

 ​

Pretty sure 1. a) isn’t examinable in 2013?

1. a) i) Has anyone done this one? Alex Yepifanov says constraints are just variance >= 0. Not
Equal.

Alex Yepifanov here: Likelihood is product(P(xi|theta))
log likelihood is sum log(P(xi|theta). We usually want to maximise this. Since we want a
minimization this is equivalent to

min -log(P(xi|theta))
and the only constraints mentioned in the slide
s is variances > 0 (let me check for equality quickly)l

so final form would be

min -log(P(xi|mu1,mu2,var1,var2))
subject to
var1 > 0
var2 > 0
STRICTLY greater than. Can not equal to 0.
​

ii. To make unconstrained, set Lololovariable = log(var1) ce cacat? lololol variable?​
lolololo and Yolovariable = log(var2)

min - log(P(xi|mu1,mu2,Lololovariable,Yolovariable)

I regret nothing. (lol)

I forgot to write in indice limits and such. Also not 100% sure about correctness of answer but it
should mostly be there.

iii) We do not need to compute H or inverse of H which is O(d^2) and O(d^3) respectively.
What is H here?

b) i) When the posterior distribution is difficult to integrate analytically, if is often convenient to
use Monte-Carlo integration, this methodology involves selecting points at random from the
target distribution and evaluating the integral at those points. We can estimate the posterior
mean by using the formula:

 𝐸 ≈ Ẽ = 1
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) *

𝑖=1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑ θ
𝑖

where are samples from the distribution . θ
𝑖

𝑃(θ|𝐷)

When the number of samples tends to infinity our approximation of expectation tends to the
actual expectation.

ii) In Rejection Sampling we want to sample from an upper bound to the distribution we want.
We throw away samples to get the correct shape of the target distribution.

1.​ Choose a distribution that we can sample from such that 𝑄(θ) 𝑄(θ) > α𝑃(𝐷|θ)𝑃(θ)
2.​ Sample from . Sample from uniform . θ

𝑖
𝑄(θ) 𝑢 𝑈(0, 1)

3.​ if then accept sample and move on to the next . 𝑢 < 𝑃(θ
𝑖
)/𝑤𝑄(θ

𝑖
) θ

𝑖
𝑖

4.​ Otherwise, throw away and try again. θ
𝑖

In the step 3, the maybe not relevant. (I mean he did not focus on the 𝑢 < 𝑃(θ

𝑖
)/𝑤𝑄(θ

𝑖
)

topic). It should be u< aP(D|/theta)P(/theta) / Q(\Theta) ------ Qi Hu
Actually I believe it should be u < P(D | theta)P(theta), since that is the curve we try to observe.

iii) We must have the following: Q(x)=0 when P(x)=0.
Support(Q) superset of Support(P) is the correct answer - Riaz
In summary, a good importance sampling function h(x) should have the following properties:
1. h(x) > 0 whenever g(x) != 0
2. h(x) should be close to being proportional to |g(x)|
3. it should be easy to simulate values from h(x)
4. it should be easy to compute the density h(x) for any value x that you might realize
**http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

c) Bernoulli P(D) = p^x*(1-p)^(n-x) where x is the number of ones and n is the number of
datapoints

Then L(P(D)) = x*log(p) + (n-x)*log(1-p)
Set the derivative to 0 to find maximum likelihood solution
d/dp L(P(D)) = x/p - (n-x)/(1-p)
x/p - (n-x)/(1-p) = 0
x/p = (n-x)/(1-p)
x*(1-p) = (n-x)*p
x - x*p = n*p - x*p
x = n*p
p = x/n

d) Anyone? If two attributes are positively correlated given the class label, then the assumption

http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

of conditional independence is least applicable, as each of these attributes will be given equal
weight in the model and double the weighting with respect to one of the other attributes.
Consider the example of having three attributes for classifying gender where data items are
defined as:

x = (height in cm, height in inches, weight in kgs)
In this model, the posterior distribution would be affected twice as much by the variation in
height

in comparison to changes in the weight attribute.
Posterior will tend to be more averagely distributed across all possible input combinations.This
has nothing to do with if it is positively correlated or negatively correlated. Correlation violates
the conditional independence and could give rise to weird parameters in learning.

2 a)
i) The variance in the first representation will probably be fairly low -- students will likely not take
most of the courses in school of informatics, therefore the feature vectors will consist of mostly
average scores. Even when the student took a course, the mark is likely to be close to average
anyway, further reducing the variance.

The second representation is doomed to have a lot of zeros -- it is probably fair to assume that
most students will get quite similar scores for all their coursework on average, i.e. between
60-80%, therefore 0-10% slot is likely not to get filled at all. Also it is not clear whether the 10%
split is the correct one, maybe the data is best modelled when it is split in 5% intervals. Finally
this does not encode in any way the fact that the score of 80% is better than the score of 40%.
It doesn’t? Those who have a higher percentage of coursework in the upper ranges will likely
get higher final marks against those who have a higher percentage of coursework in the middle
ranges → encoding the fact that a score of 80% is better than a score of 40%.
This encoding also suffers the dummy variable trap. The sum of the entries is 100% so they are
collinear.

ii) We could use question marks instead of average values in the first representation, i.e. have
our feature vectors similar to this:

 𝑥
𝑖

= (15, ?, ?, 32, ?, , 1, ?, 21)

Then when computing Naive Bayes likelihood, we can just ignore the missing values, from the
calculations, because they marginalise nicely.

Formal proof for above:

Under naive bayes, the likelihood where is some data 𝑃(𝑥
1
, 𝑥

2
,..., 𝑥

𝑛
|𝐷) =

𝑖
∏ 𝑃(𝑥

𝑖
|𝐷) (𝑥

1
,..., 𝑥

𝑛
)

point (i.e. this is for one data point, not for whole dataset).
now assume that is a missing value. w.l.o.g we can assume that it is the only one, then the 𝑥

𝑗

likelihood of all other points, except the missing one can be computed by marginalising it out:

 𝑃(𝑥
1
,...., 𝑥

𝑗−1
, 𝑥

𝑗+1
,..., 𝑥

𝑛
) = ∫ 𝑃(𝑥

1
, 𝑥

2,
..., 𝑥

𝑗
,..., 𝑥

𝑛
) 𝑑𝑥

𝑗
= ∫

𝑖
∏ 𝑃(𝑥

𝑖
|𝐷) 𝑑𝑥

𝑗
 =

𝑖≠𝑗
∏ 𝑃(𝑥

𝑖
|𝐷) ∫ 𝑃(𝑥

𝑗
|𝐷) 𝑑𝑥

𝑗

and thus

 𝑃(𝑥
1
,...., 𝑥

𝑗−1
, 𝑥

𝑗+1
,..., 𝑥

𝑛
) =

𝑖≠𝑗
∏ 𝑃(𝑥

𝑖
|𝐷)

So all missing values can be simply ignored in naive bayes calculations.

I think he wants a mixture model representation since the EM algorithm explicitly deals with
missing data.

The above answer with NB is definitely correct. - Riaz

2b)

i)
not sure about standardising input, this question kind of covers it, but I dont find it convincing:
http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artifi
cial-neural-network
the book says “good practice to standardize the inputs to zero mean and unit variance, so that
the spherical Gaussian prior makes sense”

Additionally to above:​

 It is essential to rescale the inputs so that their variability reflects their importance, or at least is
not in inverse relation to their importance. For lack of better prior information, it is common to
standardize each input to the same range or the same standard deviation. If you know that
`some inputs are more important than others, it may help to scale the inputs such that the more
important ones have larger variances and/or ranges. An example of bad standardisation: If​
one input has a range of 0 to 1, while another input has a range of 0 to 1,000,000, then the
contribution of the first input to the distance will be swamped by the second input.

regarding small weights - well, thats in order to reduce overfitting - large weights mean value of
function changes faster with change of x values, causing wiggly functions, which often indicate
overfitting, smaller weights make models simpler.​
​
Additionally to above:
We want to pick values of the weights at random following a distribution which helps the

optimization process to converge to a meaningful solution.

The main emphasis in the NN literature on initial values has been on the avoidance of

saturation, hence the desire to use small random values. How small these random values

should be depends on the scale of the inputs as well as the number of inputs and their

correlations. Standardizing inputs removes the problem of scale dependence of the initial

weights.

http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network
http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network

Standardising inputs also changes the shape of the error surface towards more circular
parabolic bowls rather than elongated elliptical parabolic bowls - this helps learning by making
the strongest direction of the gradient point more towards the centre of the bowl rather than
having steep canyon like bowls, see below:

ii) ? - Having the same weights for all of them might be bad because when you’re running
backpropagation you end up with the same rates of change for each node and they all end up
with identical weights (+1 to here, but not about the single node) which means that you’re
adding nothing new to the model and you might as well be representing it with just a single
node.

Not sure if this is right though.

Turns out single node equivalence is correct (https://class.coursera.org/ml-003/lecture/55)

This means that all attributes have the same power to discriminate the classes. This is rarely the
case. I don’t agree that it is the same as running with a single node, the attributes are different,
we just think they are all equally important.

https://class.coursera.org/ml-003/lecture/55

Agree that if hidden units are assigned the same initial weights, all of their weights are going to
be the same after training.
Since each hidden unit is supposed to learn a (linear) function of its inputs, if they have the
same weights then they will learn the same function. In this case, the neural network loses its
flexibility of learning complex functions.

No matter what was the input - if all weights are the same, all units in hidden layer will be
the same too.

iii) It is relatively simple to the weight decay bias. The models will tend to become complicated
as time progresses, stopping early effectively forces the model be simpler and thus overfit less.

Could this also have to do with bias on the subset of data used during early training?

2c)

Define error function E = -L(D|w), which we want to decrease.
Initialise w to some (random) vector
While E is unacceptably high,
 compute the gradient of E, call it g

 set the weight vector to be 𝑤𝑛𝑒𝑤 = 𝑤𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − η𝑔

 continue from 𝑤𝑛𝑒𝑤

return w
The problem of setting the learning rate, is the tradeoff between setting the rate to a low value, η
meaning slow convergence, and setting the rate to large value, meaning oscillation around the
lowest value.

I don’t think this is related to neural network training; It is just general gradient descent
algorithm?. Doesn’t he want the back propagation algorithm outlined here? Maybe, but I think in
this case the above answer is correct, the backpropagation algorithm comes into play when
calculating the gradient of E, therefore the above is right in both cases (e.g. general and
backprop)?

Isn’t the gradient ascent used in backpropagation? I think in this case we need to explain the
stochastic gradient ascent (one of the online methods), that updates one weight at a time rather
than all of them together.

Wibi: This is for 2(d), on proving f = negative log likelihood of logistic regression has no local
minimum.

Some facts (from the question, from derivation of the Hessian, and from wikipedia):
1. X = xx'
2. All eigenvalues of X is non-negative
3. If all eigenvalues of M is non-negative --> M is positive semi-definite
4. If M is the Hessian of f and M is positive semi-definite --> f is convex
5. If f is convex --> f has no local minimum
6. If M is positive semi-definite and r > 0 --> rM is positive semi-definite
7. d = σ(w'x)(1 - σ(w'x)) > 0
8. dX is the Hessian of f ... from derivation of the Hessian

From these,
9. X is positive semi-definite ... from 2 & 3
10. dX is positive semi-definite ... from 9 & 6
11. f is convex ... from 8, 10 & 4
12. f has no local minimum ... from 11 & 5

3a)

i.​ where is the number of items in a class. I am making an assumption that 𝑝(𝑐) =
𝑁

𝑐

𝑁 𝑁
𝑐

the dataset is a representative sample of population, and using MLE estimate for prior
probability of class.

ii.​ Bayes rule 𝑝(𝑐|𝑦) = 𝑃(𝑐,𝑦)
𝑃(𝑦) = 𝑃(𝑐,𝑦)

𝑐
∑𝑝(𝑐,𝑦)

= 𝑃(𝑦|𝑐)𝑃(𝑐)

𝑐
∑𝑝(𝑦|𝑐)𝑝(𝑐)

iii.​ http://www.inf.ed.ac.uk/teaching/courses/pmr/scans/PMR_Gaussian_classifier.pdf

http://www.inf.ed.ac.uk/teaching/courses/pmr/scans/PMR_Gaussian_classifier.pdf

3b) Gaussian processes are not in the course this year
3c) Start with a definition of KL(Q||P):

 (1) 𝐾𝐿(𝑄||𝑃) = ∫ 𝑄(θ|𝐷, ℎ) 𝑙𝑜𝑔 𝑄(θ|𝐷,ℎ)
𝑃(θ|𝐷,ℎ) 𝑑θ = 𝐸

𝑞
[𝑙𝑜𝑔 𝑄(θ|𝐷, ℎ)] − 𝐸

𝑞
[𝑙𝑜𝑔 𝑃(θ|𝐷, ℎ)]

Here, I define to be expectation of F under probability distribution Q, i.e. 𝐸
𝑞
[𝐹]

 𝐸
𝑞
[𝐹] = ∫ 𝑄(θ|𝐷, ℎ) 𝐹(θ) 𝑑θ

now
(2) 𝑃(θ|𝐷, ℎ) = 𝑃(θ,𝐷|ℎ)

𝑃(𝐷|ℎ)

I assume we can compute 𝑃(θ, 𝐷|ℎ)

then putting (2) into (1) we get

 𝐾𝐿(𝑄||𝑃) = 𝐸
𝑞
[𝑙𝑜𝑔 𝑄(θ|𝐷, ℎ)] − 𝐸

𝑞
[𝑙𝑜𝑔𝑃(θ, 𝐷|ℎ)] + 𝐸

𝑞
[𝑙𝑜𝑔𝑃(𝐷|ℎ)]

Now note that 𝐸
𝑞
[𝑙𝑜𝑔𝑃(𝐷|ℎ)] = ∫ 𝑄(θ|𝐷, ℎ)𝑃(𝐷|ℎ) 𝑑θ = 𝑃(𝐷|ℎ) ∫ 𝑄(θ|𝐷, ℎ)𝑑θ = 𝑃(𝐷|ℎ)

(because does not depend on and assuming Q is normalised (which it should be)) 𝑃(𝐷|ℎ) θ

Therefore 𝐾𝐿(𝑄||𝑃) = 𝐸

𝑞
[𝑙𝑜𝑔 𝑄(θ|𝐷, ℎ)] − 𝐸

𝑞
[𝑙𝑜𝑔𝑃(θ, 𝐷|ℎ)] + 𝑙𝑜𝑔𝑃(𝐷|ℎ)

From 𝐾𝐿(𝑄||𝑃) ≥ 0
 𝑙𝑜𝑔𝑃(𝐷|ℎ) ≥ − (𝐸

𝑞
[𝑙𝑜𝑔𝑄(θ|𝐷, ℎ)] − 𝐸

𝑞
[𝑙𝑜𝑔𝑃(θ, 𝐷|ℎ)])) ≡ − 𝐽

Therefore, provides a lower bound on − 𝐽 𝑙𝑜𝑔 𝑃(𝐷|ℎ)

3d)

Detailed balance for markov chains is defined as:

 𝑃(𝑋
𝑡+1

= 𝐴|𝑋
𝑡

= 𝐵)𝑄(𝐵) = 𝑃(𝑋
𝑡+1

= 𝐵|𝑋
𝑡

= 𝐴)𝑄(𝐴)

Not 100% sure what the next part asks us to show, but I think that is the formal representation of
what we need to prove:

𝑥

𝑡

∑ 𝑄(𝑥
𝑡
)𝑃(𝑥

𝑡+1
|𝑥

𝑡
) = 𝑄(𝑥

𝑡+1
)

checked slides, this seems to be correct:

This follows directly from detailed balance, noting that 𝑄(𝑥

𝑡
)𝑃(𝑥

𝑡+1
|𝑥

𝑡
) = 𝑄(𝑥

𝑡+1
)𝑃(𝑥

𝑡
|𝑥

𝑡+1
)

Then,

𝑥

𝑡

∑ 𝑄(𝑥
𝑡
)𝑃(𝑥

𝑡+1
|𝑥

𝑡
) =

𝑥
𝑡

∑ 𝑄(𝑥
𝑡+1

)𝑃(𝑥
𝑡
|𝑥

𝑡+1
) = 𝑄(𝑥

𝑡+1
)

𝑥
𝑡

∑ 𝑃(𝑥
𝑡
|𝑥

𝑡+1
) = 𝑄(𝑥

𝑡+1
)

If are not discrete, replace sums by integrals, the result should still hold. 𝑥

𝑡

