
Hotspot Analysis With Spark
Kevin Anthony Grifo

kgrifo@asu.edu

Introduction

The goal for the group project is to analyze and
process NYC Yellow Taxicab spatial data. The initial
phase of the project is to set up and create the initial
queries. The second phase of the project is to identify
hotspots in the spatial data.
 For the initial phase of the project we created basic
spatial queries. We created range, range join,
distance, and distance join queries in Scala.

●​ Range query: Given a query rectangle R
and a set of points P, find all the points
within R.

●​ Range join query: Given a set of rectangles
R and a set of points P, find all pairs such
that the point is within the rectangle.

●​ Distance query: Given a fixed point
location P and distance D, find all points
that lie within a distance D from P.

●​ Distance join query: Given two sets of
points P1 and P2, and a distance D, find all
pairs such that p1 is within a distance D
from p2.

 To do this, user defined functions were created.
These user defined functions are ST_Contains and
ST_Within.

●​ ST_Contains: Given a point P and a
rectangle R, determine if the rectangle
contains the point [3].

●​ ST_Within: Given two points P1, P2 and a
max distance D, determine if P1 and P2 are
within D distance from each other [3].

 The second phase of the project uses the queries
that were written in Scala during the initial phase.
There are two parts to this phase: hot zone analysis
and hot cell analysis.
 Hot zone analysis finds the ‘hotness’ of each zone.
The ‘hotness’ of a zone is the number of points that
are found within a zone. This is done using the Scala
functions written before.
 Hot cell analysis focuses on applying spatial
statistics to spatio-temporal data. The purpose of this

is to find the fifty most significant cells based on the
Getis-Ord calculation or Z-Score. The higher the
result of the Getis-Ord calculation, the more
significant the clustering of hot spots [2].

Description of Solution

There were two different milestones that needed to be
completed to be able to successfully analyze and
process New York City Yellow Taxicab spatial data.
The first milestone of the project required us to set up
and create the initial queries and UDFs (User Defined
Functions). The second milestone then used the
UDFs defined in the first milestone to identify
hotspots in the spatial data.
 For the first milestone of the project we created
basic spatial queries. The queries we created included
range, range join, distance and distance join queries
using Scala, a programming language based off of
Java. For the range and range join queries we utilized
the ST_Contains UDF. The ST_Contains UDF
checked to see if a given point fell within a rectangle
given two of the rectangle’s corner points (bottom left
and top right). Please view figure 1 for a graphic
representation of how ST_Contains was
implemented.

Figure 1 (ST_Contains Graphic Representation)

For the first project milestone the team also had to
design the ST_Within user defined function for the
distance and distance join queries. This UDF
examined if two points were within a max distance of
each other. This UDF was implemented by
calculating the cartesian product between two points.
Graphic representation of this function can be seen in
figure 2 below.

Figure 2 (ST_Within Graphic Representation)

 For the 2nd milestone of the project the team was
required to perform Hot zone and Hot Cell analysis.
For hot zone analysis we had to implement a utility
object called HotzoneUtils with a function called
ST_Contains. The implementation of the
ST_Contains was similar to the implementation of
ST_Contains UDF defined for the first milestone.
Here we had to check whether or not a point was
contained within a given rectangle. We then had to
return the count of points within each rectangle, this
in turn showed the hotness of each zone/rectangle.
See figure 1 for a graphical representation of how
ST_Contains works. The 2nd milestone also required
us to perform a hot-cell analysis task, which brought
a third dimension into the mix, that third dimension
being time. For hot-cell analysis, we needed to apply
spatial statistics to spatio-temporal big data to
identify statistically significant spatial hot spots.
Eventually we would return to the user, a sorted
spatio-temporal list according to the G value
(Getis-Ord), given the taxi trip pickup dataset as
input. Figure 3 displays the formula used to calculate
the G-value.

Figure 3 (G-value formula) [1]

Results

The results of running our project were typically
outputted into a .csv file or printed out, as a table, to
the terminal/command line. For simplicity the results
will be shown in table format. Table 1 shows the top
ten hottest zones in New York, given the taxi trip
pickup dataset as input. The first column in the table
provides two points of each rectangle, the bottom left
and top right corners. The second column displays
the count of points, using ST_Contains, that are
contained within the rectangle in the first column.

Table 1 (Top Ten Hotzones)

 Table 2 shows the top ten hottest cells in New York,
given the taxi trip pickup dataset as input.

Table 2 (Top Ten HotCells)

In Table 2 the x column represents the x-coordinate,
the y column represents the y coordinate, the z
column represents time and the G-value represents
the Getis-Ord value (also known as z-score). The
G-value is used to determine the hotness of each cell
in our grid. The higher the G-value the hotter the cell.

Your Contribution

The group project provided students an opportunity
to collaborate and work together to achieve a
common goal. It allowed us to learn extremely
beneficial teamwork, communication and
collaboration skills. Each team member worked on
project milestones 4 and 5 separately and helped each
other out along the way. If team members were
having difficulties we, all as a team, would provide
hints and help, whether it be helping out with the
actual code itself or providing a better explanation of
the requirements for the project. I also set up a shared
Google Drive folder to allow for effortless team
collaboration. I made sure to send an email out to the
team once the teams were announced with
information on how to connect to the shared Google
Drive folder. This gave us a head start on the project
and allowed us to collaborate early and make plans to
meet, via zoom to figure out how to divide the work.
The team as a whole decided to meet at least once a
week, to provide a status update on where each team
member was on the project, and to discuss any issues
they were having. This was a great strategy
implemented, which allowed team members to help
each other out, similar to how a scrum team does
following the agile methodology.
 We also decided to split up the team project report
as a team. This helped us better divide the work for
our report. We created a project template that
contained the following sections; overview, business
requirements, assumptions, high level architecture,
process flows, environment setup and appendix. The
section I was responsible for was the process flows
section. For this section I created process flow
diagrams for milestones 4 and 5. These process flow
diagrams provided a visual representation of how the
ST_Contains and ST_Within UDF (user defined
functions) were implemented for project milestones 4
and 5. The Diagrams started with the submitted input
files and terminated with the csv file that was
generated at program termination. An example of the
ST_Contains process flow is shown in figure 4.

Figure 4 (ST_Contains Process Flow)

 As I mentioned in the first paragraph, each team
member individually worked on both milestones (the
code). Doing so allowed me to learn about how to
utilize Spark, SQL and Hadoop with Scala, a java
based language. For the first project milestone I
learned how to create a user defined function (UDF)
and register it, allowing it to be used in SQL spark
queries. The first UDF function, ST_Contains
checked to see if a given point fell within a rectangle
given two of the rectangle’s corners (bottom left and
top right). We also had to define the ST_Within UDF
which checked if two points were within a max
distance of each other. This UDF was implemented
by calculating the cartesian product between two
points. The second project milestone required us to
perform Hot zone and Hot Cell analysis. For hot zone
analysis we had to implement a utility object called
HotzoneUtils with a function called ST_Contains.
The implementation of the ST_Contains function was
similar to the implementation of ST_Contains in
milestone 4. Here we had to check whether or not a
point was contained within a given rectangle. We
then had to return the count of points within each
rectangle, this showed the hotness of each
zone/rectangle. For the hot cell analysis the task was
focused on applying spatial statistics to
spatio-temporal big data to identify statistically
significant spatial hot spots using Apache spark. We

were provided min and max values for x, y and z; x
and y being spatial coordinates and z being a
temporal coordinate. With these coordinate and
temporal values we were then required to perform
queries on the input data to return the z-score, which
we treated as the hotness of each cell based on time.
The input data is a dataset of monthly taxi trips from
2009 to 2012. The output was once again a csv file
sorted by z-score, with the hottest cells residing at the
top.

Lessons Learned

I learned a lot about how to use spark and hadoop
with SQL while completing the Hotspot Analysis
with Spark project. Some tips I would suggest
include setting up the project to work with IntelliJ.
The main reason for that is that testing out code
changes with intelliJ is much easier, as intelliJ
conveniently provides a Scala plugin that works with
SBT to compile, build and run your code. Doing this
helped me save countless hours, as I didn’t need to
continuously run sbt assembly to build my jar file
that I would eventually run.
 Another lesson learned while completing this
project was to make sure to communicate with team
members early on in the project, to ensure that all the
project deadlines were met. This group project
enabled the team to learn how to work in a team,
together, to meet a common goal. Teamwork and
collaboration is a great skill to have in the real world
as a majority of employers work in a team setting. To
be successful in completing the project I encourage
others to be proactive and communicative.
 One last beneficial resource to use, that all students
have access to, is the discussion forums and the slack
channel. The two channels allow for class wide
collaboration and help. The live events were also
helpful in getting questions answered and acceptance
criteria ironed out. They were particularly helpful for
the project report requirements, such as the number
of pages needed and the main sections that should be
included in the report. Utilizing all resources
available is extremely important if students plan on
being successful in any school setting.

References
[1] A. SIGSPATIAL, "ACM SIGSPATIAL GIS Cup 2016",
Sigspatial2016.sigspatial.org, 2020. [Online]. Available:
http://sigspatial2016.sigspatial.org/giscup2016/problem.
[Accessed: 06- Dec- 2020].
[2] A. SIGSPATIAL, "ACM SIGSPATIAL GIS Cup 2016",
Sigspatial2016.sigspatial.org, 2020. [Online]. Available:
http://sigspatial2016.sigspatial.org/giscup2016/submit. [Accessed:
06- Dec- 2020].
[3] C. ASU, "Coursera | Online Courses & Credentials From Top
Educators. Join for Free | Coursera", Coursera, 2020. [Online].
Available:
https://www.coursera.org/learn/cse511/programming/0KL37/projec
t-milestone-5-hot-spot-analysis. [Accessed: 06- Dec- 2020].

	Hotspot Analysis With Spark
	Introduction
	Description of Solution
	Results
	Your Contribution
	Lessons Learned
	References

