

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

Part 1: Learning the fundamentals of Python

and geoprocessing

Notes

Contents

Chapter 1: Introducing Python
Chapter 2: Geoprocessing in ArcGIS
Chapter 3: Using the Python Window
Chapter 4: Learning Python language fundamentals

Page 1

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

Chapter 1: Introducing Python

1.1 Introduction

-​ This chapter describes the main features of Python

1.2 Exploring the features of Python

-​ Benefits of Learning Python:
-​ It’s simple and easy to learn
-​ It’s free and open source
-​ It’s cross platform
-​ It’s interpreted
-​ It’s object oriented

-​ A scripting language refers to automating certain functionality with another program
-​ Scripting is a programming task that allows you to connect diverse existing components to

accomplish a new, related task
-​ A programming language involves the development of more sophisticated multifunctional

applications
-​ Python is both a scripting and a programming language

-​ However, not as detailed as other programs, such as C++
-​ Python can be used for application development

1.4 Using scripting in ArcGIS

-​ Python scripting has become a fundamental tool for geographic information systems, particularly for

professionals and now within ArcGIS
-​ Python scripting extends the functionality of ArcGIS and automates workflow
-​ For example, the Spatial Statistics toolbox is made up of almost all Python scripts

1.5 Python history and versions

Page 2

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ Created by Guido von Rossum at the Centrum voor Wiskunde en Informatica (CWI) in the
Netherlands

-​ First released in 1991
-​ Features: lists, dictionaries, strings, metaclasses, generators, list comprehensions

1.6 About this book

This book has…

1.​ The printed book, aka the theory of using Python
2.​ Digital exercises (disk in the back of the book)

1.7 Exploring how Python is used

Example 1: Determining address errors

-​ AddressErrors script (Bruce Harold) inspects street centerlines for possible errors in address ranges
associated with street segments

-​ Polyline feature class is the output and includes one feature for every error detected. Also contains
attribution that profiles the error

Example 2: Market analysis using the Huff Model Tool

-​ Huff Model script (Drew Flater)
-​ Written entirely in Python (along with Example 1)
-​ This is much more complicated (about 700 lines of code)
-​ Basic elements are the same as less sophisticated scripts

1.8 Choosing a Python script editor

-​ You can work with Python in a variety of ways

1.​ Command line
a.​ In Windows, click the Start button, then click All Programs > ArcGIS > Python 2.7

> Python (command line)
b.​ Limited support for writing and testing scripts

2.​ Integrated Development Environments (IDEs) aka Python editors
a.​ The default IDE that comes with an installation of Python is the integrated

development environment (IDLE)

Page 3

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

b.​ To access, click the Start button, click All Programs > ArcGIS > Python 2.7 >
IDLE (Python GUI)

c.​ GUI stands for graphic user interface
d.​ IDLE is also known as the Python shell
e.​ For some other Python editors, visit PythonEditors.

-​ The last line in the Python Shell starts with >>>, which is the prompt of the interactive Python
interpreter

-​ This is where you can type code and press ENTER
-​ This will carry out your command

Let’s try an example:

>>> print "Hello World"

-​ When you press ENTER, the interactive Python interpreter reads the input command, then prints
the string Hello World to the next line

-​ It also gives you a new prompt on the following line
-​ Printing refers to putting something to the screen
-​ Syntax highlighting helps by being a way of error checking as you write code

-​ Highlighting can vary with Python editors
-​ If you open a new window in IDLE, and print something, nothing will happen

-​ You need to run the file
-​ BUT, prior to running the file, you must SAVE it
-​ File > Save > example.py
-​ Run > Run Module

Page 4

http://wiki.python.org/moin/PythonEditors

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ It’s useful to have the interactive Python interpreter open and you script(s) open at the same time
-​ A common Python editor in Windows is PythonWin

Page 5

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

Chapter 2: Geoprocessing in ArcGIS

2.1 Introduction

-​ This chapter talks about ArcGIS framework including:
-​ ArcToolbox
-​ ModelBuilder
-​ Python

2.2 What is geoprocessing?

-​ Geoprocessing in ArcGIS allows you to perform spatial analysis and modeling as well as automate

GIS tasks
-​ A geoprocessing tool takes input data (a feature class, raster, or table), performs a geoprocessing task,

and produces output data as a result
-​ Creating automated workflows combining geoprocessing tools can be accomplished in ArcGIS

through the use of models and scripts
-​ Geoprocessing Framework:

-​ A collection of tools, organized in toolboxes and toolsets
-​ Methods to find and execute tools, including the Search window, the Catalog window, and

the ArcToolbox window
-​ Tool dialog boxes for specifying tool parameters in executing tools
-​ ModelBuilder for creating models that allow for the sequencing of tools
-​ A Python window for executing tools using Python
-​ A Results window that logs the geoprocessing tools being executed
-​ Methods for creating Python scripts and using them as tools

-​ Some characteristics:
-​ All tools can be accessed from their toolbox, which makes for a consistent procedure for

accessing tools, models, and scripts
-​ All tools are documented the same way, which allows for consistent cataloging and searching
-​ All tools have a similar user interface (the dialog box) for specifying the tools parameters
-​ Tools can be shared

2.3 A note on ArcObjects

Page 6

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

These aren’t covered in this book!

2.4 Using toolboxes and tools

-​ Geoprocessing tools perform operations on datasets
-​ Several hundred tools are available in ArcGIS

-​ The ones available to you depends on which license you have
-​ In ArcToolbox, geoprocessing tools are organized into toolboxes, where each box typically contains

one or more toolsets, and each toolset contains one or more tools
-​ Common geoprocessing tools are displayed in the Geoprocessing menu
-​ You can also search for tools
-​ You can also take a look in the Catalog menu

2.5 Learning types and categories of tools

There are 4 main types of tools in ArcGIS:

1.​ Built-in Tools - They are built into ArcObjects and a compiled programming language (aka C++).
These are created by Esri (these are the hammer icons)

2.​ Model Tools - Created using model builder (these are the work-flow chart diagram)
3.​ Script Tools - Accessible using a tool interface. Carries out geoprocessing operations using, for

example, Python scripts (.py) (note paper diagram)
4.​ Specialized Tools - These are created by system developers

-​ There are two different categories for tools:

-​ System Tools: Created and installed by Esri as part of the regular ArcGIS software
-​ Custom Tools: Consist of script and model and are created by the user

2.6 Running tools using tool dialog boxes

I believe that I understand all relevant concepts of this section.

2.7 Specifying environment settings

Page 7

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ Geoprocessing operations are influenced by environment settings, which are like hidden, additional
parameters that affect how a tool is run

-​ The Environment Settings dialog box, go to: Geoprocessing > Environments
-​ The workspace setting is very important. There are two types of workspaces:

-​ The current workspace (where inputs are taken from and outputs are placed)
-​ The scratch workspace (used by model tools to write intermediate data)

-​ Environment settings has a hierarchy of levels:
-​ Application
-​ Individual tool
-​ Model
-​ Script

-​ You can override this hierarchy, if need be

2.8 Using batch processing

-​ All geoprocessing tools can be run in batch mode
-​ Right click on a tool > batch
-​ This process means executing a single tool multiple times using different inputs without

further intervention
-​ Batch window shows a grid of rows and columns

-​ Columns are parameters of the tool
-​ Rows are specified for each run

2.9 Using models and ModelBuilder

-​ Sometimes you have to run numerous tools to get the result that you are looking for
-​ Options:

-​ Run through each tool, one at a time (has limitations & is repetitive)
-​ Use ModelBuilder

-​ ModelBuilder is a way to create a sequence of tools
-​ The output of one tools is the input of another tool
-​ Similar to a visual programming language

-​ Geoprocessing tools are the basic building blocks of a model
-​ Tools perform geoprocessing operations on geographic data
-​ Data variables reference data on disk or a layer in the ArcMap table of contents
-​ Value variables are items such as strings, numbers, Boolean values, spatial references, linear units, and

extents
-​ Connectors are the data and values which are connected to tools. There are 4 types:

-​ Data connectors

Page 8

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ Environment connectors
-​ Precondition connectors
-​ Feedback connectors

The steps to creating and running model tools in ModelBuilder is as follows:

1.​ Create a new model
a.​ Click on the ModelBuilder Button and make a new model

2.​ Add data and tools to the model
a.​ Drag and drop data

3.​ Create connectors and fill tool parameters
a.​ Connecting parts together

4.​ Save the model
5.​ Run the model
6.​ Examine the model results

2.10 Using scripting

-​ ModelBuilder and using a text-based scripting language such as Python are very similar in concept
-​ You can interchange the use of ModelBuilder and Python for certain purposes
-​ Things you can do in Python but not in ModelBuilder:

-​ Lower-level geoprocessing tasks
-​ Allows for advanced programming logic
-​ Used to wrap other software
-​ Run as a stand-alone script
-​ Can be run at specific times without user intervention

2.11 Running scripts as tools

-​ To view the script “under the hood” of script tools, simply right-click the tool and click Edit.
-​ To run a tool in Python, type the tool name followed by its parameters. For example:

>>> import arcpy
>>> arcpy.Clip_analysis("C:/Data/roads.shp", "C:/Data/zipcodes.shp",
"C:/Data/roads_clip.shp")

The resulting shapefile is added to the ArcMap table of contents:

Page 9

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

<Result 'C:\\Data\\roads_clip.shp'>

2.12 Converting a model to a script

-​ To convert models to Python scripts, you must:
-​ In the ModelBuilder menu bar:

-​ click Model > Export > To Python Script
-​ You cannot do the reverse of this process

2.13 Scheduling a Python script to run at prescribed times

-​ On Windows 7:

-​ Click the Start button, click on Control Panel > Administrative Tools > Task Scheduler
-​ OR click on System and Security > Administrative Tools > Task Scheduler

-​ Double-click Add Scheduled Task (or Create Basic Task)
-​ Complete the options on the wizard
-​ Click the Browse button to select the appropriate Python script
-​ To select arguments for the script to run, click on “Open advanced properties”

Page 10

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

Chapter 3: Using the Python Window

3.1 Introduction

-​ We’re going to learn how to use the Python window in ArcGIS!

3.2 Opening the Python Window

-​ The Python environment is placed within the “Python Window” in ArcGIS
-​ In this window, you can run geoprocessing tools while using other Python modules and libraries
-​ The Python window can be used to run one or more lines of Python code
-​ This place is good to test syntax and work of short lengths of code
-​ Scripting ideas can be tested outside a larger script directly within an ArcGIS for Desktop application
-​ The Python Window can be accessed here:

-​ The left side is the interactive Python interpreter (aka where the Python code is entered)
-​ The primary prompt is indicated by >>>

Page 11

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ On the right-hand side is the Help and syntax panel, which is updated as code is written
-​ You can move the box to your liking by standard window editing methods

3.3 Writing and running code

-​ Python code in the Python window is run one line at a time and the result is immediately displayed

-​ To force a secondary prompt (if applicable) you simply use the CTRL + ENTER command
-​ IMPORTANT: All geoprocessing tools can be accessed by importing the ArcPy site package. Other

non-tool functions such as listing and describing data, working with environment settings, and
accessing geoprocessing messages are also available with this package

-​ import arcpy
-​ There is an autocompletion option
-​ Everything you can do in a normal Python shell you can do in the Python window
-​ Python blocks of code can be written in the Python window and saved in a Python or text file for use

in a Python editor, and existing code can be uploaded in the Python window

3.4 Getting Assistance

Page 12

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ For help while in the Python window…
-​ The F1 key shows Help for the current pointer location
-​ The F2 key checks the syntax of the current line of code, or block of code for multiline constructs
-​ The UP ARROW and DOWN ARROW keys can access previously entered commands
-​ Pressing the TAB key autocompletes an already-established word in the Python document

3.5 Exploring the Python window options

-​ By right-clicking the Python window, you can…
-​ Cut, Copy, Paste and Clear provide basic editing lines of code
-​ Select All allows you to select then copy all lines of code in the Python window
-​ Clear All allows you to remove all lines of code and start again with an empty Python window
-​ Show Default Choices autocompletion...or no. Your choice!
-​ Add to Results includes tools in the Results window that were run in Python
-​ Load simply loads existing code
-​ Save As saves code wherever you want
-​ Help Placement gives you the option on where to place the Help section
-​ Format provides formatting options

3.6 Saving your work

-​ You can save files that you make in the Python window in the following formats:

1.​ Text file
2.​ Python file

3.7 Loading code into the Python window

-​ You can load pre-existing Python scripts into the Python window

Page 13

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

Chapter 4: Learning Python language fundamentals

4.1 Introduction

-​ This chapter covers the fundamentals of the Python language

4.2 Locating Python documentation and resources

-​ There’s a bunch of resources if I get stuck...check them out sometime (pp. 59 - 60)

4.3 Working with data types and structures

-​ There are a number different data types:
-​ Strings
-​ Numbers
-​ Lists
-​ Tuples
-​ Dictionaries
-​ More!

-​ Python also uses different data structures:
-​ A collection of data elements that are structured in some way
-​ The most basic Python data structure is a sequence - each element is a number or string

-​ Strings, lists, and numbers are immutable - you can’t modify them but only replace them with new
values

-​ Lists and dictionaries are mutable - the data elements can be modified

4.4 Working with numbers

-​ Numbers can be integers or floats
-​ Remember that int / int = int and that int / float = float
-​ This exact solution (with decimal) is called true division

Page 14

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

4.5 Working with variables and naming

-​ Python scripts uses variables to store information
-​ To assign a variable, it would look something like:

>>> x = 17

-​ This (above) is called an assignment statement
-​ Now that the variable has been assigned, you can do work with it:

>>> x = 17
>>> x * 2
34

-​ Since the variable that you declare can essentially be any data type, this is known as having a dynamic

assignment where you can change the data type later on in the code
-​ Rules for naming variables:

-​ Variable names consist of letters, digits, and underscores (_)
-​ Variable names cannot begin with a digit
-​ Python keywords cannot be used as variable names
-​ Use descriptive names
-​ Follow conventions

-​ http://www.python.org/dev/peps/pep-0008/
-​ Keep it short
-​ You should keep a single space around operators

-​ Multiple variables can be assigned on the same line, such as:

>>> x, y, z = 1, 2, 3
>>> print "Is the same as"
>>> x = 1
>>> y = 2
>>> z = 3

4.6 Writing statements and expressions

-​ An expression is a value
-​ A statement is an instruction that tells the computer to do something

Page 15

http://www.python.org/dev/peps/pep-0008/

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

4.7 Using strings

-​ Converting the value of the variable from one variable to another is known as casting
-​ Everything else is fairly straight-forward

4.8 Using Lists

-​ A Python list is surrounded by square brackets []
-​ Items in the list are separated by commas [,]

4.9 Working with Python objects

-​ This is also straight-forward

4.10 Using functions

-​ To print a list of built-in functions, execute the following:

>>> print dir(__builtins__)

4.11 Using Methods

-​ Methods are similar to functions
-​ A method is a function that is closely coupled to an object

<object>.<method>(<arguments>)

>>> topic = "Geographic Information Systems"
>>> topic.count("i")

Page 16

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

2

4.12 Working with strings

-​ I think that, overall, I am good with this section

4.13 Working with Lists

-​ Ibid

4.14 Working with paths

-​ In Python, there are three ways to specify a path:

1.​ Use a forward slash (/) - “C:\\EsriPress\\Python\\Data”
2.​ Use two backslashes (\\) - “C:\\EsriPress\\Python\\Data”
3.​ Use a string literal by placing the letter r before a string - for example,

r”C:\EsriPress\Python\Data”
a.​ The letter r stands for “raw string” which means that the backslash will not be read

as an escape character

4.15 Working with modules

-​ There are many functions available in Python
-​ To access them, we need to implement modules
-​ Modules are like extensions that can be imported into Python to extend its capabilities
-​ Example:

>>> import math

-​ To get a list of the functions in the math module (or any), use the dir statement:

>>> dir(math)

Page 17

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ Make sure to reference modules if necessary!
-​ Modules are fairly-straightforward but sometimes it can be confusing using potentially two different

calling systems

4.16 Controlling workflow using conditional statements

-​ Branching is one way to control the workflow in your script
-​ Means making a decision to take one path or another
-​ Typically uses if statements

import random
x = random.randint(0, 6)
print x
if x == 6:
 print "You win!"

-​ The if statements and its variants are called branching structures

4.17 Controlling workflow using loop structures

-​ For loops and While loops are the main types
-​ Overall, I feel good about this brief section

4.18 Getting user input

-​ If the Python script requires inputs from outside the script itself:

-​ Use a system argument
-​ sys.argv
-​ Let’s the user input something

-​ Use the input function
-​ x = input(“”)

4.19 Commenting scripts

Page 18

GARP 0399 - Python Scripting for GIS (Spring 2016)​ ​ ​ ​ Nicholas P. Taliceo

-​ There is nothing new here

4.20 Working with code in the PythonWin editor

-​ This just gives a very brief style guide to PythonWin...I’m not completely sure if I’m going to use it or
not

4.21 Following coding guidelines

-​ This section just reiterates the important stylings that Python uses
-​ This text frowns against using camelCase rather than underscore_case to name variables...I like it

better so I’m going to do it anyway

Page 19

	
	Part 1: Learning the fundamentals of Python and geoprocessing
	
	Chapter 1: Introducing Python
	Chapter 2: Geoprocessing in ArcGIS
	Chapter 3: Using the Python Window
	Chapter 4: Learning Python language fundamentals

