Activity: Stoichiometry Balloon Races

Introduction: If a little is good, more is better, right? Does increasing the mass of a reactant in a chemical reaction increase the amount of product that can be formed? This activity will compare the amount of carbon dioxide created when varying amounts of sodium bicarbonate react with a constant amount of acetic acid.

$$NaHCO_{3 (s)} + HC_2H_3O_{2 (aq)} \rightarrow NaC_2H_3O_{2 (aq)} + H_2O_{(l)} + CO_{2 (q)}$$

Safety Precautions: Acetic acid is an irritant. Avoid contact with eyes and skin.

Materials:

- Distilled Vinegar 5% (Acetic Acid) 145 mL
- Baking Soda (Sodium Bicarbonate) 10.5g
- 6 Balloons
- 6 150 mL Erlenmeyer Flasks
- 25 ml graduated cylinder
- Funnel
- Scale
- Weighing Dishes

Preparation:

- 1. Using a graduated cylinder, add 24 ml of distilled vinegar to each flask.
- 2. Label 6 balloons (with a felt tip marker)
- 3. Stretch the balloons by blowing them up to the same size. Check for holes. Then let out as much air as possible.
- 4. Measure the appropriate amount of baking soda (as shown in Table 1 below) into a weighing dish. Use a funnel to transfer baking soda to each balloon. If you spill, you should start over.
- 5. Flatten out the balloon (removing as much air as possible) and then carefully place the neck of the balloon over the mouth of Erlenmeyer flask #1.

- 6. DO NOT ALLOW the baking soda to drop into the flask at this time.
- 7. Repeat steps 5-8 with the remaining baking soda samples #2 6.

Sample	1	2	3	4	5	6
Mass NaHCO ₃	0.50 g	1.00 g	1.50 g	2.00 g	2.50 g	3.00 g

Table 1: Mass of baking soda added to balloons

Procedure:

- 1. Line up the 6 flasks in order 1-6.
- 2. Lift each balloon in turn and shake it to allow the solid to fall into the solution.
 - a. MAKE SURE THE NECK OF THE BALLOON STAYS FIRMLY ATTACHED TO THE FLASK.
 - b. Tap the balloons to make sure that all of the baking soda has fallen into the flask.
- 3. The reactions will be immediate and vigorous.
 - a. The white solids will dissolve
 - b. The solutions will start to bubble and fizz
 - c. The balloons will become inflated
- 4. Allow the reactions to proceed until the bubbling stops. Tap the balloons again. Swirl the flasks to speed the reaction
- 5. Compare the size of the inflated balloons and whether the solid has dissolved in each case.

Observe:

- 1. Rank the balloons from largest to smallest. Are some similar in size?
- 2. Does the solid dissolve equally in every flask?
- 3. What does this suggest about the reaction between the vinegar and baking soda?