
Embedded Chat 2023
Google Summer of Code 2023

Introduction

About me
I am Abhinav Kumar, an Information Technology undergraduate at Heritage Institute of Technology,
Kolkata. Since school, I have always been interested in computers and software. I was introduced to
application development in high school. Since then, I have kept learning more about web technology and
application development. I have done a few personal projects from which my favorites are “tournify.in” and
“esportsweb.in”. They are an esports management platform and have over 150,000 registered users
combined. I love working on javascript projects, but not limited to, those that solve problems and make our
lives easy.
Website Link: https://avitechlab.com
Linkedin: https://linkedin.com/in/abhinavkrin

Why do I wish to participate in the Google Summer of Code?
Although I have developed my personal projects and felt a sense of achievement but looking at the
open-source projects, I feel a lot can be improved in my style. I want to make myself more aware of the
open source standards and the way of writing code like a poem. I have always dreamed of being a part of
a community and an open-source community is just perfect for me.
I have always wanted to be part of such communities and meet people with whom I can learn and share
my ideas. And I have seen people who have been accepted into GSoC become active members of the
community and keep contributing to it. Therefore, GSoC is the best opportunity to join open-source
communities and contribute and learn from them.

Why do I want to apply to RocketChat in particular?
I came across RocketChat while I was browsing the accepted organizations in previous years of GSoC.
Having the same tech stack, in which I was experienced, pushed me to learn more about RocketChat. I
have always wanted to contribute to projects widely used by folks around the globe. Finding that
RocketChat is one of the most used open-source communication platforms, I decided to contribute to
RocketChat. After I joined RocketChat’s open community website, I loved how everyone was so
welcoming and supportive.
I spent hours learning about RocketChat projects and contributed to RC4Community and EmbeddedChat.
Everyone applauded for successful PR merges, helped me when I was stuck, and gave me valuable
feedback which helped me to grow.
Working on such a large project in RocketChat, I learned about teamwork, problem-solving, debugging,
and effectively communicating with fellow community members. I am excited to contribute to RocketChat
and be a valuable member of the community. Therefore, I have decided to apply only for RocketChat for
GSoC 2023.

https://avitechlab.com
https://linkedin.com/in/abhinavkrin

Project Description

Title: EmbeddedChat 2023
Integrate real-time chat into web and mobile applications that adapt to the application’s theme with the
power of RocketChat.

Abstract
The EmbeddedChat project enables developers to embed real-time chat into their website or application.
It utilizes RocketChat’s chat engine through its REST and real-time APIs to support powerful chat features
like reactions, online presence, typing status, threads, and much more. Currently, the EmbeddedProject is
very basic and unoptimized for production. I plan to make it production ready so that thousands of
developers and communities could start integrating their web and mobile applications with RocketChat.
This could be achieved by:-

● Separating various parts of the project into their module/package - API, react, react native, auth,
etc.

● Reducing the bundle size. Currently, it is very large.
● Replacing HTTP calls with real-time DDP communication wherever necessary.
● Creating libraries for react-native, react, etc.
● Giving more flexibility in authentication methods.
● Introducing theming for client libraries so that EmbeddedChat could adapt to the look and feel of

the application it is embedded into.
● And much more which I will discuss in the goals and deliverables.

Benefits to the community
Enabling chat in applications be it an online game or an online club or an online food ordering application
brings a nice user experience. But making a fully-fledged chat feature could be a challenging and
time-consuming task. It would require significant time and energy for the developers to build it and include
it in the application. However, this time and energy could be saved if we use EmbeddedChat to implement
the chat feature in the application. Since EmbeddedChat uses RocketChat, developers would be assured
of its robustness, security, and scalability. They could focus more on building the main application and
leave the chat feature to be handled by EmbeddedChat.
An increase in the popularity of EmbeddedChat would indirectly contribute to the popularity of the
RocketChat project.

Goals and Deliverables

1. Improve authentication - support all OAuth services
Currently, only Google authentication and password authentication are supported in EmbeddedChat. It
should support all OAuth services as it has been supported in RocketChat. Also, the login flow is currently
handled by EmbeddedChat. This would require the user to login in two times - one for the application level
and another for the EmbeddedChat. This contradicts our goal to include EmbeddedChat as a part of the
application. There should be one single login flow for authenticating both the application and the
EmbeddedChat. So, I will add an additional option in EmbeddedChat for authentication by providing the
access_token from the OAuth services.

2. Move to a mono repo - API, react, react-native, HTML-embed, server
One of the goals of this project would be to separate parts of EmbeddedChat into their own repository.
They all together will form a single mono repo. The initial plan is to separate auth, API/SDK, react
components, etc into their own repo. Separating them would make the task of creating new libraries for
other frameworks like - ReactNative, Angular, Vue, etc.

3. HTML embed feature
We will create js bundles which would be used to embed the EmbeddedChat by directly pasting the HTML
code into the webpage. This would make the EmbeddedChat framework agnostic where not much
configuration is required or the user is not very tech-savvy.

4. Theming
We will introduce powerful theming into the client libraries of EmbeddedChat so that it adapts to the look
and feel of the application/website.

5. Improving API
I will work on improving the current API implementation of the EmbeddedChat which includes but is not
limited to:-

● Moving to real-time DDP connection wherever possible.
● Separating authentication library to include more and more authentication methods and strategies

supported by RocketChat.

6. Slash commands
Slash commands are one of the many powerful features of RocketChat, but EmbeddedChat is yet to
support them. I will work on including them in EmbeddedChat by leveraging the slash commands API.

7. Reducing bundle size
To make EmbeddedChat production ready, we need to keep the bundle size of the EmbeddedChat as
small as possible. I will analyze EmbeddedChat to find out the issues that are adding to the huge bundle
size of EmbeddedChat. Then, I will start working on reducing the bundle size.

8. Moderation
Currently, only the owner of a message could delete it in EmbeddedChat. But, we need some kind of
moderation to keep the chat box environment healthy and prevent spam and abuses. I will leverage the
permissions feature of RocketChat to give moderation privileges, like deleting messages and muting and
removing users, to the concerned members of the chat room.

9. Docs and tutorials
I will work on creating docs and tutorials for EmbeddedChat so that users and contributors find it easy to
get started with EmbeddedChat.

10. Replacing playground with Storybook
Currently, the only way to try EmbeddedChat while developing is the playground create-react-app. I and
my fellow contributors have found it to be slow. In addition to that, there seems to be some issue with the
playground app as I found that it has grown to 10Gib and keeps on growing. For the client libraries like
react, vue, angular, etc we could StoryBook. With Storybook, we could build, document, and test our UI
components easily and fastly.

11. Comment Mode
This is an experimental idea. The goal is to use EmbeddedChat in comment mode. That is, it will work as
the commenting system of the application.

Implementation Details

Improving authentication
RocketChat supports several authentication methods/strategies - password-based, popular OAuths, and
custom OAuths. And we need to leverage this feature of RocketChat to support a variety of authentication
options in EmbeddedChat as well. Currently, EmbeddedChat supports only two methods -
password-based and Google OAuth.

Based on the use-case of EmbeddedChat we could support these types of
authentication flow:-

1. The first flow in which the developer will just pass the accessToken and the serviceName to
which the access_token is related. EmbeddedChat will use them to call POST /api/v1/login to get
the rc_token and user details. Let's call this flow TOKEN FLOW.

2. The second flow in which EmbeddedChat will display the login options it gets on fetching
api/v1/settings.oauth and handle the authentication according to the option selected by the user.
Let’s call this MANAGED FLOW.

TOKEN FLOW
In this flow, the developers will directly pass the accessToken and serviceName to the EmbeddedChat
as props. EmbeddedChat will use these data to call /api/v1/login endpoint to authenticate the user and
retrieve the authToken and userId.
Here, serviceName is the name of the OAuth service which we have configured in the RocketChat
setting.
RocketChat Home >Workspace -> Settings -> OAuth

Here, service names are apple, dolphin, drupal, etc. These OAuth services must be configured and
enabled before using them.

First, the developer will pass the authentication config to EmbeddedChat via props. This should look
somewhat like this:

Then EmbeddedChat will use this data to make a POST request to /api/v1/login with the following payload

On success, RocketChat will send authToken along with the user details. The successful response will
have the following payload.

We will be using the userId and authToken for calling authenticated RocketChat APIs.

Benefits of Token flow:
The token flow will be helpful when we would want EmbeddedChat to work as a part of the application
because we would not want our application’s users to log in again into chat while they are already logged
in to the application.
For example, I have an app called Todo List and then I can configure the same Google OAuth
configuration for both my app and the EmbeddedChat. In that way when a user signs in to my app using
Google OAuth, I can reuse the accessToken to sign into the EmbeddedChat using TOKEN flow. Hence,
the user won’t have to log in again and have a seamless experience.

MANAGED FLOW
As the name suggests, this authentication flow would be fully managed by EmbeddedChat. It will fetch all
the OAuth authentication services enabled on RocketChat and display them to the user. Once the user
selects the desired option, he would be redirected to the OAuth service’s authorization page and handle
the authorization response accordingly to authenticate the user in EmbeddedChat.

Step 1 will be to fetch active OAuth services from RocketChat by making a GET request to
/api/v1/settings.oauth. The response payload will look something like this:-

We can see that in the response payload, we have the clientId, service, serverUrl, and authorizePath.
Now, these services will be displayed to the users and they will have to choose the service they want to
log in with. Suppose from the above example, the user selects mycustomoauth to log in with. Then, we
will create the authorization URL which will be opened in a pop-up.
The authorize url will be of the format
{serverUrl}+{authorizePath}?client_id={clientId}&redirectUri={rocketchatUrl}/_oauth/{service}&res
ponse_type=code&response_mode=form_post&state={state}

● serverUrl - This is the base URL of the OAuth service server.
● authorizePath - the path of the page on the OAuth service where users will get a consent screen,

and will be asked to authorize the EmbeddedChat to get the authorization code.
● clientId - the client id of the OAuth service.
● redirectUri - the URL where the user will be redirected with the authorization code on the

successful authorization. For RocketChat it is always
<rocketchat_server_base_url>/_oauth/<serviceName>. One can also find the redirectUri for the
service in the RocketChat Home >Workspace -> Settings -> OAuth -> serviceName page. When
setting the OAuth Provider, this redirectUri must be included in the Callback URLs list in the
OAuth provider’s setting on their server.

● state - The primary reason for using the state parameter is to mitigate CSRF attacks by using a
unique and non-guessable value associated with each authentication request about to be initiated.
That value allows us to prevent the attack by confirming that the value coming from the response
matches the one we sent. The state parameter can also be used to encode any other information
in it.

For the current example service, mycustomoauth, it will be

The user will then be taken to the consent page in a popup. After authorization, the user will be redirected
within the popup to
http://localhost:3000/_oauth/mycustomoauth?code=<authorization_code>&state=<state>.
If we dig into the HTML of the http://localhost:3000/_oauth/mycustomoauth, we will find that it contains
credentialToken, and credentialSecret.

And again if we look at line 10 in the above/previous image, there is a script tag with file
“end_of_popop_response.js” whose codes are:-

In line 25, we could see that the credentialToken and credentialSecret are stored in the local storage.
We will read these data after the popup is closed by the user.

Now that we have credentialToken and credentialSecret, we could use them to make a POST request
to /api/v1/login to authenticate the user. The request payload would look something like this:-

Response payload on success

Now, that we have authToken and userId, we will use them to call authenticated endpoints. Hence, the
user is now authenticated.
Note: This flow supports both the redirection method and popup method

To summarise, the MANAGED FLOW:-

Benefits of Managed Flow
Managed flow is beneficial when:-

● The application in which EmbeddedChat is being used does not have an authentication system.
● The web admin is not very tech-savvy.
● It is easy to use.

Moving to a mono-repo system
As the project EmbeddedChat grows we need to separate different parts of the project into their
independent modules. It is easier to refactor code across all packages and ensures code reusability. I am
planning to make these sub-projects for EmbeddedChat.

● embeddedchat/api - Currently we have our api defined in /src/lib/api.js. I will separate it into its
project. This will help share api across different frameworks and maintain the code base as it
grows.

● embeddedchat/auth - Currently the authentication options are very basic - password and Google
auth. Moreover, the codes written for auth are mainly for React. I will create a separate project
inside embeddedchat which will have framework-agnostic functions for authentications. This will
help share authentication methods across different frameworks.

● embeddedchat/react - Ready to use react components for EmbeddedChat. Currently,
EmbeddedChat is already on react. But, this project would be almost a rewrite of the
EmbeddedChat react project with various improvements discussed later in this proposal.

● embeddedchat/react-native - Ready to use react native components for EmbeddedChat.
● embeddedchat/shared - This project will contain utility and helper functions that would be shared

across projects.
● embeddedchat/htmlembed - This project will contain codes for building the js bundle using the

EmbeddedChat React project. EmbeddedChat could be integrated into a webpage by direct
copy-pasting the HTML code (which contains the generated bundle loaded with script tag) into the
HTML of the webpage.

Any other frameworks that would be added in the future would be added in
@embeddedchat/<framework-name>

How will I implement mono-repo for EmbeddedChat?
I will be using tools like Lerna and Yarn Workspace to set up the EmbeddedChat mono-repo.
Lerna - Lerna is a tool used to manage mono repo. The repositories are structured into sub-repositories.
Yarn workspace - Yarn workspaces are used to optimize dependency management. When we use yarn
workspaces, all project dependencies are installed in one go. Tools like Lerna make use of Yarn
workspaces' low-level primitives

I will add the following additional lines to the package.json of the EmbeddedChat root folder.

The workspaces option is used to specify which subfolder contains the various packages in our mono
repo. Each folder within packages will be considered a separate project.
Next, I will add Lerna to our EmbeddedChat root folder.

This initializes a lerna.json configuration file. In the lerna.json file, we will set our npmClient as yarn.

Now our mono repo is set up. I will create folders - api, react, shared, auth, and react-native. Each folder
will act as a subproject.

HTML Embed
One of the goals of this proposal is to have a capability, where people can just copy and paste an HTML
code into a webpage and the EmbeddedChat will be loaded with the minimum configuration required.

Creating the HTML Embed bundle js
We will use vitejs for creating the HTML embed project.

1. Create a project for HTML embedding in the htmlembed directory. The config.json of the project
would have the following dependencies

2. The htmlembed/vite.config.js would have the following configuration setting.

3. Now the main library which will render the EmbeddedChat would be located in
/src/EmbeddedChatEmbed.jsx

The start(config) function will render the embeddedchat into its parent node’s child with the
‘.embeddedchat’ class. In doing so, it will also apply the config parameter as the props for the
embeddedchat component.

4. To embed it, we will have to paste the following code.

Proof of concept
I have created a proof of concept branch in my fork. It could be accessed at
https://github.com/abhinavkrin/EmbeddedChat/tree/html-embed-poc/htmlembed

Note: Currently, I have used vitejs as our bundler. If during implementation, we find a better
bundler and configuration I will switch to it. But, overall implementation and concept would remain
the same.

https://github.com/abhinavkrin/EmbeddedChat/tree/html-embed-poc/htmlembed

Theming
A theme represents the overall look and feel of the organization’s brand. Any feature integrated into the
app should adapt the look and feel of the application. So adding theming to EmbeddedChat would make it
feel like it is a part of the application. This means developers could highly customize the embedded chat to
look the way that developer wants.

Currently, we are using Fuselage for the UI of EmbeddedChat. Fuselage is a large library and we need
fewer and simpler components to make EmbeddedChat work. Further, it would be tougher to achieve
theming with Fuselage. One of our goals is to shift to our custom UI components system that is
lightweight, simpler, and has just enough components that are required for EmbeddedChat. This would not
only help us decrease the bundle size but also improve the overall performance.

How will I add styles and theming?
I will be using Emotion which is a library designed for writing CSS styles with JavaScript. It provides
powerful and predictable style composition in addition to a great developer experience with features such
as source maps, labels, and testing utilities. Both string and object styles are supported.

Framework agnostic styling

The@emotion/css package is framework agnostic and the simplest way to use Emotion. It requires no
additional setup, babel plugin, or other config changes. It has support for auto vendor prefixing, nested
selectors, and media queries. We simply prefer to use the css function to generate class names and cx to
compose them.

1. Creating class name using the css() method

2. Using the cx() method to compose class names. Though it is not required in all cases, it is useful
for adding class names in the correct order and conditionally as well.

React/ReactNative

Styles to a component can be applied in these ways:
1. Using the css prop in which styles will be passed as string/object. We will need to import css from

@emotion/react.

2. Using styled.div style of adding styles by importing@emotion/styled.

How do we achieve theming in a framework-agnostic way?

1. For each component across different frameworks, we will pass our language-independent theme
object as a global parameter.

2. The global theme object would be parsed with framework-specific parseTheme() to convert them
into a format that is easily usable in that framework.

3. The parsed theme object would then be propagated and used in the framework-specific method. I
will explain more about the theme object later in this proposal.

Theming using Emotion for React/ReactNative
Theming feature of emotion is included in the@emotion/react package. I will add the ThemeProvider to
the top level of EmbeddedChat and provide the theme object to it.
Example:-

Each component will then be able to access the theme object using the withTheme wrapper or the
useTheme hook.

1. withTheme: The component should be wrapped with withTheme which is a high-order function. It
will pass the theme to the wrapped component through the theme prop.

2. useTheme: Using the useTheme hook, the theme component can directly access the theme
object.

Theme Object Schema
Our theme object would be framework agnostic. The example theme schema given below would be
used in all frameworks like react, react-native, vue, etc.

type Theme = {

cssBaseline: React.CSSProperties;

palette: {

mode: "light" | "dark";

primary: ColorOptions,

secondary: ColorOptions;

. . . other colors

},

typography: Typography,

shadows: Shadows,

zIndex: {

[componentName: string]: number;

},

components: {

[ComponentName: string]: {

defaultProps?: Object;

styleOverrides?: React.CSSProperties;

classNames?: string;

}

},

breakpoints: { ...}

}

For complete theme schema please check out this gist:
https://gist.github.com/abhinavkrin/455ddaa9a9ed7f91419d3e1cf4e9a488

I have also created an example theme object which could be access in this gist.
Example theme object:- https://gist.github.com/abhinavkrin/475e9712d8f4092397d6ed8f387cdd94

How many built-in theme objects would be there?
There would be one default theme object that would have the look and feel of the fuselage components. It
will be applied if no theme is provided.
I will also create some ready-to-use built-in theme objects.

Application and usage of the theme object for customization of the components. How do we
modify the look and feel at the component level?
We have an option for components in the theme object. This could be used for defining custom styles for
each component using styleOverrides which will be applied directly to the style of the component. We
can also pass custom classes for a component using classNames options.

...

"components": {

"ChatInput": {

"styleOverrides": {

"fontWeight": 400,

"color": "gray",

"border": "1px solid black"

},

"classNames": "myCustomClassForChatInput"

},

"Message": {

"classNames": "myCustomClass"

}

}

...

https://gist.github.com/abhinavkrin/455ddaa9a9ed7f91419d3e1cf4e9a488
https://gist.github.com/abhinavkrin/475e9712d8f4092397d6ed8f387cdd94

How will I prevent style clashes that may be inherited from the website from a top level?
I will be using cssBaseline which will preserve useful defaults and normalizes styles for a wide range of
elements. This will be done at the top level of the EmbeddedChat component. I will create a default Value
for cssBaseline which will be used if the user does not provide a value explicitly.

Slash Commands
Slash commands are powerful features of RocketChat. It starts with a / and executes a specific task.
Currently, EmbeddedChat does not support RocketChat’s slash commands. Our goal is to include it in
EmbeddedChat as well.

Getting List of available commands

To get a list of available slash commands, I will use the /api/v1/commands.list endpoint. The payload of
this endpoint would look something like this:-

After the commands are fetched, they will be stored in the state.

Displaying the commands list

The chat input would check if the cursor position is placed after a ‘ / ’ character. If yes, then a list of
commands will appear right above the chat input as it is done in RocketChat. Only those commands will
be displayed for which the current user has appropriate permission.

Executing the slash commands

Now to execute a command, a POST request will be made to /api/v1/commands.run with the payload
having roomId, command name, params, and tmid (message id of the thread). Refer to
https://developer.rocket.chat/reference/api/rest-api/endpoints/core-endpoints/commands-endpoints/execut
e-a-slash-command

After the request is successful, the command is executed in the room.

https://developer.rocket.chat/reference/api/rest-api/endpoints/core-endpoints/commands-endpoints/execute-a-slash-command
https://developer.rocket.chat/reference/api/rest-api/endpoints/core-endpoints/commands-endpoints/execute-a-slash-command

How will I handle UI that might open up by slash command execution?
UI changes due to slash commands can occur due to two events -

1. Real-time messages received from the app.
2. Result of any UI interaction with the app’s block.

To receive UI updates from a RocketChat app, I will first subscribe to stream-notify-user. Any event with
<currentUserId>/message having UIKit building blocks will be meant to display UI changes. Each
block will contain appId and blockId. Now, if there is a block with type= ”actions”. It is meant to be
interactive. To perform the interaction, I will call api/apps/ui.interaction/<appId>. The response may
contain type = modal.open or modal.update. The former means a modal has to be opened with the blocks
provided in the payload. The latter means the opened modal has to be replaced with the new block.

For example, on running /remind command for Remind Bot, we receive the payload

https://developer.rocket.chat/reference/api/realtime-api/subscriptions/stream-notify-user
https://github.com/RocketChat/developer-docs/blob/master/apps-engine/fundamentals-of-apps/uikit/uikit-building-blocks.md

For pull payload: https://gist.github.com/abhinavkrin/a2c1406c06771c34246526db9054d51c
The “blocks” contains UIKit building blocks. This block data will be used to display the UI.

How will I handle user interaction with action buttons?
I will make a POST request to api/apps/ui.interaction/<appId> endpoint with the following payload:

https://gist.github.com/abhinavkrin/a2c1406c06771c34246526db9054d51c

The response payload may contain instructions to open/update a modal along with UI blocks to be
displayed.

Proof of concept
I have also created a simple implementation as proof of concept to show how I will handle the UI trigger by
slash commands and UI interaction by users.
video link: https://drive.google.com/file/d/1s2QIkHiCzaEqhvdcUS223yJZuxBSLJ1J/view?usp=share_link
branch link in my fork: https://github.com/abhinavkrin/EmbeddedChat/tree/slash-command-poc

Screenshots:

https://drive.google.com/file/d/1s2QIkHiCzaEqhvdcUS223yJZuxBSLJ1J/view?usp=share_link
https://github.com/abhinavkrin/EmbeddedChat/tree/slash-command-poc

Adding Moderation
Chat moderation is required to review and regulate user-generated messages and content posted on a
platform to ensure it's not inappropriate or otherwise harmful to the brand's reputation or its users. But
currently in embedded chat-

1. The owner of a message can only delete it.
2. Users can report a message if it violates community standards.

Proposed changes to the current moderation system in EmbeddedChat

1. Users with delete-message permission can also delete messages. That user will act as a
moderator.

2. Users with remove-user permission can remove a user.

Mechanism of determining user permission

1. Get all the permissions from /api/v1/permissions.listAll. The payload has the permissions along
with the associated roles.

2. Get user's roles from the user details retrieved from /api/v1/me

Payload from /api/v1/permissions.listAll Payload from /api/v1/me

3. After that, we can determine the user’s permissions.
user -> role
permission -> role
=> user -> role -> permission

4. Now that we have the current user’s all permission, we can determine if the current user has
permission to delete messages or remove participants. According, I will show UI to the user for the
actions.

Reducing Bundle Size
Currently, our bundle size is quite large and this can seriously affect the performance of the
EmbeddedChat. One of my goals is to reduce and keep the bundle size of EmbeddedChat as small as
possible.

The steps I am going to take to reduce the bundle sizes are:-
1. The most important step that will decrease our bundle size is moving to our own component

system for different frameworks. We will shift from the fuselage as it is large and overkill for our
use case. We only need a few simpler components for EmbeddedChat. Further, we will be able to
add theming and more customization freedom while moving to our component system.

We can see that bundle analysis by rollup-plugin-analyzer shows that (46 + 12) % of total bundle
space is taken by the fuselage.

2. We can reduce also reduce the bundle sizes by using dynamic imports and code splitting.
There could be many components, like those for threads and emoji pickers which need not be

https://www.npmjs.com/package/rollup-plugin-analyzer

included in the main bundle. They could be dynamically imported on demand. This will also help in
reducing bundle size.

3. Implementing our utility functions for simple tasks and avoiding using third-party packages for
simple utilities.

4. Install bundle size analyzer like rollup-plugin-analyzer and configure it in the build config. This will
help us always keep track of what package is taking how much bundle space. The output of the
analyzer has been shown in point 1.

5. Reduce very old browser support. To support older browsers build tools need to add additional
code to replace functionality that's not natively supported. This increases JavaScript file size.
Reducing the set of browsers supported in your build configuration can reduce bundle size by
5-15%. Libraries like rollup-plugin-babel can make this easy to do. Example usage of babel plugin
for rollup.

https://www.npmjs.com/package/rollup-plugin-analyzer

Improving API
My targets for improving api:-

1. moving api to its own project so that it could be shared across projects for different frameworks.
This will also help in reducing repetitive code in our repository and also it will act as a single source
of truth. So if any problem occurs with the api in any framework, we will know where to look. And
also it will be fixed in all the frameworks.

2. Replacing REST API calls with real-time API method calls wherever possible.
3. Adding auth API project.
4. Adding automatic retries up to a few times if API calls fail.
5. Adding debouncing where necessary.
6. Making api project framework agnostic.

Using real-time API method calls.
When I started contributing to EmbeddedChat, all messages were loaded with API polling (using REST
API). One of the goals told by my mentor was to shift to a real-time message subscription and other
features to real-time instead of polling.
I created PR to use a real-time message subscription to get new message updates. The PR was merged
and it was our first step to move to real-time api instead of API polling. The details about the PR could be
found here https://github.com/RocketChat/EmbeddedChat/pull/169
Further, I added the feature to get the real-time typing status of users in EmbeddedChat. The PR could be
found here https://github.com/RocketChat/EmbeddedChat/pull/177. After my PR was merged, the support
for the old method of typing message subscriptions was removed in the latest version. I created a PR to
support the current subscription model for getting typing status of users. Its PR could be found here
https://github.com/RocketChat/EmbeddedChat/pull/199
There are still a lot of functions that could also use real-time API as well as REST API. Some of them are:-

1. Send Message
2. Update Message
3. Star Message
4. Set Reaction
5. Pin Message
6. Delete Message

I will add real-time alternatives for the functions wherever possible.

https://github.com/RocketChat/EmbeddedChat/pull/169
https://github.com/RocketChat/EmbeddedChat/pull/177
https://github.com/RocketChat/EmbeddedChat/pull/199
https://developer.rocket.chat/reference/api/realtime-api/method-calls/send-message
https://developer.rocket.chat/reference/api/realtime-api/method-calls/update-message
https://developer.rocket.chat/reference/api/realtime-api/method-calls/star-message
https://developer.rocket.chat/reference/api/realtime-api/method-calls/set-reaction
https://developer.rocket.chat/reference/api/realtime-api/method-calls/pin-message
https://developer.rocket.chat/reference/api/realtime-api/method-calls/delete-message

How to call real-time API methods?
We are using "@rocket.chat/sdk": "^1.0.0-alpha.42" for interacting with RocketChat api. To call a
real-time method:
async sendTypingStatus(username, typing) {

try {

const res = await this.rcClient.methodCall(

'stream-notify-room',

`${this.rid}/user-activity`,

username,

typing ? ['user-typing'] : []

);

} catch (err) {

console.error(err.message);

}

}

Here, rcClient is an instance of RocketChat js sdk. res object will contain the ID of the method call which
can be used to identify the result of the method call.

How will I leverage both real-time api and rest api to achieve a better user experience?
1. I would be to using real-time api only for events that need to update the UI over time, like user

interactions (typing, uploading...), user presence, etc.
2. Also realtime API would be used to subscribed to receive events for new messages, message

updates, delete message updates, room events, user activity status.
3. Some of the events that need to be subscribed are - stream-room-messages to receive new

message updates, stream-notify-room to received updates like user-activity (user typing status),
and message deletion.

4. While initial load I will use REST api to poll the latest messages and after that new messages
would be added in real-time by subscribing to stream-room-messages.

5. Further I will take inspiration from the react-native app to choose between real-time and REST api.
However, user experience and app performance will be a top priority.

How would I implement listening for real-time events?
I have decided to use the addEventListener(event, callback) way of calling functions when a certain
event occurs. I have already added addMessageListener, addMessageDeleteListener,
addTypingStatusListener, etc to the current api implementation. One of the PRs could be found here:
https://github.com/RocketChat/EmbeddedChat/pull/169

https://github.com/RocketChat/EmbeddedChat/pull/169

The code of addMessageListener looks something like this:

Now the added callbacks will be called every time a new message is received from the subscription.

To add an event listener, the developer could add a callback in the following manner:

This method of adding event listeners is easy and simple and needs zero configuration. It will be
framework agnostic and will be used in our components for React, React Native, vuejs, etc.

Docs and tutorials
Accurate documentation are essential for maintaining a codebase because it allows developers to quickly
understand what the code does and how to work with it. It will also help new contributors to understand
our project and encourage them to start and keep contributing.

Documentation
I will use a storybook for docs as well as for live testing and development of components. The document
for a component would be added as soon as I finish coding it. I will discuss the storybook in the next
section.

Tutorials
I will create a wiki that will include various tutorials for EmbeddedChat usage. Some topics that I will be
taking first are:-

1. Adding EmbeddedChat in a React project.
2. Using different auth flows in EmbeddedChat.
3. Using EmbeddedChat HTML embed version in WordPress.
4. Using custom themes in EmbeddedChat
5. Different variants are possible in EmbeddedChat
6. Adding EmbeddedChat in a react-native project

Storybook implementation
Adding storybook to our project will significantly improve the developer experience in UI development. We
could even add documentation for each component. Currently storybook supports diverse web
frameworks, including React, Vue, Angular, Web Components, Svelte, and over a dozen others.
We will have the storybook initialized in each framework project. By running npx storybook init we can
initialize storybook in an existing project. Storybook will look into our framework-level project's
dependencies during its installation process and provide the best configuration available. The command
above will make the following changes to your local environment:

1. Install the required dependencies.
2. Set up the necessary scripts to run and build Storybook.
3. Add the default Storybook configuration.
4. Add some boilerplate stories to get you started.
5. Set up telemetry to help us improve the Storybook.

In storybook, a story captures the rendered state of a UI component. It’s a function that returns a
component’s state given a set of arguments. We can create a story with ComponentName.stories.jsx
format filename.

https://storybook.js.org/

An example story would look like this -
import React from 'react';

import { RCComponent } from '..';

export default {

title: 'UI/RCComponent',

component: RCComponent,

parameters: {

componentSource: {

component: 'RCComponent',

},

},

};

const Template = (args) => <RCComponent {...args} />;

export const Simple = Template.bind({});

Simple.args = {

host: 'http://localhost:3000',

roomId: 'GENERAL',

moreOpts: true,

channelName: 'general',

anonymousMode: true,

headerColor: 'white',

toastBarPosition: 'bottom-end',

showRoles: true,

showAvatar: false,

};

Documentation for a component could be written in mdx (markdown + jsx) format in
Component.stories.mdx file name format. Example doc looks like this -
import { Meta, Story, Canvas } from '@storybook/addon-docs';

import { RCComponent } from '../index.js';

EmbeddedChat

<Meta title="RCComponent" component={RCComponent} />

An easy-to-use full-stack component (ReactJS + backend behaviors) embedding Rocket.Chat into

your web app.

_EmbeddedChat is a full-stack React component node module of the RocketChat application that is

fully configurable, extensible, and flexible for use. It is tightly bound with the RocketChat

server using Rocket.Chat nodejs SDK and its UI using RocketChat's Fuselage Design System._

![embeddedchatwall](https://user-images.githubusercontent.com/73601258/178119162-ecabb9b7-e3ae-

4c70-8ab2-f6c02856f4c6.png)

<div align="center" width="100%"> ... so on

Proof of concept for storybook

Story preview for EmbeddedChat

Story preview for docs

I have also created a branch in my fork that has storybook implementation in the current EmbeddedChat.
https://github.com/abhinavkrin/EmbeddedChat/tree/storybook-poc

https://github.com/abhinavkrin/EmbeddedChat/tree/storybook-poc

Comment Mode
This would be an experimental feature. I plan to introduce a ready-to-embed comment system just like
Disqus. The application logic of EmbeddedChat will remain the same. It would be just a UI layout change
that will make EmbeddedChat appear as a commenting system.
Message -> Main Comment - Main messages would be displayed as comments
Thread Message -> Replies - Thread messages would be displayed as comment replies.

I will export a different Component for the component mode. Example code for React.

https://disqus.com/

Time commitment FAQs
How much time will I be able to commit to this project (per week or day)?

I will be able to spend at least 5 hours on weekdays which may be extended. On weekends, I will spend
about 6-8 hours daily. Therefore I would be able to spend about 40 hours per week. Hence, In 13 weeks I
would be able to spend ~500 hours. This gives me enough time to complete the project and take a few
days off due to unforeseen conditions. The approximate time for large projects is 350 hours.

Communications Channels
How does someone reach me?

website http://avitechlab.com

open.rocket.chat Username abhinav.kumar30

Linkedin https://linkedin.com/in/abhinavkrin

Github https://github.com/abhinavkrin

Timezone IST (GMT+5.5)

How often, and through which channel(s), do I plan on communicating with my mentors?

I plan to schedule a virtual meeting regularly every week to give status updates to my mentors after
discussing our availability and agenda for the meeting. The primary mode of communication between me
and my mentors would be through open.rocket.chat itself. Other modes of communication could also be
used taking into account the availability of everyone. I would be available on call or by messaging from 11
am IST to 1 am IST on both weekdays and weekends.

Why do I find myself suited for this project?
I have been contributing to RocketChat for the past few months. I love the community and have made new
friends out here. This community has helped me a lot and I want to contribute my part to it.

I have contributed significantly to the EmbeddedChat project in the past few months and at the time of
writing this proposal, I am the top contributor in the past 60 days to this project.

http://avitechlab.com
https://linkedin.com/in/abhinavkrin
https://github.com/abhinavkrin

I am among the top contributors in the RocketChat GSoC 2023 leaderboard. The GSoC leaderboard
could be accessed at https://gsoc.rocket.chat.
As a result, I have acquired a thorough understanding of the EmbeddedChat project. I have also spent
hours hacking and debugging RocketChat to find solutions for EmbeddedChat. Like I found the solution to
support all OAuths in EmbeddedChat without any backend. I had to go through RocketChat’s ReactNative
and core project to find out how things are implemented in RocketChat.
I have personally become fond of the EmbeddedChat project and want to keep working on it and
improving it.

Related work done and other contributions
I have contributed to EmbeddedChat and have become familiar with its codebase and goals. I have also
completed a few parts of the goals included in the original idea list.

MERGED PR to EmbeddedChat
Click here for the latest list
https://github.com/RocketChat/EmbeddedChat/pulls?q=is%3Amerged+is%3Apr+author%3Aabhinavkrin

1. [NEW] Using DDP to get messages: https://github.com/RocketChat/EmbeddedChat/pull/169
2. [ADD] Added real-time typing status for users in the channel

https://github.com/RocketChat/EmbeddedChat/pull/177
3. [Improve] Pending message status feedback to user

https://github.com/RocketChat/EmbeddedChat/pull/188
4. [ADD] Thread Chat support

https://github.com/RocketChat/EmbeddedChat/pull/183
5. [IMPROVE] shift+enter adds a newline in chat input

https://github.com/RocketChat/EmbeddedChat/pull/156
6. [FIX] Room not changing on changing roomId prop

https://github.com/RocketChat/EmbeddedChat/pull/161
7. [BUGFIX] mentions and roles causing the initial app load to crash when unauthed

https://github.com/RocketChat/EmbeddedChat/pull/174
8. [IMPROVE] refactor-message-components

https://github.com/RocketChat/EmbeddedChat/pull/196
9. [HOTFIX] fixes for previous merges

https://github.com/RocketChat/EmbeddedChat/pull/197
10. [IMPROVE] typing status support for rc 6.0+

https://github.com/RocketChat/EmbeddedChat/pull/199
11. [FIX] Fixes minor UI isses

https://github.com/RocketChat/EmbeddedChat/pull/204
12. [FIX] replace Math.random() with crypto api.

https://github.com/RocketChat/EmbeddedChat/pull/206

https://gsoc.rocket.chat
https://github.com/RocketChat/EmbeddedChat/pulls?q=is%3Amerged+is%3Apr+author%3Aabhinavkrin
https://github.com/RocketChat/EmbeddedChat/pull/169
https://github.com/RocketChat/EmbeddedChat/pull/177
https://github.com/RocketChat/EmbeddedChat/pull/188
https://github.com/RocketChat/EmbeddedChat/pull/183
https://github.com/RocketChat/EmbeddedChat/pull/156
https://github.com/RocketChat/EmbeddedChat/pull/161
https://github.com/RocketChat/EmbeddedChat/pull/174
https://github.com/RocketChat/EmbeddedChat/pull/196
https://github.com/RocketChat/EmbeddedChat/pull/197
https://github.com/RocketChat/EmbeddedChat/pull/199
https://github.com/RocketChat/EmbeddedChat/pull/204
https://github.com/RocketChat/EmbeddedChat/pull/206

OPEN PRs to EmbeddedChat
Click here for the latest list
https://github.com/RocketChat/EmbeddedChat/pulls?q=is%3Aopen+author%3Aabhinavkrin

1. [ADD] Previews for URLs
https://github.com/RocketChat/EmbeddedChat/pull/201

Other Contributions to RocketChat project
Besides EmbeddedChat, I am also contributing to RC4Community and GSoC-Community-Hub
All my PRs could be found here: click here

I have also created several issues that were fixed and some will be fixed. All my issues could be found
here: click here.

Relevant Experiences
I have been consistently contributing to RocketChat. My contributions include fixing bugs, adding features,
raising issues, and helping other community members.
The links to all my PRs and issues that I have created are:-

● Merged PRs (16 PRs including 7 chores/minor fixes)
● Open PRs (2 open PRs)
● Issues (13 issues)

I am among the top contributors in the RocketChat GSoC 2023 leaderboard. The GSoC leaderboard
could be accessed at https://gsoc.rocket.chat.

Projects that I have worked on
Tournify.in— A simple points table maker for esports.
Link: https://tournify.in

Hitknotice.netlify.app— An app to showmy college’s notices and send notifications for new
ones.
Link: https://hitknotice.netlify.app

esportsweb.in— A complete eSports tournament management platform.
Link: https://esportsweb.in

To know more about my works and projects, feel free to visit my website at https://avitechlab.com.

https://github.com/RocketChat/EmbeddedChat/pulls?q=is%3Aopen+author%3Aabhinavkrin
https://github.com/RocketChat/EmbeddedChat/pull/201
https://github.com/RocketChat/RC4Community
https://github.com/RocketChat/GSoC-Community-Hub
https://github.com/search?q=type%3Apr+author%3Aabhinavkrin+created%3A%3E%3D2022-12-01+repo%3ARocketChat%2FRocket.Chat+repo%3ARocketChat%2FRocket.Chat.Electron+repo%3ARocketChat%2FRocket.Chat.ReactNative+repo%3ARocketChat%2FRocket.Chat.js.SDK+repo%3ARocketChat%2FRocket.Chat.py.SDK+repo%3ARocketChat%2FRocket.Chat.Livechat+repo%3ARocketChat%2FRocket.Chat.Embedded.arm64+repo%3ARocketChat%2FRocket.Chat.Embedded.armhf+repo%3ARocketChat%2Falexa-rocketchat+repo%3ARocketChat%2FOpensource-Contribution-Leaderboard+repo%3ARocketChat%2Falexa-rocketchat-notification+repo%3ARocketChat%2Falexa-rocketchat-flashbriefing+repo%3ARocketChat%2Falexa-news-publisher+repo%3ARocketChat%2Falexa-rc-multiserver-client+repo%3ARocketChat%2FApps.Rasa+repo%3ARocketChat%2FApps.Dialogflow+repo%3ARocketChat%2FRC4Github+repo%3ARocketChat%2Frocket.chat.app-poll+repo%3ARocketChat%2Fdeveloper-docs+repo%3ARocketChat%2FRC4Community+repo%3ARocketChat%2FRC4Conferences+repo%3ARocketChat%2FApps.Github22+repo%3ARocketChat%2FEmbeddedChat+repo%3ARocketChat%2FRocket.Chat.Demo.App+repo%3ARocketChat%2Fdocs+repo%3ARocketChat%2Fpentests+repo%3ARocketChat%2FGSoC-Community-Hub
https://github.com/search?q=type:issue+author:abhinavkrin+created:%3E=2022-12-01+repo:RocketChat/Rocket.Chat+repo:RocketChat/Rocket.Chat.Electron+repo:RocketChat/Rocket.Chat.ReactNative+repo:RocketChat/Rocket.Chat.js.SDK+repo:RocketChat/Rocket.Chat.py.SDK+repo:RocketChat/Rocket.Chat.Livechat+repo:RocketChat/Rocket.Chat.Embedded.arm64+repo:RocketChat/Rocket.Chat.Embedded.armhf+repo:RocketChat/alexa-rocketchat+repo:RocketChat/Opensource-Contribution-Leaderboard+repo:RocketChat/alexa-rocketchat-notification+repo:RocketChat/alexa-rocketchat-flashbriefing+repo:RocketChat/alexa-news-publisher+repo:RocketChat/alexa-rc-multiserver-client+repo:RocketChat/Apps.Rasa+repo:RocketChat/Apps.Dialogflow+repo:RocketChat/RC4Github+repo:RocketChat/rocket.chat.app-poll+repo:RocketChat/developer-docs+repo:RocketChat/RC4Community+repo:RocketChat/RC4Conferences+repo:RocketChat/Apps.Github22+repo:RocketChat/EmbeddedChat+repo:RocketChat/Rocket.Chat.Demo.App+repo:RocketChat/docs+repo:RocketChat/pentests+repo:RocketChat/GSoC-Community-Hub+-label:chore
https://github.com/search?q=type:pr+author:abhinavkrin+is:merged+created:%3E=2022-12-01+repo:RocketChat/Rocket.Chat+repo:RocketChat/Rocket.Chat.Electron+repo:RocketChat/Rocket.Chat.ReactNative+repo:RocketChat/Rocket.Chat.js.SDK+repo:RocketChat/Rocket.Chat.py.SDK+repo:RocketChat/Rocket.Chat.Livechat+repo:RocketChat/Rocket.Chat.Embedded.arm64+repo:RocketChat/Rocket.Chat.Embedded.armhf+repo:RocketChat/alexa-rocketchat+repo:RocketChat/Opensource-Contribution-Leaderboard+repo:RocketChat/alexa-rocketchat-notification+repo:RocketChat/alexa-rocketchat-flashbriefing+repo:RocketChat/alexa-news-publisher+repo:RocketChat/alexa-rc-multiserver-client+repo:RocketChat/Apps.Rasa+repo:RocketChat/Apps.Dialogflow+repo:RocketChat/RC4Github+repo:RocketChat/rocket.chat.app-poll+repo:RocketChat/developer-docs+repo:RocketChat/RC4Community+repo:RocketChat/RC4Conferences+repo:RocketChat/Apps.Github22+repo:RocketChat/EmbeddedChat+repo:RocketChat/Rocket.Chat.Demo.App+repo:RocketChat/docs+repo:RocketChat/pentests+repo:RocketChat/GSoC-Community-Hub
https://github.com/search?q=type:pr+author:abhinavkrin+is:open+created:%3E=2022-12-01+repo:RocketChat/Rocket.Chat+repo:RocketChat/Rocket.Chat.Electron+repo:RocketChat/Rocket.Chat.ReactNative+repo:RocketChat/Rocket.Chat.js.SDK+repo:RocketChat/Rocket.Chat.py.SDK+repo:RocketChat/Rocket.Chat.Livechat+repo:RocketChat/Rocket.Chat.Embedded.arm64+repo:RocketChat/Rocket.Chat.Embedded.armhf+repo:RocketChat/alexa-rocketchat+repo:RocketChat/Opensource-Contribution-Leaderboard+repo:RocketChat/alexa-rocketchat-notification+repo:RocketChat/alexa-rocketchat-flashbriefing+repo:RocketChat/alexa-news-publisher+repo:RocketChat/alexa-rc-multiserver-client+repo:RocketChat/Apps.Rasa+repo:RocketChat/Apps.Dialogflow+repo:RocketChat/RC4Github+repo:RocketChat/rocket.chat.app-poll+repo:RocketChat/developer-docs+repo:RocketChat/RC4Community+repo:RocketChat/RC4Conferences+repo:RocketChat/Apps.Github22+repo:RocketChat/EmbeddedChat+repo:RocketChat/Rocket.Chat.Demo.App+repo:RocketChat/docs+repo:RocketChat/pentests+repo:RocketChat/GSoC-Community-Hub
https://github.com/search?q=type:issue+author:abhinavkrin+created:%3E=2022-12-01+repo:RocketChat/Rocket.Chat+repo:RocketChat/Rocket.Chat.Electron+repo:RocketChat/Rocket.Chat.ReactNative+repo:RocketChat/Rocket.Chat.js.SDK+repo:RocketChat/Rocket.Chat.py.SDK+repo:RocketChat/Rocket.Chat.Livechat+repo:RocketChat/Rocket.Chat.Embedded.arm64+repo:RocketChat/Rocket.Chat.Embedded.armhf+repo:RocketChat/alexa-rocketchat+repo:RocketChat/Opensource-Contribution-Leaderboard+repo:RocketChat/alexa-rocketchat-notification+repo:RocketChat/alexa-rocketchat-flashbriefing+repo:RocketChat/alexa-news-publisher+repo:RocketChat/alexa-rc-multiserver-client+repo:RocketChat/Apps.Rasa+repo:RocketChat/Apps.Dialogflow+repo:RocketChat/RC4Github+repo:RocketChat/rocket.chat.app-poll+repo:RocketChat/developer-docs+repo:RocketChat/RC4Community+repo:RocketChat/RC4Conferences+repo:RocketChat/Apps.Github22+repo:RocketChat/EmbeddedChat+repo:RocketChat/Rocket.Chat.Demo.App+repo:RocketChat/docs+repo:RocketChat/pentests+repo:RocketChat/GSoC-Community-Hub+-label:chore
https://gsoc.rocket.chat
https://tournify.in
https://hitknotice.netlify.app
https://esportsweb.in
https://avitechlab.com

Future Work and Goals
I plan to add Vuejs components and more pre-built themes. I would love to keep contributing to
RocketChat projects and be an active member of the community. I am also working on GSoC Community
Hub along with other contributors and will try to make it live before the next GSoC season. I will learn more
about the RocketChat core and contribute my part in improving it

Work Plan:
Application review period: April 4 - May 4

During this time I will spend my time learning more about the RocketChat core. I am also working on the
GSoC Community Hub project. So I will spend more time on contributing to it. I will keep myself active in
the community helping my fellow contributors and also learning from them. I will also spend time
discussing the project ideas and discuss the
implementation of the features and how to improve upon them resulting in a better user
experience and making it user-friendly.

Community bonding period

During this period I will interact more with the community. I will try to know my mentors, read the
documentation of RocketChat, and make myself familiar with how things work with other RocketChat
clients - mobile and desktop. I will set up communication channels with my mentors and decide how often
I would connect with them to share my updates and get their feedback.

Week 1: May 29 - June 4

- Restructuring the project and shifting to mono-repo. Set up sub-projects for embeddedchat/api,
embeddedchat/react, embeddedchat/auth, and embeddedchat/shared.

- Start working on the authentication project and try to complete both flows - Token and Managed.

Week 2: June 5 - June 11

- Complete implementation of the @embeddedchat/api project.
- Bootstrap the @embeddedchat/react project, and set up the storybook.
- Now, the development of both the api and the react project will go hand in hand

Week 3 - 4: June 12 - June 18 & June 19 - June 25

These two weeks will also be spent working on:-
- React project
- Creating the default theme and working on the theming object.
- Shifting api functions to use real-time method calls.

I will finish the api, react components, and theming tasks by the end of this period.

https://github.com/RocketChat/GSoC-Community-Hub

Week 5: June 26 - July 2

- Add slash commands support.
- I will test this feature with various commands available in RocketChat.

I might encounter a few issues which I will discuss with my mentor and fix them. Slash commands would
be ready by the end of this week.

Week 6: July 3 - July 9

- Add the moderation feature.
- Add functions in the api project that would be used for fetching the user roles and all the

permissions available on the RocketChat server.
- Create a utility function in the shared project that will help in determining if the current user has

certain permission or not. For example - hasPermission(‘delete-message’, userRoles,
all-permissions), hasPermission(‘delete-message’, role), and other variations.

- build the UI that will show moderation options based on the user role.

Week 7: July 10 - July 16 (July 14 midterm evaluation, keep buffer)

- keep this week as a buffer week as it includes the first evaluations.
- I will work on the feedback received from the mentors in the evaluation and work on that.
- Complete any incomplete work from the above weeks due to any delay in the timeline before the

first evaluations.

Week 8: July 17 - July 23

- I will work on the HTML embed task this week.
- Test the embedded feature in different environments - WordPress, ghost, etc

Week 9, 10, 11: July 24 - July 30, July 31 - August 6 & August 7 - August 13

- Work on react-native components of embedded chat.
- I will set up the storybook for it.
- I will share my updates with my mentors regularly and work on the feedback provided.

Week 12: August 14 - August 20

- I will be working on the comment mode feature in React project.
- I will share my updates with my mentor and work on the feedback. I will also spend time in adding

the docs that are yet to be created.
- I will add tutorials, maybe in a wiki, on the topics that I have mentioned in the implementation

details.

Week 13: August 21 - August 28 (Final product and evaluation submission period, keep buffer)

- I will keep this week as a buffer to work on the feedback received from my mentors’ evaluations.
- I also plan to complete any incomplete work from the above weeks due to any delay in the timeline

before the second evaluation.

