YEAR 11 - MATHEMATICS ## **Preliminary Topic 16 - Inverse Trigonometric Functions** ## **MATHEMATICS EXTENSION** | LEARNING PLAN | | | | | |--|---|--|-----------|--| | Learning Intentions Student is able to: | Learning Experiences Implications, considerations and implementations: | Success Criteria
I can: | Resources | | | define and use the inverse trigonometric functions | | define and use the inverse trigonometric functions | | | | (a) understand and use the notation $\arcsin \arcsin x$ and $\sin^{-1} x$ for the inverse function of $\sin \sin x$ when $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (and similarly for $\cos \cos x$ and $\tan \tan x$) and understand when each notation might be appropriate to avoid | • Students should understand the notation for inverse trigonometric functions and hence be aware for example that: $x \neq \frac{1}{\sin x}$. Similarly, for inverse cosine and inverse tangent. | (a) understand and use the notation $\arcsin arcsin x$ and $\sin^{-1} x$ for the inverse function of $\sin sin x$ when $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (and similarly for $\cos cos x$ and $\tan tan x$) and understand when each notation might be appropriate to avoid | | | | confusion with the reciprocal functions. | | confusion with the reciprocal functions. | |---|--|---| | (b) use the convention of restricting the domain of $\sin \sin x$ to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, so the inverse function exists. The inverse of this restricted sine function is defined by: $y = \sin^{-1} x$, $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$. | | (b) use the convention of restricting the domain of $\sin \sin x$ to $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, so the inverse function exists. The inverse of this restricted sine function is defined by: $y = \sin^{-1} x$, $-1 \le x \le 1$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$. | | (c) use the convention of restricting the domain of $\cos \cos x$ to $0 \le x \le \pi$, so the inverse function exists. The inverse of this restricted cosine function is defined by: $y = \cos^{-1} x$, $-1 \le x \le 1$ and $0 \le y \le \pi$. | • Evaluate α if $\alpha = \left(-\frac{\sqrt{3}}{2}\right)$. | (c) use the convention of restricting the domain of $\cos \cos x$ to $0 \le x \le \pi$, so the inverse function exists. The inverse of this restricted cosine function is defined by: $y = \cos^{-1} x$, $-1 \le x \le 1$ and $0 \le y \le \pi$. | | (e) use the convention of restricting the domain of $\tan tan x$ to $-\frac{\pi}{2} < x < \frac{\pi}{2}$, so the inverse function exists. The | | (e) use the convention of restricting the domain of $\tan tan x$ to $-\frac{\pi}{2} < x < \frac{\pi}{2}$, so the | | inverse of this restricted tangent function is defined by: $y = tan^{-1}x, x \text{ is a real number}$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$. | | inverse function exists. The inverse of this restricted tangent function is defined by: $y = tan^{-1}x$, x is a real number and $-\frac{\pi}{2} < y < \frac{\pi}{2}$. | |--|--|---| | (f) classify inverse trigonometric functions as odd, even or neither odd nor even. | | (f) classify inverse trigonometric functions as odd, even or neither odd nor even. | | sketch graphs of the inverse trigonometric functions . | In Year 11 Extension 1 only the basic inverse trigonometric curves are required. For each function, state the domain and range of the function and sketch its graph: (a) (x + 5) (b) g(x) = 2x. | sketch graphs of the inverse trigonometric functions . | | use the relationships $(x) = x$
and $(\sin \sin x) = x$, $(x) = x$
and
$(\cos \cos x) = x$, and
(x) = x and
$(\tan \tan x) = x$ where
appropriate, and state the values of | • Determine the exact value of $\left(\frac{1}{2}\right) - \left(-\frac{1}{2}\right) - \left(-\sqrt{3}\right)$.
• Show that $\sin \sin (p) = \sqrt{1-p^2}$. | use the relationships $(x) = x$ and $(\sin \sin x) = x$, $(x) = x$ and $(\cos \cos x) = x$, and $(x) = x$ and $(\tan \tan x) = x$ where appropriate, and state the | | x for which these relationships are valid. | | values of x for which these relationships are valid. | | |--|---|---|---| | prove and use the properties:
$sin^{-1}(-x) = -x,$ $(-x) = \pi - x,$ $(-x) = -x \text{ and}$ $cos^{-1}x + sin^{-1}x = \frac{\pi}{2}.$ | The results $(-x) = -x$, $(-x) = \pi - x$, $(-x) = -x$, and $x + x = \frac{\pi}{2}$, can be obtained graphically. Students will not be required to reproduce formal proofs. | prove and use the
properties:
$sin^{-1}(-x) = -x,$ $(-x) = \pi - x,$ $(-x) = -x \text{ and}$ $cos^{-1}x + sin^{-1}x = \frac{\pi}{2}.$ | | | solve problems involving inverse trigonometric functions in a variety of abstract and practical situations | | solve problems involving inverse trigonometric functions in a variety of abstract and practical situations | 2017-7, 2014-11c,
2013-9, 2011-1e,
2011-2d, 2007-2d |