1.

You MUST answer this question.

(a) You have adatset D= (x" g™ n =12, .. N}, and a conditional machine
lesarning roodel of the form P g™ [, g, pe, 51, 22), where o, e, s amwd s are
all parameters of the model, The parameters py and pg are mean parameters
used within the model, and the 5 and sz are verience parameters.

L Write down the log-likelihood maximisation (for the whole dataset )
in the form of & constrained minimisation problem for the parameters
iy pre. &y and o0 A constrained minimisation is written in the form

mldy =0
H-:':'t'.}:-'}" (1)

i = arg ngmf(ﬂ} subject to
gel(d) > 0

For sovme & oand £ .. L e
il Rewrite the log-likel ihood maximisation as an equivalent unconstrained
pinimisation problem.
i, Very briefly explain why using line minimisation within a high dimen-
sional optimisation procedure can be beneficial in terms of speed?
(b} Suppose we have s pasterior density P8 0 for parameters & and for data
denoted by 0.

i. Deseribe the Monte-Carlo approadh for approximating the posterior
T

f 8P| D)d0, 2)

where the integral is a definite integral over the whole parameter space.

i Demeribe the proces Tor rejection sampling using s disteibution Q)
that we are able to sample from, amd where QUF) = aP( D@ 2@,

il In dportance saopling using a proposal distribution Q08 e a target
distribution P8O0, what condition do we need on Q For the mportance
sampling procedure to be valid?

(e} Write out the Bernoulli likelihood for a binary dataset o' 2 2" with
Bemoulli probability p. From this, derive the log-likelihood and henoe show
that the maximnm likelihood value for pogiven data T eorresponds o the
proportion of 1s in the dataset.

(i} MNaive Bayes assumes conditional independence. By considering the worst
cage of two attributes being identical given the cliss label, explain what
effect a positive correlation between attributes {given the elass) has on the
inferved posterior probabilities.
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Pretty sure 1. a) isn’t examinable in 20137

1. a) i) Has anyone done this one? Alex Yepifanov says constraints are just variance >= 0. Not
Equal.

Alex Yepifanov here: Likelihood is product(P(xi|theta))
log likelihood is sum log(P(xi|theta). We usually want to maximise this. Since we want a
minimization this is equivalent to

min -log(P(xi|theta))
and the only constraints mentioned in the slide
s is variances > 0 (let me check for equality quickly)l

so final form would be

min -log(P(xi|mu1,mu2,var1,var2))
subject to

varl1 >0

var2 >0

STRICTLY greater than. Can not equal to 0.

ii. To make unconstrained, set Lololovariable = log(var1) ce cacat? lololol variable?
lolololo and Yolovariable = log(var2)

min - log(P(xiimu1,mu2,Lololovariable,Yolovariable)

| regret nothing. (lol)

| forgot to write in indice limits and such. Also not 100% sure about correctness of answer but it
should mostly be there.

iii) We do not need to compute H or inverse of H which is O(d*2) and O(d"3) respectively.
What is H here?

b) i) When the posterior distribution is difficult to integrate analytically, if is often convenient to
use Monte-Carlo integration, this methodology involves selecting points at random from the

target distribution and evaluating the integral at those points. We can estimate the posterior
mean by using the formula:



number of samples
1

E~E = (number of samples) * 'Zl 91‘
i=

where eiare samples from the distribution P(8|D).

When the number of samples tends to infinity our approximation of expectation tends to the
actual expectation.

ii) In Rejection Sampling we want to sample from an upper bound to the distribution we want.
We throw away samples to get the correct shape of the target distribution.
1. Choose a distribution Q(08) that we can sample from such that Q(6) > aP(D|0)P(6)
Sample 6, from Q(0). Sample u from uniform U(0, 1).

2.
3. ifu < P(Gi)/wQ(ei) then accept sample ei and move on to the next i.
4.

Otherwise, throw away GL_ and try again.

In the step 3, the u < P(ei)/wQ(ei) maybe not relevant. (I mean he did not focus on the

topic). It should be u< aP(D|/theta)P(/theta) / Q(\Theta) ------ Qi Hu
Actually | believe it should be u < P(D | theta)P(theta), since that is the curve we try to observe.

iii) We must have the following: Q(x)=0 when P(x)=0.

Support(Q) superset of Support(P) is the correct answer - Riaz

In summary, a good importance sampling function h(x) should have the following properties:
1. h(x) > 0 whenever g(x) =0

2. h(x) should be close to being proportional to |g(x)|

3. it should be easy to simulate values from h(x)

4. it should be easy to compute the density h(x) for any value x that you might realize
**hitp://ib.berkeley.edu/labs/slatkin/erig/classes/quest_lect/mc_lecture notes.pdf

c) Bernoulli P(D) = px*(1-p)*(n-x) where x is the number of ones and n is the number of
datapoints

Then L(P(D)) = x*log(p) + (n-x)*log(1-p)

Set the derivative to 0 to find maximum likelihood solution
d/dp L(P(D)) = x/p - (n-x)/(1-p)

x/p - (n-x)/(1-p) =0

x/p = (n-x)/(1-p)

X*(1-p) = (n-X)*p

X -X*p =n*p - X*p

X=n*p

p=x/n

d) Anyone? If two attributes are positively correlated given the class label, then the assumption


http://ib.berkeley.edu/labs/slatkin/eriq/classes/guest_lect/mc_lecture_notes.pdf

of conditional independence is least applicable, as each of these attributes will be given equal
weight in the model and double the weighting with respect to one of the other attributes.
Consider the example of having three attributes for classifying gender where data items are
defined as:



2.

(a) Instandard degree courses, students can get one of & number of final marks

(Fail, 3rd, Lower 2od, Upper 2nd, 15t} You plan to use s neural network to
predict the class of degree that a student will et dependent on the marks
they obtained on conrsework for their courses. Note that different people
dor different courses, each with different numbers of cowrsewark. You could
choose to represent the data by having one input attribote for each piece of
coursework, and substituting the mean coursework value (compubed across
all those who did the course} in cases where individuals did ot do that
LTSS,
Alternatively, vou could represent the data for an individoal by having
ane input attribute for each range (0% to W5 11% to 205, ..., 999 to
L0045 and making the input attribute value to be the proportion of the
coursework the person did, that was given a mark in that range.  For
exanple the inputs e one individoal might take the fem of & vector
(0°R, O, 0%, 0%, 105, 40%, 405, 1R, 0%, ﬂ’}f:]T.
i. Give one brief argument against each of the albernative representations.
il Suppose that you knew vou were going to use a Naive Bayves model.
Dieseribe a vepresentation that vou could then use that is similar to,
but arguably more elegant than, the first alternative above in that it
explictly represents missing data, and briefly explain why that repre-
sentation is suitable for Naivwe Bayes?

(b} This question relates bo neural networks in practics:

i Explain why it is important testandardize the data and stact with small
wielghts in neural networks.

ii. Why should each of the initial weights for the different units be different
Fronm one another?

i If we stop training early, what is the effective bias this indoces on our
learnt networks?

(o) Describe a simple gradient ascent procedure for optimising the weights w

(which includes the biases) of & neural network, given the network log-
likelibowwd, denoted L{O|w) for data O Deseribe the problems associabed
with setbing the learning rate. You do not nesd to say how to compute any
derivatives vou might need.

QUESTION CONTINUES ON NEXT PAGE
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x = (height in cm, height in inches, weight in kgs)
In this model, the posterior distribution would be affected twice as much by the variation in

height
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in comparison to changes in the weight attribute.

Posterior will tend to be more averagely distributed across all possible input combinations.This
has nothing to do with if it is positively correlated or negatively correlated. Correlation violates
the conditional independence and could give rise to weird parameters in learning.

2a)

i) The variance in the first representation will probably be fairly low -- students will likely not take
most of the courses in school of informatics, therefore the feature vectors will consist of mostly
average scores. Even when the student took a course, the mark is likely to be close to average
anyway, further reducing the variance.

The second representation is doomed to have a lot of zeros -- it is probably fair to assume that
most students will get quite similar scores for all their coursework on average, i.e. between
60-80%, therefore 0-10% slot is likely not to get filled at all. Also it is not clear whether the 10%
split is the correct one, maybe the data is best modelled when it is split in 5% intervals. Finally
this does not encode in any way the fact that the score of 80% is better than the score of 40%.
It doesn’t? Those who have a higher percentage of coursework in the upper ranges will likely
get higher final marks against those who have a higher percentage of coursework in the middle
ranges — encoding the fact that a score of 80% is better than a score of 40%.

This encoding also suffers the dummy variable trap. The sum of the entries is 100% so they are
collinear.

ii) We could use question marks instead of average values in the first representation, i.e. have
our feature vectors similar to this:

X = (15, 7,7, 32,7, ..., 1,7, 21)

Then when computing Naive Bayes likelihood, we can just ignore the missing values, from the
calculations, because they marginalise nicely.

Formal proof for above:

Under naive bayes, the likelihood P(xl, X oo xn|D) = I P(xi|D) where (xl,..., xn)is some data

l
point (i.e. this is for one data point, not for whole dataset).
now assume that xjis a missing value. w.l.o.g we can assume that it is the only one, then the

likelihood of all other points, except the missing one can be computed by marginalising it out:

P(xl,...., X X g xn) = fP(xl, Xy X e xn) dxj = f]:[P(xi|D) dxj = i];g P(xi|D) fP(xj|D) dxj

and thus



,xjH,..., xn) = .]'[‘P(xi|D)
i#j

So all missing values can be simply ignored in naive bayes calculations.

| think he wants a mixture model representation since the EM algorithm explicitly deals with
missing data.

The above answer with NB is definitely correct. - Riaz
2b)

i)

not sure about standardising input, this question kind of covers it, but | dont find it convincing:
http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artifi
cial-neural-network

the book says “good practice to standardize the inputs to zero mean and unit variance, so that
the spherical Gaussian prior makes sense”

Additionally to above:

It is essential to rescale the inputs so that their variability reflects their importance, or at least is
not in inverse relation to their importance. For lack of better prior information, it is common to
standardize each input to the same range or the same standard deviation. If you know that
‘some inputs are more important than others, it may help to scale the inputs such that the more
important ones have larger variances and/or ranges. An example of bad standardisation: If
one input has a range of 0 to 1, while another input has a range of 0 to 1,000,000, then the
contribution of the first input to the distance will be swamped by the second input.

regarding small weights - well, thats in order to reduce overfitting - large weights mean value of
function changes faster with change of x values, causing wiggly functions, which often indicate
overfitting, smaller weights make models simpler.

Additionally to above:
We want to pick values of the weights at random following a distribution which helps the

optimization process to converge to a meaningful solution.

The main emphasis in the NN literature on initial values has been on the avoidance of
saturation, hence the desire to use small random values. How small these random values
should be depends on the scale of the inputs as well as the number of inputs and their
correlations. Standardizing inputs removes the problem of scale dependence of the initial

weights.


http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network
http://stackoverflow.com/questions/4674623/why-do-we-have-to-normalize-the-input-for-an-artificial-neural-network

Standardising inputs also changes the shape of the error surface towards more circular
parabolic bowls rather than elongated elliptical parabolic bowls - this helps learning by making
the strongest direction of the gradient point more towards the centre of the bowl rather than
having steep canyon like bowls, see below:

VS

ii) ? - Having the same weights for all of them might be bad because when you’re running
backpropagation you end up with the same rates of change for each node and they all end up
with identical weights (+1 to here, but not about the single node) which means that you're
adding nothing new to the model and you might as well be representing it with just a single
node.

Not sure if this is right though.

Turns out single node equivalence is correct (https://class.coursera.org/ml-003/lecture/55)

This means that all attributes have the same power to discriminate the classes. This is rarely the
case. | don’t agree that it is the same as running with a single node, the attributes are different,
we just think they are all equally important.


https://class.coursera.org/ml-003/lecture/55

Agree that if hidden units are assigned the same initial weights, all of their weights are going to
be the same after training.

Since each hidden unit is supposed to learn a (linear) function of its inputs, if they have the
same weights then they will learn the same function. In this case, the neural network loses its
flexibility of learning complex functions.

No matter what was the input - if all weights are the same, all units in hidden layer will be
the same too.

iii) It is relatively simple to the weight decay bias. The models will tend to become complicated
as time progresses, stopping early effectively forces the model be simpler and thus overfit less.

Could this also have to do with bias on the subset of data used during early training?
2c)

Define error function E = -L(D|w), which we want to decrease.
Initialise w to some (random) vector
While E is unacceptably high,

compute the gradient of E, call it g

w current

set the weight vector to be w"*" = w - ng

continue from w""
return w
The problem of setting the learning rate, nis the tradeoff between setting the rate to a low value,
meaning slow convergence, and setting the rate to large value, meaning oscillation around the
lowest value.

I don’t think this is related to neural network training; It is just general gradient descent
algorithm?. Doesn’t he want the back propagation algorithm outlined here? Maybe, but | think in
this case the above answer is correct, the backpropagation algorithm comes into play when
calculating the gradient of E, therefore the above is right in both cases (e.g. general and
backprop)?

Isn’t the gradient ascent used in backpropagation? | think in this case we need to explain the
stochastic gradient ascent (one of the online methods), that updates one weight at a time rather
than all of them together.



QUESTION CONTINUED FROM PREVIOUS PAGE

(d}) Let aix) be the logistic hmction. and o d%fﬂ:l a(z (1 = a{x)). Consider
the single datum likelibood for a logistic egression model :

Py = ljx, w) = a(w’ x) (3)

(where the bins is included in w by augoenting the data x with a unit
nr.r.rilnm-;. Show the derivative of the egative ILmhlihi‘lﬂuuul with res et
(TN I

(1= a(w'x))z, (4)

ad e derive the form for an element of the Hoeslan matrix (e mutrix
u-t.:i'nrl.lil 1I|'ri.'|. u.l'.i.'u."i: [1( thw lugl.-l.ll. PeEriss uludri. Ilr-iu;q 1]||' it |.|L.|||. i
convex function has no lomd minima, and the fmer tat the matrix xx7 lhas
Jll.l 1-ig1-|.u |1.|.liH Ereabar than or 1.'|:|Il.r|.| iy Bis, sluw llhﬂ 1|nn|1u|'1 T l':d.iltlnl.inll
for logistic regrossion las at most & single maxiymm, [ marks |

Wibi: This is for 2(d), on proving f = negative log likelihood of logistic regression has no local
minimum.

Some facts (from the question, from derivation of the Hessian, and from wikipedia):
. X =xx'

. All eigenvalues of X is non-negative

. If all eigenvalues of M is non-negative --> M is positive semi-definite

. If M is the Hessian of f and M is positive semi-definite --> f is convex

. If fis convex --> f has no local minimum

. If M is positive semi-definite and r > 0 --> rM is positive semi-definite
.d=0oWwXx)(1-0o(wx))>0

. dX is the Hessian of f ... from derivation of the Hessian

0O NO O~ WN =

From these,

9. X'is positive semi-definite ... from 2 & 3
10. dX is positive semi-definite ... from 9 & 6
11. fis convex ... from 8, 10 & 4

12. f has no local minimum ... from 11 & 5



3. I:H'} For veal y and binary e, let f’l:y|£'. FT E‘.} be a class conditional Ganssian
distribution with mean o, and covarianee mabrix X,

1
Plyle. . £.) l( Sy m) Ry p‘..‘.) (5)

[EESSHE:

Clonsider wsing s class-conditional model for o problem with two olasses
e {0, 1), You are given learnt g, and 2., where the 5. are constrained to
be identical covariance matrices for both classes ¢ =10, 1

i. How would you estimate £ (o} fromm a dataset of size N7 What assump-
tions are you making? [# marks |

. Write down how to obtain the probability of the class label Ple]y) in
tering of Pyle) and Ple). [T mark ]

iii. If Ple =1} = Ple= 0} in this situation, show that the decision bound-

ary for the classification Ple)y) is linear (assome we classily using the
mast probable class). [ marks |

(b} It s posible to combing elass-conditional modelling and Gaussian pro-

cemses to make a elass conditional Gaussian process model. In this model

f’l:yk-.x} HI I’I:y.k'. 1} I:y ER = {l]. I]'} where, for each o, I’I:m |£'. 1_‘. i

a Gaussian process model. A prior Plefx) = Ple] is also given, The aim is

b pradict Plejx v Alberatively, Ple|x, ¥} can be modellad directly with

a Gamssian proces classifier.

i. Diseuss the computational advantages of the elas conditional Ganssian

process meodel over the Gaussian process clmssifier (give at least two
immportant advantages for full marks). [4 marks ]

ii. What is one modelling dissdvantage of the oless conditional Gaussian

process model over the Ganssian process elassifier (give a problematic
assumption of a class conditional Ganssian provess described alave). [& marks |

—
o

b Define the variational approsimation to the posterior distribution P, k),

where fiis a set of hyper-parameters. Show, using the et that the K L(Q|| P) =

0 for tweor dlistributions G and £, that the marginal likelihood PID)R) can

bre Levweer bounded through the use of the WL divergenoe. [5 marks |

(]} Define detailed balanee for a Markov chain, and show that if detailed balanee
holds for a disteibution QX and transition PUX X ) = POXGXG)L then
that distribution must be a fixed point of the Markov Chain,  In other
words, if Xy s distributed as Q0X)) then taking one step of the Markov
Chain X; — X, leaves X, distributed as QX ). [& marks ]

Page 4 of 4

N
i. p(c) = —where Ncis the number of items in a class. | am making an assumption that

the dataset is a representative sample of population, and using MLE estimate for prior
probability of class.

ii. Bayes rule p(cly) = S = Py _ _POIOREO)
Xp(cy) Zr(1o)p(e)

P(y)
iii. http://www.inf.ed.ac.uk/teaching/courses/pmr/scans/PMR_Gaussian_classifier.pdf


http://www.inf.ed.ac.uk/teaching/courses/pmr/scans/PMR_Gaussian_classifier.pdf

3b) Gaussian processes are not in the course this year
3c) Start with a definition of KL(Q||P):

KL(QIIP) = [Q(OID, k) log $G3- 8 = E [log Q(81D, )] — E [log P(8ID, )] (1)

Here, | define Eq[F]to be expectation of F under probability distribution Q, i.e.

Eq[F] = [ Q(6|D, h) F(0) do

now

P(OID, h) = FH(2)

| assume we can compute P(6, D|h)

then putting (2) into (1) we get
KL(QIIP) = E [log Q®ID,)] ~ E [logP(8,DIR)] + E [logP(D|h)]

Now note that Eq[logP(D|h)] = [Q(8|D,h)P(D|h)d6 = P(D|h) [ Q(6|D,h)d6 = P(D|h)
(because P(D|h) does not depend on 6and assuming Q is normalised (which it should be))

Therefore KL(QIIP) = E,[log Q(8ID, h)] — E [logP(8,DIl)] + logP(D|h)

From KL(Q||P) = 0
logP(D|h) = — (E [logQ(8ID,m)] — E [logP(®,DIM])) = -]

Therefore, — Jprovides a lower bound on log P(D|h)
3d)

Detailed balance for markov chains is defined as:
P(X = A|Xt = B)Q(B) = P(X = B|Xt = A)Q(4)

t+1 t+1

Not 100% sure what the next part asks us to show, but | think that is the formal representation of
what we need to prove:

SQ()P(x,, |x) = QCx,,)

checked slides, this seems to be correct:



Equilibrium Distribution: an ergodic Markov chain has a
unique equilibrium distribution Pa.(#) such that

Pou(6) = / d6' Pr(6]6')Pou(6)

This follows directly from detailed balance, noting that Q(x)P(x
Then,

) = Qx,, )P(xx

t+1 t+1 t+1)

2QOPE, ) =20, JPelx, ) = @, )2 PRI, ) = Q)

t t

If x are not discrete, replace sums by integrals, the result should still hold.



