in the upper right corner of the game view window. 

Debug Stats If checked the number of registered and actually drawn foam and normal 
projectors will be printed to scene and game view. 

LuxWater_Projector.cs 

You have to attach this script to all particle systems or game objects/renderers which shall 
render into the foam or normal buffer. If the game object which it is attached to does not have 

 



Lux Water 1.2.3 

a renderer it will simply do nothing. Otherwise it registers itself to the 
LuxWater_ProjectorRenderer.cs and disables the renderer in playmode. 

Inputs 

Type Choose between Foam Projector and Normal Projector according to the kind of projector 
you want. 

Please note: You have to manually assign a proper material using the Lux 
Water/Projectors/Foam Projector or the Lux Water/Projectors/Normal Projector shader. 

Lux Water Utils 

LuxWater_Utils.cs 
This script contains a bunch of helper functions which – right now – allows you to sample the 
displacement of the water surface caused by gerstner waves in order to e.g. make objects 
follow the movement of the waves. 

These functions are used in the LuxWater Gerstner Displacement Demo to make the spheres sit 
on top of the water surface. 

struct GersterWavesDescription 

A struct which holds all parameters to describe the gerstner waves for a given material. 

GetGersterWavesDescription (ref GersterWavesDescription Description, Material 
WaterMaterial ) 
Fills the passed GersterWavesDescription with the parameters from the passed material. 

Vector3 GetGestnerDisplacement (Vector3 WorldPosition, GersterWavesDescription 
Description, float TimeOffset) 
Returns the displacement as Vector3  of a water surface (described by the 
GerstnerWavesDescription) at a given world position according to the current time + the 
passed TimeOffset. 

LuxWater_SetToGerstnerHeight.cs 

In order to get a better idea of how it works you should have a look at the 
LuxWater_SetToGerstnerHeight.cs, which is used to place the spheres according to the wave 
displacement. 

Inputs 

Water Material You have to assign the water material here used by the water mesh the objects 
should follow. 

Damping Lets you define the strength of the displacement along each axis. 

Time Offset Lets you calculate the displacement at a different time than the current time. 
Usually you would use negative values here in order to create an effect of the inertia of 
masses. 

 



Lux Water 1.2.3 

Update Water Material Per Frame If checked the Gerstner Waves settings of the assigned 
material will be read each frame (expensive…). Only check this if you change the material 
settings over time. 

Add circle Anim If checked the script will add a circular movement using Radius and Speed. 
For testing purposes. 

Under the hood 

The script uses the functions and structs defined by LuxWater_Utils.cs.​
It declares:​
​ private LuxWaterUtils.GersterWavesDescription Description;​
in order to create the needed struct which holds all information about the gerstner waves. 

Then on Start it retrieves the Gerstner Waves settings of the assigned material: 

LuxWaterUtils.GetGersterWavesDescription(ref Description, WaterMaterial); 

Then it calculates the Offset of the Gerstner Waves at the given location and time in Update 
using:​
​ Vector3 Offset = LuxWaterUtils.GetGestnerDisplacement(trans.position,​
 ​ Description, TimeOffset); 

The Offset then finally is used to reposition the object. 

LuxWater_SetMeshBounds.cs 
When using Gerstner Waves vertices might get heavily displaced so they leave the bounds of 
the original mesh. Therefore Unity might cull the mesh altho it should still be visible. In case 
you come across water meshes that suddenly disappear you may add this script and scale up 
the mesh’s bounds. 

The script works on the sharedMesh. So if you use several water tiles to create a huge water 
surface you have to attach the script only to one of the tiles.​
Please have a look at the LuxWater Fjord Demo. 

In the editor you will see a red wired box which represents the bounds. Just make sure that the 
selection wire preview never leaves these bounds. 

Inputs 
Expand_XZ Expand the bounds by increasing its size by the given amount along the xz axis. 

Expand_Y Expand the bounds by increasing its size by the given amount along the y axis. 

 

Creating large water surfaces and Oceans 
Lux Water originally has not been created to render large or even infinite water surfaces. It 
does not use a projected grid or geomipmaps to automatically create the water surface but 
works on custom provided arbitrary geometry like oval lakes or curved rivers. 

Nevertheless you can create large water surfaces using multiple water tiles. 

 



Lux Water 1.2.3 

The “LuxWater Ocean Demo” shows how you could create a wide water surface using several 
water planes and a sliding water volume. 

It also shows how you should set up particle projectors in case you use strong gerstner waves 
as described here. 

Sliding water volumes 

The problem 
As water volumes always have to be fully 
within the drawing range of your camera (far 
clip plane) you can not use one of the 
provided, simple water surface / volume 
meshes and scale it  to e.g. 9000 x 9000 
meters in case your camera’s far clipping 
plane is set to 3000. This would result in 
holes in the water mask giving you shading 
artifacts like shown on the right. 
 

 
Water volume being clipped according to the far clipping 
plane of the camera. As the bottom of the volume is too 
far away you will get a hole in the water mask. 

The solution 

Let’s stay with the 9000 x 9000 meters example and a far clipping plane of 3000 meters. Then 
your volume’s max size would be 1732 x 1732 x 1732 meters according to Pythagoras, so you 
can look from one corner diagonally to the opposite one. In order to keep it simple here we 
raise the far clipping plane to 3465 meters so we can use planes of 2000 x 2000 meters :) 

So we will create the water surface using several water planes e.g. 5 x 5 planes each 2000 x 
2000 meters in size. 

One might think that adding 5 x 5 volumes would do the trick, but unfortunately Lux Water 
does not support a seamless transition from one volume to the next. Furthermore doing so 
would mean that we had to draw up to 4 volumes to create the mask in case the camera is 
close to an edge – which sounds quite expensive. 

So we use a sliding volume instead. 

The sliding volume has a size matching the size of the water planes: 2000 x 2000 x 2000 
meters and gets moved so that it is always centered on the camera. The important detail when 
it comes to gerstner waves: We have to make sure that the vertices of the volume always fall 
on vertices of the water surfaces to avoid gaps. So we can not simply center the volume but 
have to do it in steps. 

Example 

The provided Ocean Demo uses 5 x 5 water tiles each originally 500 x 500 meters in size. As 
the Ocean_5x5 prefab is scaled by 2 it covers an area of 5000 x 5000 meters – which would be 
the reachable area within the game’s level. 

The used water surface mesh (and volume as well) has 50 subdivisions along each axis so our 
step size (or grid size as called in the script) is 10 meters (the scale of 2 will be factored in 

 



Lux Water 1.2.3 

automatically). With this info provided the UnderwaterRendering script is able to center the 
volume and make it snap to the grid formed by the vertices of the water surface planes. 

We only have one single volume and collider – attached to the first water surface in the 
“Ocean_5x5” prefab. The collider is “static” and fills the entire area of 5000 x 5000 meters 
while our volume of 1000 x 1000 x 1000 meters gets moved. 

According to the final volume’s size the camera far clipping plane must be greater than 1732 
meters ( sqrt(pow(1000,2) * 3) ). 

The “Ocean_5x5” prefab is extended by a “skirt” which is made from simple planes using a 
simplified water material: no foam, no caustics, no pixel snapping, no gerstner waves, no 
tessellation. Culling is set to “Back”. 

Sliding Water Volume Mesh 

Compared to a “regular” water volume mesh – where you would mark the outer vertices using 
vertex color red to prevent these from being displaced by Gerstner waves the geometry of the 
mesh and the usage of vertex colors are slightly different. 

Geometry 

The mesh consists of 3 “parts” stored in 2 submeshes (material groups): 

1.​ The highly tessellated water surface (as submesh 2). 
2.​ A small skirt of quads as highly tessellated as the surface (in submesh 1). 
3.​ A simple volume (in submesh 1). 

 

 
 
The skirt is needed to fill any gaps between surface and volume when it comes to Gerstner 
waves and tessellation. 

The volume slightly overlaps with the skirt. 

 



Lux Water 1.2.3 

Vertex Colors 

The water surface is set entirely to vertex color red = 1. This will result in full tessellation and 
full displacement. 

The skirt uses a gradient from vertex color red = 1 at the top to 0 at the bottom. This will result 
in full tessellation but displacement will be limited to the upper vertices. 

All vertices of the volume are set to vertex color red = 0. Tessellation will be set to 1 and 
displacement will be fully suppressed. 

 

 
 

Infinite Ocean 
Now as you know how to create large water surfaces and volumes by using a sliding water 
volume and several water tiles it is only a small step to create an infinite ocean: 

Simply use the same technique as for the sliding water volume and center all water surfaces 
on the camera. In order to prevent any hiccups in the animation and displacement of the 
surfaces we have to do this in steps as well and make the movement snap to the grid formed 
by the vertices of the water surface planes. 

A simple example can be found in the “Lux Water infinite Ocean Demo”. Here the ocean prefab 
holds the simple “Luxwater_InfiniteOcean” script. 

LuxWater_InfiniteOcean.cs 

Use this script to move a set of water tiles along with the camera to create an “infinite” ocean. 
It must be attached to the game object which hold the water planes (like e.g. “Ocean_5x5 
prefab”) 

Inputs 

Camera Assign your camera. If you leave this field blank the script will look for a camera 
tagged as “MainCamera”. If it does not find any it will simply return. 

 



Lux Water 1.2.3 

Grid Size The distance between the vertices of the water surface mesh at a size of 1.0. If the 
game object which holds the water tiles is scaled the script will adjust it automatically. Unlike 
the “LuxWater_WaterVolume” script this script does not take possible scaling of the water tiles 
inside the holder into account. 

Reflection Probes 
When using huge water surfaces made out of several tiles and custom reflection probes (like 
Enviro does) some of the water tiles may not be covered by the reflection probe’s volume, 
which leads to harsh edges as far as reflections are concerned: 
 

 
 
To come over this you may consider overwriting the water tiles’ anchor which determines how 
probes are blended:

 

 



Lux Water 1.2.3 

 

Metal and Deferred Rendering 
Due to the way Metal handles depth, you can not simply make the shader write to depth when 
using deferred rendering: Water would simply disappear as Metal reads from and writes to the 
depth buffer at the same time … 

So you can just set ZWrite to off in the material inspector. This is fine in case you only use flat 
planes and you do not use Gerstner Waves. 

But if you need proper depth writing then you will have to: 

●​ add the LuxWater_CameraDepthMode script to your camera. 
●​ check “Grab Depth Texture”. 
●​ edit the LuxWater Shaders: 

○​ Find (you will find it two times)​
//#define LUXWATERMETALDEFERRED 

○​ and change it to:​
#define LUXWATERMETALDEFERRED 

○​ Then safe the shader. 
●​ If you change your camera to forward you will have to comment #define 

LUXWATERMETALDEFERRED again. 
 
By checking “Grab Depth Texture” you will add a CommandBuffer which grabs the depth 
texture after deferred lighting is finished and copies it into a custom texture which then is used 
in the modified shader. 
 

 
 
Please note: In case you set your camera projection to orthographic the camera will always 
render in forward. In this case you will have to revert the shader and comment #define 
LUXWATERMETALDEFERRED again. 

 



Lux Water 1.2.3 

 

Optimizations 
While it is quite convenient to be able to turn on and off special features like foam or caustics 
creating a lot of different shader variants is quite time and – most likely even more important 
– memory consuming, even in your build. 

Do not solely rely on Unity’s shader stripping, but manually activate/deactivate features you 
know you do not use by replacing the #pragma multi_compile directives. 

In case you want support for water projectors e.g. replace: 
//​ Water projector support 

#pragma multi_compile __ USINGWATERPROJECTORS 

with: 
//​ Water projector support 
​ #define USINGWATERPROJECTORS 

In case you do not want support for projectors simply comment the #pragma: 
//​ Water projector support 

// #pragma multi_compile __ USINGWATERPROJECTORS 
 

 

 

 

 
 
 

 


	Lux Water 
	Compatibility 
	Table of Content 
	Getting Started 
	Forward Rendering 
	Deferred Rendering 
	Orthographic Projection 
	Metal and Deferred Rendering 
	Fog 
	Azure, Enviro and Aura 2 


	Also make sure that e.g. enviro renders before lux water when it comes to image effects. 
	The Demos 
	Shader Properties 
	Basic Properties 
	Reflections 
	Underwater Fog and Light Absorption 
	Underwater Fog Inputs 
	Light Absorption Inputs 

	Subsurface Scattering 
	Underwater Scattering 
	Normal Maps 
	Far Normal 
	Detail Normals 

	Foam 
	Regular Foam 
	Gerstner Foam 

	Caustics 
	Inputs 

	Advanced Options 
	Gerstner Waves 
	Secondary Gerstner Waves 
	Tessellation 

	Orthographic Projection 
	Unsupported features 
	Feature which need some Love 

	Planar Reflections 
	Using multiple water tiles 
	Troubleshooting 
	Particles do not show up in planar reflections or are partially hidden 


	 
	Water Volumes 
	Adding a water volume 
	The script components 
	LuxWater_UnderWaterRendering.cs 
	Inputs 

	LuxWater_UnderWaterRenderingSlave.cs 
	LuxWater_UnderWaterBlur.cs 
	Inputs 

	LuxWater_WaterVolumeTrigger.cs 
	Inputs 

	LuxWater_WaterVolume.cs 
	Inputs 
	Listen to Collision Events 


	Water Volume Mesh 
	Submeshes and materials 
	Vertex Colors 
	Tessellation 
	Water surface mesh 
	Normals 
	UVs 
	Pivot 
	Height of the volume 

	Lux Water WaterSurface Shader 
	Transparents and particle systems 
	Transparents above water surface 
	Transparents below water surface 
	Lux Water/Particles/UnderwaterParticles Alpha Blended shader 
	Lux Water/Particles/Like Alpha Blended Premultiply shader 

	Fog 
	Limitations 
	Water Volumes and split screen rendering 
	Deep water rendering 
	What does it do 
	Setting it up 
	Deep water lighting and transparent materials 
	Underwater transparent materials 
	The shaders 
	Shader Inputs 

	Underwater light beams 
	Shader Inputs 




	Water Projectors 
	Adding water projectors 
	Under the hood 

	Foam Projectors 
	Foam Projector Shader 
	Inputs 

	Foam Projector Textures 

	Normal Projectors 
	Normal Projector Shader 
	Inputs 

	Normal Projector Textures 
	Texture Import settings 


	Particle Systems 
	Position 
	Renderer 

	Water Projectors and Gerstner Waves 
	Water Projectors, moving objects and Gerstner Waves 
	Takeaways 

	The script components 
	LuxWater_ProjectorRenderer.cs 
	Inputs 

	LuxWater_Projector.cs 
	Inputs 



	Lux Water Utils 
	LuxWater_Utils.cs 
	struct GersterWavesDescription 
	GetGersterWavesDescription (ref GersterWavesDescription Description, Material WaterMaterial ) 
	Vector3 GetGestnerDisplacement (Vector3 WorldPosition, GersterWavesDescription Description, float TimeOffset) 
	LuxWater_SetToGerstnerHeight.cs 
	Inputs 
	Under the hood 


	LuxWater_SetMeshBounds.cs 
	Inputs 


	 
	Creating large water surfaces and Oceans 
	Sliding water volumes 
	The problem 
	The solution 
	Example 
	Sliding Water Volume Mesh 
	Geometry 
	Vertex Colors 


	Infinite Ocean 
	LuxWater_InfiniteOcean.cs 
	Inputs 


	Reflection Probes 

	 
	Metal and Deferred Rendering 
	Optimizations 


